
Mobile and Sensor Systems

Lecture 12: Mobile Robots for Robotic
Sensor Networks

Dr. Amanda Prorok

Autonomous Robots

• What is a robot? 
 
 
 
 
 

• Challenges:

‣ How to model and perceive the world?

‣ How to process information and exert control?

‣ How to reason and plan in the face of uncertainty?

!2

consumer-grade droneslightweight aerial robots
[Kumar et al.; UPenn]

autonomous vehicles
[Google]

microrobots
[Wood, Harvard]

self-foldable / self-actuated  
[Sung and Rus; MIT]

Robots and Mobile Systems

!3

truck platoons / long-haul transportdrone swarms / surveillance

connected vehicles / automated highwayssmart infrastructure / mobility-on-demand

In this Lecture

• Introduction to mobile robot networks

• Methods to create a robotic sensor network
1. How to deploy multiple robots to cover an area?

• Area tessellation

• Coverage control

• Lloyds algorithm

2. How to use multiple robots for pose estimation?

• Collaborative particle filter

3. How to move a robot?

• Basic principles of kinematics

!4

What is a Robot?
• Basic building block of autonomy: perception-action loop

!5

perception

action

Three main variants:
1. Reactive (e.g., nonlinear transform of sensor readings)
2. Reactive + memory (eg., filter, state variables)
3. Deliberative (e.g., planning)

decision-making and control interaction with the world

Sensors for Robots
• Proprioceptive vs. exteroceptive

‣ Proprioceptive: “body” sensors, e.g., motor speed,
battery voltage, joint angle

‣ Exteroceptive: “environment” sensors, e.g., distance
measurement, light intensity

• Passive vs. active

‣ Passive: “measure ambient energy”, e.g., temperature
probes, cameras, microphones

‣ Active: “emit energy, and measure the environmental
reaction”, e.g., infrared proximity sensors, ultrasound
sensors

!6

Sensor and Actuators
• Actuators

‣ For different purposes: e.g., locomotion, control of a body
part, heating, sound emission.

‣ Examples of electrical-to-mechanical actuators: DC motors,
stepper motors, servos, loudspeakers.

• Uncertainty and disturbances

‣ Causes for actuation noise: e.g., wheel slip, slack in
mechanism

‣ Causes for sensor noise: e.g., environmental factors, cheap
circuitry

!7

Multi-Robot Systems
• Terms used: robot swarms / robot teams / robot networks

• Why?

‣ Distributed nature of many problems

‣ Overall performance greater than sum of individual efforts

‣ Redundancy

• Numerous commercial, civil, military applications

!8

Magnus Egerstedt - Aug. 2013

Application Domains

Sensor and
communications networks Multi-agent robotics

Coordinated control Biological networks

surveillance / monitoring product pickup / deliverysearch & rescue

Taxonomy of Multi-Robot Systems
• Architecture: centralized vs. decentralized

‣ Centralized: one control/estimation unit communicates
with all robots to issue commands; requires synchronized,
reliable communication channels; single-point failures

‣ Decentralized: scalable, robust to failure; often
asynchronous; sub-optimal performance (w.r.t centralized)

• Communication: explicit vs. implicit

‣ Implicit: observable states; information exchanged
through observation

‣ Explicit: unobservable states; need to be communicated
explicitly

• Heterogeneity: homogenenous vs. heterogeneous

‣ Robot teams can leverage inter-robot complementarities
!9

Decentralization

• Goal: Achieve similar (or same) performance as would be
achievable with an ideal, centralized system.

• Challenges:

‣ Communication: delays and overhead

‣ Input: asynchronous; with rumor propagation

‣ Sub-optimality with respect to the centralized solution

• Advantages:

‣ No single-point failure

‣ Can converge to optimum as time progresses

‣ ‘Any-comm’ algorithms exist (with graceful degradation)

!10

Robotic Sensor Networks

!11

Adaptive coverage and tracking [Kemna et al., 2018]

A key application of multi-robot systems: robotic sensor networks

628 The International Journal of Robotics Research 31(5)

Fig. 1. Dynamics of algal blooms in California’s Monterey Bay. Figure shows remote sensing images capturing the chlorophyll concen-
tration at the ocean surface between September 19th and October 8th, 2002. Due to atmospheric conditions, the images are temporally
aperiodic. Algal hotspots characterized by red coloration can be seen evolving as a result of biological growth and decay, and advection
due to ocean currents. Marine scientists are interested in understanding the dynamics of these hotspots as they evolve, which neces-
sitates being able to track them spatially as they are advected by ocean currents, and sampling within this patch frame of reference.
(Reproduced with permission from (Ryan et al. 2005).)

