
Mobile Robot Systems
Lecture 5: Localization

Dr. Amanda Prorok
asp45@cam.ac.uk

www.proroklab.org

mailto:asp45@cam.ac.uk

In this Lecture

• Probabilistic localization

• Bayes (rule and algorithm)

• Grid localization

• Filters

‣ Particle filter

‣ Kalman Filter

• Map representations

• Credits:

‣ Examples from Probabilistic Robotics; Thrun et al.

Mobile Robot Systems — Lecture 5: Localization �2

Architecture of an Autonomous Mobile Robot

!3

control architectures

perception action decision-making

localization motion control now
(react)

later
(plan)

navigation

ba
si

cs
 o

f
au

to
no

m
y

m
ob

ile

au
to

no
m

y

Mobile Robot Systems — Lecture 5: Localization

Taxonomy of Localization Problems
• Dead-reckoning (position tracking): initial position known

‣ Blindly update pose based on differential movements

• Global localization: initial position unknown

‣ Map-based (with landmarks)

‣ Sensors: laser, camera, proximity

‣ Method: map-matching techniques (various)

‣ Beacon-based (with active infrastructure)

‣ Bluetooth, WiFi, GPS (outdoors only), etc.

‣ Method: trilateration, fingerprinting, proximity

• Global localization and position tracking combined.

!4

1.2. Indoor Localization in Robotics Research

(a) Map-based (b) Beacon-based

Figure 1.4: One can classify the approaches towards solving the robot localization problem into
two main fields: (a) localization based on a map of the environment, and (b) localization based on
sensor beacons.

model of the environment vs. a simple graph of interconnections between the landmarks).
When a map is not available a priori, the problem generalizes to Simultaneous Localization
and Mapping (SLAM) [29]. Indeed, mapping and localization employ the same set of sensors.
In this section, we will briefly review two groups of sensors which have become standard
choices for map-based localization: vision-based sensing and active ranging. We note that our
summary only reflects what we deem most relevant in the context of this manuscript, and a
more complete overview of sensors used for map-based localization can be found in [31, 114].

Possibly the most powerful sensor for feature-based localization is the digital camera. DeSouza
et al. [27] present a comprehensive survey of vision-based localization for mobile robots,
referring to the previous decades of development in the area. Camera sensors are very popular
for mobile robots since they are passive sensors, simultaneously providing rich information
about the environment. Recent works have demonstrated successful navigation of autonomous
vehicles using a single camera as the only sensor [12, 37]. The art of mastering vision-based
localization algorithms can be divided into two main domains: feature extraction (which
belongs to the field of image processing), and place recognition (which belongs to the field of
computer vision). A recent review of vision-based localization for mobile robots is available
in [114]. Although progress is constantly being made in this domain, issues such as variable
background illumination, clutter, and dynamic sceneries can significantly affect performance.
Recently, cameras are being built that work in conjunction with complementary, active range
sensing with the goal to provide three dimensional image data (in real time). As an example, in
2010, Microsoft released a new consumer-grade range sensor called Kinect 10. It was originally
designed for user interactions in computer games. However, due to its powerful design, it
has attracted significant attention in the localization and mapping community, especially
within robotics [30, 32]. The sensor consists of an IR laser emitter, an IR camera, and an RGB
camera [36]. It functions by capturing depth and color images simultaneously, and returns a
depth image composed of a colored point cloud. The sensor has been shown to produce best
results when used within a range of 1-3 m to the obstacles, and, when carefully calibrated, with
a precision comparable to that of a laser range finder [60]. A similar product is being produced
by Mesa Imaging 11. Their so-called time-of-flight-camera possesses an IR light emitter, and
uses an internal sensor composed of tens of thousands of pixels that each measure the time-

10http://www.microsoft.com/en-us/kinectforwindows/
11http://www.mesa-imaging.ch

13

1.2. Indoor Localization in Robotics Research

(a) Map-based (b) Beacon-based

Figure 1.4: One can classify the approaches towards solving the robot localization problem into
two main fields: (a) localization based on a map of the environment, and (b) localization based on
sensor beacons.

model of the environment vs. a simple graph of interconnections between the landmarks).
When a map is not available a priori, the problem generalizes to Simultaneous Localization
and Mapping (SLAM) [29]. Indeed, mapping and localization employ the same set of sensors.
In this section, we will briefly review two groups of sensors which have become standard
choices for map-based localization: vision-based sensing and active ranging. We note that our
summary only reflects what we deem most relevant in the context of this manuscript, and a
more complete overview of sensors used for map-based localization can be found in [31, 114].

