Mobile and Sensor Systems

Lecture 3: Wireless Sensor Systems and IoT Prof Cecilia Mascolo

Acks to Dr A. Gaglione (Digital Catapult) for the slides on IoT

In this lecture

- We will describe wireless sensor networks in general and the properties of sensor nodes.
- We will introduce sensor network MAC Layer issues and some solutions.
- We will illustrate IoT MAC protocols

Wireless Sensor Networks?

- In many situations, we want to measure things to develop a better understanding of various phenomena.
- With this insight, we can then design novel or improved systems.

Example: Sensor Network Macroscope

Conventional Manual Monitoring

Many Applications

- Structural health monitoring
- Environmental monitoring
- Animal behaviour
- Warehouse logistics

Characteristics

- Farmer wants to cover his entire vineyard
 - Large number of sensing devices.
- He wants to keep the cost down
 - Low cost, resource constrained.
- He cannot run wires to these many devices
 - Battery powered, wireless.

An Example of Sensor Network Architecture

Sensor Systems vs Standard or Mobile Systems

- Sensor nodes have limited computational resources and energy.
- Sensor nodes are prone to failures (especially because they are often deployed in challenging conditions).
- The topology of a sensor network might not change frequently:
 - Many deployments involve nodes with fixed locations.
 - Some deployments may have mobile sensors.

Sensor Node

- A typical sensor node is composed of,
 - Sensing device
 - Low power radio
 - Small storage

Michigan Micro Mote

What Operating System runs on a sensor?

- Operating system useful to simplify programming tasks and to allow more control over operations of the system
- But what can we do with such a constrained device?
- Given the kind of applications needed it is important to support concurrency...[frequent and parallel collection from different sensors]

Energy Management

- Local computation does not consume significant amount of energy.
- The main source of energy consumption is the radio.
- Current draw on Telosb,
 - Microcontroller ON, Radio OFF I.8mA
 - Microcontroller ON, Radio ON 21mA

Energy Management

- In order to save energy, limit the number of radio transmissions.
- Idle listening consumes as much power as transmission.
- Current draw on Telosb,
 - Idle listening 23mA
 - Transmitting 21mA
- Idle listening is wasteful when average data rate is low.
- Switch off the radio when idle.
- Transmissions from other sensor nodes are lost.

Radio Duty Cycling

- Switch off the radio of all sensors at specific intervals:
 - Very precise synchronization.
 - Still probable idle time for sensors which do not communicate.
- More refined strategy:
 - Wave of switch off time depending on topology.
 - Still an overestimate of the communication needs of some sensors (traffic might be varying across the network).

Dynamic duty cycling

- More refined strategies have been proposed which aim to allow sensors with more packets to stay awake longer and others to sleep more.
 - Synchronized (e.g. S-MAC)
 - Asynchronous (e.g. B-MAC, X-MAC)
- Synchronized protocols try to negotiate a schedule among neighboring nodes.
- Asynchronous protocols rely on preamble sampling to connect a transmitter to receivers.

Sensor-MAC (S-MAC)

- Idea: Switch nodes off, ensure that neighboring nodes turn on simultaneously to allow packet exchange (rendez-vous)
 - Packet exchange occurs only in these active periods
 - Need to also exchange wakeup schedule between neighbors
 - When awake, essentially perform RTS/CTS
 - Use SYNCH, RTS, CTS phases

S-MAC

- SYNC phase divided into time slots with CSMA and backoffs to send schedule to neighbours.
- Y chooses a slot and if no signal is received in this slot, it will transmit its schedule to X otherwise it will wait for next wake up of X.
- RTS phase: X listens for RTS packets (CSMA contention).
- CTS phase: X sends one and extends its wake up time.

S-MAC synchronized islands

- Nodes try to pick up schedule synchronization from neighboring nodes.
- If no neighbor found, nodes pick some schedule to start with.
- If additional nodes join, some node might learn about two different schedules from different nodes
 - "Synchronized islands".
- To bridge this gap, it has to follow both schemes and use more energy.

Preamble Sampling (Low Power Listening, LPL)

- So far: Periodic sleeping supported by some means to synchronize wake up of nodes to ensure rendez-vous between sender and receiver.
- Alternative option: Don't try to explicitly synchronize nodes:
 - Have receiver sleep and only periodically sample the channel.
- Use **long preambles** to ensure that receiver stays awake to catch actual packet. Example: B-MAC and WiseMAC.

Problems with this technique

- Overhearing
 - All receivers listening to the preamble have to stay awake to find out who is the intended receiver.
- Energy Consumption
 - Long preamble causes increased energy consumption at both the transmitter and the receiver.
- Latency
 - Long preamble introduces per-hop latency.

X-MAC

- Short preamble
 - Reduce latency and reduce energy consumption
- Target in preamble
 - Minimize overhearing problem.
- Adding wait time between preambles
 - Reduces latency for the case where destination is awake before preamble completes.