Tracking of oceanographic features with AUVs has pre-
viously been addressed with the help of ocean models.
Advection forecasts provided by regional ocean models in
the form of virtual drifters have been used for planning tra-
jectories for gliders to track the boundary and centroid of a
patch of water (Smith et al., 2010b, Smith et al., 2010a).
However, glider trajectories computed for virtual drifters
are not guaranteed to track a physical patch of water since
such model forecasts suffer from high uncertainty. Further,
the work is limited by the speed and motion of gliders which
are highly restrictive and influenced by currents which have
resulted in focused demonstration of boundary and centroid
tracking. In contrast, the goal of this work is to track a patch
and sample within it rapidly.

Tracking and rendezvous with moving targets has been
covered in the robotics literature, although the focus has
been on interception and entrapment with multiple robots
(Mas et al. 2009), rather than sampling in the target frame-
of-reference. Saripalli and Sukhatme (2003) demonstrated
landing of an unmanned aerial vehicle on a moving target.
Frew and Lawrence (2005) demonstrated control strategies
wherein a team of autonomous aircraft orbit a moving tar-
get while maintaining a specified distance (standoff line-
of-sight tracking). Franchi et al. (2010) used a terrestrial
multi-robot system using low-level control to localize and
encircle a moving target in a lab environment. In the ocean
sciences, Hu et al. (2011) discuss the use of drifters for
tracking anticyclonic eddies in near coastal waters; how-
ever, they use a Lagrangian frame of reference to navigate
their manned support vessel.

Feature tracking with AUVs has been discussed in the
context of multiple gliders in the Monterey Bay by Fiorelli
et al. (2006), while coordinated sampling with a fleet of
gliders is demonstrated in Zhang et al. (2007). A methodol-
ogy for iceberg relative-terrain-aided navigation has been
proposed for AUVs using sideways looking sonar maps

generated by a ship (Kimball and Rock 2010). How-
ever, the authors abstract the iceberg deformation and its
motion while relying on the closed structure of a solid
body.

Our work is distinct in that environmental observation
and sampling drive the survey methodology using onboard
planning techniques within the oceanographic domain.
More importantly the focus of this work is on deriving
the frames of reference for undertaking such observations
which none of the prior work addresses. To the best of
our knowledge, our work presents the first study where an
autonomous robot samples in the Lagrangian frame of ref-
erence of an advecting oceanographic feature in the upper
water-column.

3. Technical approach
AUVs are equipped with scientific payloads to enable sam-
pling of bio-geochemical properties of interest at desired
sampling rates. Typically while sampling the upper water-
column, track-line based surveys are carried out. A promi-
nent example is the ‘radiator’ or ‘lawnmower’ pattern
shown in Figure 2. It shows an aggregation of phytoplank-
ton, identified by the fluorescence of their chlorophyll dur-
ing daytime operations when biological activity is concen-
trated in the upper portions of the shelf in Monterey Bay.
The vertical saw-tooth profiling path of the AUV illustrated
in this figure is called a ‘yo-yo’ and allows observation of
a three-dimensional snapshot of the water-column. The pat-
terns are usually determined a priori according to scientific
need.

Existing AUV sampling methodologies use survey pat-
terns designed in the Earth frame, i.e. they are not planned
and carried out relative to the water mass. Hence, by design,
these static-plan surveys are suitable for features that do not

Coordinated sampling of dynamic oceanographic features with underwater vehicles
[Das et al., 2012]: Das et al. 629

Fig. 2. A lawnmower survey pattern of an AUV in the upper
water-column showing chlorophyll fluorescence within vertical
saw-tooth (or ‘yo-yo’) profiles.