Possibly the most powerful sensor for feature-based localization is the digital camera. DeSouza
et al. [27] present a comprehensive survey of vision-based localization for mobile robots,
referring to the previous decades of development in the area. Camera sensors are very popular
for mobile robots since they are passive sensors, simultaneously providing rich information
about the environment. Recent works have demonstrated successful navigation of autonomous
vehicles using a single camera as the only sensor [12, 37]. The art of mastering vision-based
localization algorithms can be divided into two main domains: feature extraction (which
belongs to the field of image processing), and place recognition (which belongs to the field of
computer vision). A recent review of vision-based localization for mobile robots is available
in [114]. Although progress is constantly being made in this domain, issues such as variable
background illumination, clutter, and dynamic sceneries can significantly affect performance.
Recently, cameras are being built that work in conjunction with complementary, active range
sensing with the goal to provide three dimensional image data (in real time). As an example, in
2010, Microsoft released a new consumer-grade range sensor called Kinect 10. It was originally
designed for user interactions in computer games. However, due to its powerful design, it
has attracted significant attention in the localization and mapping community, especially
within robotics [30, 32]. The sensor consists of an IR laser emitter, an IR camera, and an RGB
camera [36]. It functions by capturing depth and color images simultaneously, and returns a
depth image composed of a colored point cloud. The sensor has been shown to produce best
results when used within a range of 1-3 m to the obstacles, and, when carefully calibrated, with
a precision comparable to that of a laser range finder [60]. A similar product is being produced
by Mesa Imaging 11. Their so-called time-of-flight-camera possesses an IR light emitter, and
uses an internal sensor composed of tens of thousands of pixels that each measure the time-

10http://www.microsoft.com/en-us/kinectforwindows/
11http://www.mesa-imaging.ch

13

map-based

beacon-based

odometry-based

Mobile Robot Systems — Lecture 5: Localization

Challenges
• Dead-reckoning

‣ wheel slip, slack in actuation mechanism

‣ runaway errors

• Global localization

‣ random errors and failures

‣ non-Gaussian sensor noise

‣ unavailability of sensor (GPS-denial)

‣ map ambiguity

‣ dynamic environments

‣ kidnapped robot problem

!5Mobile Robot Systems — Lecture 5: Localization

Mobile Robot Localization 161

local maxima

Figure 7.2 Example situation that shows a typical belief state during global localization in
a locally symmetric environment. The robot has to move into one of the rooms to determine
its location.

Active approaches to localization typically yield better localization results than passive
ones. We already discussed an examples in the introduction to this book: coastal
navigation. A second example situation is shown in Figure 7.2. Here the robot is
located in a symmetric corridor, and its belief after navigating the corridor for a while
is centered at two (symmetric) poses. The local symmetry of the environment makes
it impossible to localize the robot while in the corridor. Only if it moves into a room
will it be able to eliminate the ambiguity and to determine its pose. It is situations like
these where active localization gives much better results: Instead of merely waiting
until the robot incidentally moves into a room, active localization can recognize the
impasse and send it there directly.

However, a key limitation of active approaches is that they require control over the
robot. Thus, in practice, an active localization technique alone tends to be insuffi-
cient: The robot has to be able to localize itself even when carrying out some other
task than localization. Some active localization techniques are built on top of a pas-
sive technique. Others combine tasks performance goals with localization goals when
controlling a robot.

?

kidnapped robot

dead-reckoning error

ambiguity (multiple local maxima)

Probabilistic Localization
• In robotics, we deal with localization probabilistically.

• Three key components:

1. a robot’s belief of where it is (its state)

2. a robot’s motion model

3. a robot’s sensor (observation) model

!6Mobile Robot Systems — Lecture 5: Localization

belief at time t

apply motion model

apply sensor model

xtxt+1

Sensor and Control Data

• An autonomous robot interacting with the world

!7

measurement data

control data

robot state at time t interaction with the world

zt1:t2 = zt1, zt1+1, zt1+2, …, zt2

ut1:t2 = ut1, ut1+1, ut1+2, …, ut2

we will treat odometry readings as our control data!

xt

Mobile Robot Systems — Lecture 5: Localization

Bayes Rule in Robotics

!8Mobile Robot Systems — Lecture 5: Localization

p(x |z) =
p(z |x) p(x)

p(z)
=

p(z |x) p(x)
∑x′� p(z |x′�) p(x′�)

Bayes rule (discrete version):

p(x |z) = η p(z |x) p(x)

p(x)
p(x |z)

• Let’s assume x is the robot state, and z is measurement data.

prior probability distribution:

posterior probability distribution:

• Estimate robot state using a ‘generative model’ p(z | x), which describes how
a state variable causes sensor measurements z.

theorem of total probability denominator does not depend on x

normalizes density

• We can now update a robot’s state estimate based on sensor measurements
and a prior belief.