X-MAC

Low-Energy Adaptive Clustering Hierarchy (LEACH)

Low-Energy Adaptive Clustering Hierarchy (LEACH)

- Assumption: dense network of nodes, reporting to a central sink, each node can reach sink directly.
- Idea: Group nodes into "clusters", controlled by clusterhead:
 - Setup phase; details: later.
 - About 5% of nodes become clusterhead (depends on scenario).
 - Role of clusterhead is rotated to share the burden.
 - Clusterheads advertise themselves, ordinary nodes join CH with strongest signal.
 - Clusterheads organize: CDMA code for all member transmission.TDMA schedule to be used within a cluster
- In steady state operation:
 - CHs collect & aggregate data from all cluster members.
 - Report aggregated data to sink using CSMA.
 UNIVERSITY OF

Low-Energy Adaptive Clustering Hierarchy (LEACH)

LEACH rounds

Internet of Things

What is the IoT?

"A global infrastructure for the information society, enabling advanced services by interconnecting **things** based on existing and evolving interoperable information and communication technologies" [1].

"A system of **physical objects** that can be discovered, monitored, controlled, or interacted with by electronic devices that communicate over various networking interfaces and eventually can be connected to the wider internet" [2].

IoT landscape

Devices (tags, sensor nodes, mobile and wearable devices)

Machines (home appliances, security systems, vehicles, etc.)

Environments (smart homes, buildings, cities)

Typical IoT system architecture

Service hosting
Visualisations
Advanced analytics
Data storage

Edge analytics Local storage

Basic processing
Short/wide comms
Sensing/actuation

Classification of communication technologies (range)

Classification of communication technologies (range vs bandwidth)

Main characteristics

Long range communication links

Low bandwidth, low power

Deep indoor penetration

Very cheap radio modules

Typical LPWAN applications

- Smart metering
- Air quality monitoring
- Smart lighting
- Asset tracking (not real-time)
- Tank monitoring
- Waste management

These applications are typically delay tolerant and require the transmission of only a few packets per hours

What is LoRaWAN?

 LoRaWAN is the MAC/network layer which uses LoRa as the underlying radio modulation

3 classes of devices

- A. Battery powered devices, bi-directional comm.
- B. Battery powered devices, bi-directional comm., extra receive windows
- C. Main powered devices

End-device classes

- Battery powered Class A
 - Bidirectional communications
 - End-device initiates communication (uplink)
 - Server communicates with end-device (downlink) during predetermined response windows
 - For every uplink, there are two possible downlink slots
 - Low power consumption, high latency

End-device classes

- Low latency Class B
 - Bidirectional with scheduled receive slots
 - There are pre-programmed downlink slots. Downlink is possible at these times
 - Periodic beacon from gateway to synchronize downlink slots
 - High power consumption, low latency

End-device classes

- No latency Class C
 - Bidirectional communications
 - Server can initiate transmission at any time
 - End-device is constantly receiving
 - Main-powered devices, no latency

Summary

- We have described the characteristics of sensor systems and their challenges
- We have introduced MAC protocols for sensor systems
- We have illustrated the IoT protocols

Acks to Dr A. Gaglione (Digital Catapult) for the slides on IoT

Suggested Readings

- TinyOS tutorial: http://www.tinyos.net/tinyos-l.x/doc/tutorial/
- SMAC: Ye, W., Heidemann, J., and Estrin, D. 2004. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 12, 3 (Jun. 2004), 493-506.
- WISEMAC: El-Hoiydi, A. and Decotignie, J. 2004. WiseMAC: an ultra low power MAC protocol for the downlink of infrastructure wireless sensor networks. In Proceedings of the Ninth international Symposium on Computers and Communications 2004 Volume 2 (Iscc"04) Volume 02 (June 28 July 01, 2004). ISCC. IEEE Computer Society, Washington, DC, 244-251.
- X-MAC: M. Buettner, G.V.Yee, E. Anderson, and R. Han, "X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks," in *Proceedings of the 4th international conference on Embedded networked sensor systems* Boulder, Colorado, USA: ACM, 2006.
- LEACH: Energy-Efficient Communication Protocols for Wireless Microsensor Networks. Wendi Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan, Proc. Hawaaian Int'l Conf. on Systems Science, January 2000.

Suggested readings

- O. Vermesan and P. Friess (eds.). Internet of Things –
 From Research and Innovation to Market Deployment.
 River Publishers Series in Communication. 2014
- ITU-T Recommendation Y.2060. Overview of the Internet of Things. June 2012.
- Z. Shelby and C. Bormann. 6LoWPAN: The Wireless Embedded Internet. Wiley Publishing. 2010.
- N. Sornin, M. Luis, T. Eirich, T. Kramp, O. Hersent. LoRaWAN Specification. Version VI.0. Lora Alliance. January 2015.