Fig. 3. Airborne remote sensing images showing short-term phy-
toplankton bloom dynamics in the Monterey Bay in the month of
August 2009. A phytoplankton bloom patch, marked in the left
image with a +, is shown advecting eastward by ∼1 km in less
than 70 min, suggesting currents of the order of ∼0.2 m/s.

move out of the survey’s region of coverage or are suffi-
ciently slow for an AUV with typical speeds of ∼1.5 m/s
to resolve adequately. The oceanographic features of inter-
est in our study, however are not static; movement occurs
either due to surface currents, the geography of the coastal
shelf, wind-driven conditions or all of the above. Figure 3
shows remote sensing imagery of chlorophyll concentration
in the upper 5–10 m of Monterey bay. The hotspots (regions
with warm colors) were advected at ∼1 km/h.

The scientific goal of this work is to extend exist-
ing oceanographic sampling methodologies to perform
Lagrangian observation studies to sample such advecting
features of interest. We approach this problem in two ways:

Track a patch: we use GPS-tracked Lagrangian drifters,
used as proxies for advection by marine scientists, to tag an
identified patch of interest;

Sample the patch: we extend existing oceanographic sur-
vey patterns to sample within the context of the advecting
water patch tagged by the drifter. Frequent position updates

Fig. 4. Illustration of a Lagrangian drifter being tracked on shore
and at sea. The drifter has a float section affected mostly by wind
and a drogue section which is impacted by sub-surface currents.
Drifter locations are transmitted via satellite. The support vessel
is for launch, recovery and charging of the AUV.

from the drifter are used to estimate the short-term trajec-
tory of the patch, and two approaches are demonstrated to
stay with the patch and sample around or within it.

3.1. Tracking advecting patches

We use GPS-tracked drifters to tag the center of an advect-
ing water patch. These patches are usually identified by
using data from remote-sensing satellites, pilot AUV static-
plan surveys, and ship-board measurements. Once detected,
a bloom center is marked with a GPS-tracked drifter and
position updates are obtained from the drifter at regular
intervals of ∼2 min via a satellite communication network
such as Iridium. To improve the drifter’s signature of patch
advection, which may experience a range of sub-surface
currents, drogues are often used to improve the surface
and sub-surface expression for advection. Figure 4 illus-
trates the usage of a GPS-tracked Lagrangian drifter and
its communication channels with shore, ship, and AUV.

3.2. Scientific motivation

Two primary science goals drive our work; resolving the
boundary of a patch, and the interior of a patch. The first
goal requires a survey template that repeatedly circum-
scribes the volume boundary such as a box pattern shown in
Figure 5. The second goal is to map the interior of the vol-
ume in order to understand the biological dynamics occur-
ring within the volume of the patch, requiring a template
that passes through the volume interior such as in the lawn-
mower pattern described earlier. Both goals are relevant to
the overarching research objective to understand the envi-
ronmental factors influencing the growth and ecology of
phytoplankton communities. The box pattern was chosen
for our open-ocean field experiment, although the results
can be generalized to other patterns.

Our work extends existing static-plan surveys to the
observation of advecting features of interest. To achieve this

Coverage

• Coverage classes:

‣ Blanket: Deploy sensors, e.g. carried by networked
robots, in a static arrangement to cover an area.

‣ Barrier: Deploy sensors in a static arrangement that
minimizes the probability of undetected penetration
through the barrier.

‣ Sweep: Move a group of sensors across a coverage area to
achieve a balance between maximizing the number of
detections per time and minimizing the number of missed
detections per area.

!12

[D. W. Gage, 1992]

Coverage Classes

!13

R

R

R

R

R

R
R

R

R

R
R

R

R

R
R

R
R

x x

Blanket Barrier Sweep

R

R

R

R

R x

x

Coverage Applications

!14

Application Coverage Class

Target search & rescue Sweep

Reconaissance Sweep

Sentry duty Barrier

Communications relay Blanket

Maintenance / inspection Blanket

Tessellation
• Voronoi diagram:

‣ Partitioning of a plane into regions based on distances to
points in a specific subset of the plane.

‣ A set of points (called seeds, sites, or generators) is
specified beforehand, and for each seed there is a
corresponding region consisting of all points closer to that
seed than to any other.

‣ Regions called Voronoi cells

!15

pi

Vi

generator

cell

Voronoi Coverage
• A widely studied class of solutions to coverage use Voronoi

tessellations that optimize the configuration of n robots

• Assumption: 1 robot (generator) per Voronoi cell

• Optimization objective: minimize the average distance between robots
and all points in their respective cells.

• Centroidal Voronoi Tessellation (CVT):  

!16

MVi
= ∫Vi

ϕ(x) dx

cVi
=

1
MVi

∫Vi

x ϕ(x) dx

Mass of a cell:

Centroid of a cell:

ϕ(x)Density function describes importance of different areas in space

Centroidal Voronoi Tessellation

!17

• CVTs minimize this cost function (using Euclidean distance):

H(P) =
n

∑
i=1

H(pi) =
1
2

n

∑
i=1

∫Vi

∥pi − x∥2
2 ϕ(x) dx

∂H(pi)
∂pi

= − MVi
(cVi

− pi) = 0

• A Voronoi tessellation becomes a CVT when all generators
coincide with the cell centroids.

Coverage Control

• Control strategy for 1st order dynamics:

!18

ui = ·pi = k(cVi
− pi)

What kind of
controller is this?

How to compute
centroid positions?

How to compute robot
positions in a MRS?

∂H(pi)
∂pi

= − MVi
(cVi

− pi) = 0

• Lloyd’s algorithm:

‣ Deterministic way of constructing CVTs.

‣ Iterates over 3 steps:

1. Construct the Voronoi partition for the generators

2. Compute the centroids of these regions

3. Move generators to centroids and start over. 
 
 
 
 

• Convergence of Lloyd’s algorithm:

‣ A set of points in a given environment converges under the Lloyd
algorithm to a centroidal Voronoi configuration.

Lloyd’s Algorithm

!19
* image credit: Wikipedia

generators

current centroid
estimate

Collaborative Multi-Robot Systems

!20

fully connected star topology random mesh

centralized / decentralized
coordination

centralized / decentralized
coordination

decentralized
coordination

Communication Topologies:

Distributed Estimation
• Goal: Estimate a local or global variable in distributed manner

• Filters can be distributed

‣ Examples: Kalman filter, particle filter

‣ Method: fuse relative observations of other robots

‣ Correct implementation considers relative observations as
dependent measurements; the whole history of
measurements needs to be tracked (to avoid rumor
propagation)!

• Other mechanisms:

‣ Opportunistic mechanisms

‣ Consensus (agreement mechanism)

!21

Collaborative Localization

!22

y

x
relative range

relative bearing

• Collaborative localization uses relative inter-robot observations
• Robots communicate their position estimate
• Fuse relative observation by transforming position into local frame

Collaborative Localization

!23

• This example considers a particle filter (Kalman filter also possible)
• Detected robot weights its particles using belief of detecting robot
• Particles re-sampled according to new weights (standard filter)

13.2. Problem statement

R1

R2

e12

α12

ẽ12

α̃12

pdf
z

Figure 13.2: The range eij between two robots Ri and Rj is the
distance separating both robot’s centers and the bearing ↵ij in-
dicates the angle between the forward direction of Ri and the
line towards Rj . Each range and bearing measurement [ẽij , ↵̃ij]

T

result from the addition of a noise vector ✏z (drawn from a prob-
ability density function pdfz) to the nominal range and bearing
values [eij ,↵ij]

T.

13.2 Problem statement

We have a team of N point-sized, differential-wheeled robots R1, . . . , RN driven by the kine-
matic equations:

8
<

:

ẋi = ui cos ✓i
ẏi = ui sin ✓i
✓̇i = !i

(13.1)

where ui = [ui,!i]T is the vector of control inputs, with ui the linear translational speed and
!i the rotational speed, and the vector xi = [xi, yi, ✓i]T forms the triplet defining the absolute
pose or state of the robot Ri. The state and control inputs of all robots are stored in the vectors

x = [x1, y1, ✓1, . . . , xN , yN , ✓N]T and (13.2)

u = [u1,!1, . . . , uN ,!N]T , respectively. (13.3)

Each robot Ri has a set of neighbors Ni containing all robots Rj such that Ri can measure the
relative range eij and bearing ↵ij to Rj . Each observation zij of Rj at time t may be affected by
noise and, thus, is defined by the vector

zij =


ẽij
↵̃ij

�
=


eij
↵ij

�
+ ✏z (13.4)

where ✏z is a random noise vector sampled for each observation from a probability distribu-
tion given by its probability density function pdfz (i.e., all sampled ✏z are i.i.d.), as shown in
Figure 13.2. Hence at time t, a robot Ri gathers an observation list

Zi = {zij |Rj 2 Ni}. (13.5)

Finally, unless stated otherwise, all variables are time dependent. The goal is to drive all robots
to the same location regardless of their orientation.

107

detected robot

Range & Bearing Model

!24

Rm

Rn

r[i]mn

✓[i]mn

: range with center to x[i]
m

: bearing from with respect to x[i]
m

dmn = hrmn, ✓mn, Xmi

p(xn|dmn) = ⌘ ·
X

D
x[i]
m ,w[i]

m

E
2Xm

�

 "
r[i]mn

✓[i]mn

#
;


rmn

✓mn

�
,⌃

!
· w[i]

m

xn

xn

xn

detection data

Collaborative Localization Algorithm

!25

Algorithm 1 MultiRob Recip MCL(Xn,t−1, un,t, zn,t, Dn,t)

1: X̄n,t = Xn,t = ∅
2: for i = 1 to M do
3: x

[i]
n,t ← Motion Model(un,t,x

[i]
n,t−1)

4: w
[i]
n,t ← Measurement Model(x[i]

n,t)
5: w

[i]
n,t ← Detection Model(Dn,t,x

[i]
n,t, w

[i]
n,t)

6: X̄n,t ← X̄n,t +
〈

x
[i]
n,t, w

[i]
n,t

〉

7: end for
8: for i = 1 to M do
9: r ∼ U(0, 1)
10: if r ≤ (1− α) then
11: x

[i]
n,t ← Sampling(X̄n,t)

12: else
13: x

[i]
n,t ← Reciprocal Sampling(Dn,t, X̄n,t)

14: end if
15: Xn,t ← Xn,t +

〈

x
[i]
n,t, w

[i]
n,t

〉

16: end for
17: return Xn,t

III. PARTICLE CLUSTERING
The algorithm complexity of the detection model

pmn(xn|dmn) (Eq. 6) leads to O(M2) for Algorithm 1 (for
better clarity in the following derivations, we will assume
that |Nn,t| = 1). This cost can be prohibitive for a large
number of particles M (i.e., large with respect to available
computational resources). Also, a multi-robot system may
have communication constraints that make sending large par-
ticle sets infeasible. Hence, even though the method applied
in this paper allows for very small particle sets [15], we resort
to a clustering method to further reduce the computational
and communication overhead.
Let us consider a case where robot Rm detects robot Rn.

The goal of the clustering method is to reduce the number
of operations needed to compute the probability density
function pmn. Thus, for every detection that it makes, robot
Rm resorts to a clustering method which summarizes its set
Xm composed of M particles to a set X̂m composed of
K cluster abstractions (or centroids), reducing the overall
computational cost to O(MK) (this clustering routine is
detailed later, in Algorithm 2 of Section III-A). The resulting
partition of the particle set is denoted Cm, with |Cm| = K . An
individual cluster c[k]m ∈ Cm is defined as the set of particles

c[k]m = {⟨x[i]
m , w[i]

m⟩ | f(⟨x[i]
m, w[i]

m⟩, ·) = k}, (7)

where f is a function mapping a particle to a cluster index.
Also, we define c̄

[k]
m as the data abstraction of cluster c[k]m ,

representing all particles in its set by the tuple

c̄[k]m = ⟨x̂[k]
m , ŵ[k]

m , µ̂[k]
m , Σ̂[k]

m ⟩, (8)

where µ̂
[k]
m is a two dimensional vector and Σ̂[k]

m is a
covariance matrix. Thus, X̂m = {c̄[k]m | c[k]m ∈ Cm} is the set
of K cluster abstractions. Finally, we denote the clustered
detection data as d̂mn = ⟨rmn, θmn, X̂m⟩. Formally, given
the notation introduced above, finding an optimal particle
clustering is equivalent to solving the following optimization
problem

min
d̂mn

D(pmn(xn|dmn) || p̂mn(xn|d̂mn)), (9)

Fig. 2. The detection model (here with range and bearing noise σr = 0.1
and σθ = 0.2) is projected on the detected robot (in white). Final cluster
partitions are superimposed on the particles of the detecting robot. From
left to right, top to bottom, the number of clusters K employed by the
clustering algorithm is: 100, 32, 8, 4, 2, 1, for a total number of particles
M = 100.

where p̂mn is an approximated detection model, and D a
distance measure between two probability density functions.
Jain et al. [8] point out that in a typical clustering task, the
actual grouping (or clustering) and cluster data abstraction
(or cluster representation) are separate components of the
task and are commonly treated sequentially. Hence, we deal
with our problem by dividing it into the two following sub-
problems: (i) we consider the set of particles Xm and find
an optimal way to create a partition Cm, and (ii) we consider
an arbitrary cluster c[k]m in Cm and find an optimal way to
determine its cluster abstraction c̄

[k]
m . For a given set Xm,

these two steps together ultimately lead to a set of cluster
abstractions X̂m, which, instead of Xm, is included into the
detection data tuple d̂mn for every new detection made. The
following paragraphs detail our low-cost clustering approach
that aims to meet these specifications.

A. Clustering Algorithm
The optimal, combinatorial solution to the clustering prob-

lem of Equation 9 requires the evaluation of a very large
number of partitions (the number of ways to partition a set
of M data points into K non-empty clusters is given by
Stirling number of the second kind). Even though efficient
approaches have been proposed [9], combinatorial solutions
still remain prohibitively expensive. Given the usefulness
of clustering in a large range of disciplines, many non-
combinatorial clustering approaches have been proposed [8].
Yet, since our goal is to reduce the final complexity of
our algorithm, the complexity of the actual clustering al-
gorithm must be at most equal to O(MK). One of the
most commonly used low-cost clustering methods is the k-
means algorithm [12]. It starts off with a random initial
cluster assignment and iteratively reassigns clusters until
a convergence criterion is met or a maximum number of
iterations L is attained. Although the algorithm has a low
time complexity O(MKL), its main disadvantage is that it
is sensitive to the initial cluster assignment. The variant ISO-
DATA algorithm [1] is also an iterative clustering algorithm
with a time complexity of O(MKL), with the additional
capability to split and merge clusters according to predefined

[Prorok et al., 2011]

�26

Collaborative Localization

Control

!27

Algorithm: Bang-Bang Controller

forever do:
error ← reference − measured // Distance
if error < 0 // Too far left
left-motor-power ← 100
right-motor-power ← -100

if error > 0 // Too far right
left-motor-power ← −100
right-motor-power ← 100

if error = 0 // Just right
left-motor-power ← 100
right-motor-power ← 100

Mobile Robot Systems — Lecture 3: Robot Motion & Control

A Simple Closed-Loop Controller:

Bang-Bang Controller
• Example: trajectory tracking

• The robot uses feedback to maintain a desired set-point.

• Assumption: robot receives feedback on distance to desired
trajectory.

!28Mobile Robot Systems — Lecture 3: Robot Motion & Control

‘on-off ’ or ‘bang-bang’ controller

100 6 Control

which is negative if the robot is too far away from the object and positive if it is too
close to the object. The motor powers are turned to full forwards or full backwards
depending on the sign of the error. For example, if the reference distance is 10cm
and the measured distance is 20cm, the robot is too far away and the error is−10cm.
Therefore, the motors must be set to move forwards.

The robot approaches the object at full speed.When the robot reaches the reference
distance from the object, it takes time for the sensor to be read and the error to be
computed. Even if the robot measures a distance exactly equal to the reference
distance (which is unlikely), the robot will not be able to stop immediately and will
overrun the reference distance. The algorithm will then cause the robot to back up at
full speed, again passing the reference distance. When the timer causes the control
algorithm to be run again, the robot will reverse direction and go forwards at full
speed. The resulting behavior of the robot is shown in Fig. 6.2: the robot will oscillate
around the reference distance to the object. It is highly unlikely that the robot will
actually stop at or near the reference distance.

A further disadvantage of the on-off algorithm is that the frequent and abrupt
reversal of direction results in high accelerations. If we are trying to control a gripper
arm, the objects that it is carrying may be damaged. The algorithm generates high
levels of wear and tear on the motors and on other mechanical moving parts.

Activity 6.2: On-off controller

• Implement the on-off algorithm on your robot for the task of stopping at a
reference distance from an object.

• Run it several times starting at differences distances from the object.

di
st
an

ce

time

r

Fig. 6.2 Behavior of the on-off algorithm

zig-zag behavior: we can do better!

* image credit: Elements of Robotics

Proportional Control (P-Control)
• Example: trajectory tracking

• The robot uses feedback to maintain a desired set-point.

• Assumption: robot receives feedback on distance to line.

• Robot computes error, and adjusts control as a function of error

!29Mobile Robot Systems — Lecture 3: Robot Motion & Control

previous slide: oscillatory behavior

error = distance-to-trajectory

turning-control = K * error

adjustment is proportional to error!

Proportional Control (P-Control)

!30

Algorithm: P-Controller

forever do:
error ← reference − measured // Distance  
power ← gain * error // Control value
left-motor-power ← power  
right-motor-power ← power

Mobile Robot Systems — Lecture 3: Robot Motion & Control

Proportional Control (P-Control)

• Behavior of P-control:

‣ Adapt control proportionally to your 
perceived error to set-point.

‣  

• Why is the target distance not reached?

• Behavior for varying gain values

• High gains not desirable! We call this an  
unstable controller.

!31

102 6 Control

Example Suppose that the reference distance is 100cm and the gain is −0.8. When
the robot is 150cm away from the object, the error is 100−150 = −50 and the
control algorithm will set the power to −0.8 · −50 = 40. Table6.1 shows the errors
and power settings for three distances. If the robot overruns the reference distance
of 100 cm and a distance of 60cm is measured, the power will be set to −32 causing
the robot to move backwards.

Figure6.3 plots the distance of the robot to the object as a function of time when
the robot is controlled by a P controller. The line labeled r is the reference distance.
The change in the motor power is smooth so the robot doesn’t experience rapid
accelerations and decelerations. The response is somewhat slow, but the robot does
approach the target distance.

Unfortunately, the robot does not actually reach the reference distance. To under-
stand why this happens, consider what happens when the robot is very close to the
reference distance. The error will be very small and consequently the power setting
will be very low. In theory, the low power setting should cause the robot to move
slowly, eventually reaching the reference distance. In practice, the motor power may
become so low that it is not able to overcome the internal friction in the motors and
their connection to the wheels, so the robot stops moving.

It might seem that increasing the gain of the P controller could overcome this
problem, but a high gain suffers from a serious disadvantage. Figure6.4 shows the
effect of the gain on the P controller. Higher gain (dashed red line) causes the robot to

Table 6.1 Proportional
controller for gain of −0.8

Distance Error Power

150 −50 40

125 −25 20

60 40 −32

di
st
an

ce

time

r

Fig. 6.3 Behavior of the P controller

6.3 Proportional (P) Controller 103

di
st
an

ce
time

r

Fig. 6.4 The effect of the gain on the P controller: lower gain (dotted blue line), higher gain (dashed
red line), excessive gain (oscillating green line)

approach the reference distance faster, while lower gain (dotted blue line) causes the
robot to approach the reference distance slower. However, if the gain is too high, the
P controller functions like an on-off controller with an oscillating response (green
line). We say that the controller is unstable.

There are situations where the P controller cannot reach the reference distance
even in a ideal system. Suppose that the object itself is moving at constant speed away
from the robot. The P controller will set maximum motor power to cause the robot
to move rapidly towards the object. Eventually, however, as the robot approaches
the object, the measured distance will become small and the P controller will set
the power so low that the speed of the robot is lower than the speed of the object.
The result is that the robot will never reach the reference distance. If the robot could
actually reach the reference distance, the error would be zero and therefore the speed
of the robot would also be zero. The object, however, is still moving away from the
robot, so somewhat later the robot will start moving again and the cycle repeats. This
start-and-stop motion is not the intended goal of maintaining the reference distance.

Example We use the same data as in the previous example except that the object
moves at 20cm/s. Table6.2 shows the errors and power settings for three distances.
Initially, the robot is going faster then the object so it will catch up.At 125cm from the
object, however, the robot is moving at the same speed as the object. It maintains this
fixed distance and will not approach the reference distance of 100cm. If somehow
the robot gets closer to the object, say, 110cm, the power is reduced to 8 causing the
robot to back away from the object.

low gain high gain

* image credit: Elements of Robotics

Mobile Robot Systems — Lecture 3: Robot Motion & Control

u(t) = κpe(t)

Fundamental concepts:

• Elements of Robotics, F Mondada et al., 2018

• Autonomous Mobile Robots, R Siegwart et al., 2004  

State of the art:

• The grand challenges of Science Robotics, Science, Yang et al. 2018

 
Further reading:

• Probabilistic Robotics, S Thrun et al, 2005

• Springer Handbook of Robotics, B Siciliano et al., 2008

Further Reading

!32