Probabilistic Generative Laws

!9Mobile Robot Systems — Lecture 5: Localization

p(xt |x0:t−1, z1:t−1, u1:t) p(xt |xt−1, ut)

p(zt |x0:t−1, z1:t−1, u1:t) p(zt |xt)

• Robot state xt is ‘complete’ meaning that no extra knowledge
of past events can help us better predict the future.

• Robot state xt is ‘generated’ from a probability distribution:

the state is ‘complete’

the state is ‘complete’

state transition probability

measurement probability

Dynamic Bayes graph: xt-1 xt xt+1

zt-1 zt zt+1

ut-1 ut ut+1

The Belief
• A robot’s true state cannot be measured directly, it has to be

inferred.

• Probabilistic robotics represents a belief (or state of knowledge)
through conditional probability distributions.

• A belief distribution is a posterior over state variables conditioned
on available data (i.e., after incorporating measurement data):

!10Mobile Robot Systems — Lecture 5: Localization

bel(xt) = p(xt |z1:t, u1:t)

• Note: the posterior (belief) before incorporating measurement
data is denoted as:

bel(xt) = p(xt |z1:t−1, u1:t)

Bayes Filter

!11Mobile Robot Systems — Lecture 5: Localization

bel(xt) = ∫ p(xt |ut, xt−1) bel(xt−1)dxt−1

bel(xt) = η p(zt |xt) bel(xt)
bel(xt)

For all do:

return:

(xt)

• (Recursively) calculates the posterior over the state xt, conditioned on
measurement and control data.

• Requires definition of 3 probability distributions:

initial belief:

measurement probability:

state transition probability:

apply motion model to previous belief

apply measurement update to current belief

p(x0)

p(xt |ut, xt−1)
p(zt |xt)

The Markov Assumption
• Plays a fundamental role in probabilistic robotics (and is equivalent

to our assumption of a ‘complete’ state):

!12Mobile Robot Systems — Lecture 5: Localization

• Violations happen when:

‣ there are unmodeled dynamics (e.g., dynamic obstacles)

‣ probabilistic models are inaccurate

‣ we have approximation errors

• Still: it is an indispensable assumption, since computations would
otherwise become intractable.

“Past and future data are independent if
one knows the current state xt”

Markov Localization

!13Mobile Robot Systems — Lecture 5: Localization

Mobile Robot Localization 165

x

bel(x)

(a)

x

bel(x)

x

p(z|x)

(b)

x

bel(x)

(c)

x

bel(x)

x

p(z|x)

(d)

x

bel(x)

(e)

Figure 7.4 Illustration of the Markov localization algorithm. Each picture depicts the
position of the robot in the hallway and its current belief bel(x). (b) and (d) additionally
depict the observation model p(zt | xt), which describes the probability of observing a
door at the different locations in the hallway.

* image credit: Probabilistic Robotics; Thrun et al.

posterior, before measurement update

posterior, after measurement update

measurement probability distribution given x

apply motion model to obtain new posterior

posterior, after measurement update

apply motion model to obtain new posterior

Discrete Bayes Filter
• Otherwise known as a histogram filter:

!14Mobile Robot Systems — Lecture 5: Localization

p̄k,t = ∑
i

p(Xt = xk |ut, Xt−1 = xi) pi,t−1

For all k do:

return:

pk,t = η p(zt |Xt = xk) p̄k,t

bel(xt) = ∫ p(xt |ut, xt−1) bel(xt−1)dxt−1

bel(xt) = η p(zt |xt) bel(xt)
bel(xt)return:

For all do:(xt)

{pk,t}

• Recall the Bayes filter:

Grid And Monte Carlo Localization 191

Bel(x)x

pose

Grid Environment

Figure 8.2 Example of a fi xed-resolution grid over the robot pose variables x, y, and θ.
Each grid cell represents a robot pose in the environment. Different orientations of the robot
correspond to different planes in the grid (shown are only three orientations).

Coarse, variable-resolution grids. Some implementation decompose the space
of all poses into regions that correspond to “significant” places in the environ-
ment. Such places may be defined by the presence (or absence) of specific land-
marks, such as doors and windows. In hallway environments, places may corre-
spond to intersections, T-junctions, dead ends, and so on. In such representations,
the resolution of the decomposition depends on the structure of the environment,
and they tend to be course. Figure 8.5 shows such a coarse representation for
the one-dimensional hallway example. Course representation like these are com-
monly associated with topological representations of space.

Fine fixed-resolution grids. Other methods decompose the state space using
equally spaced grids. The resolution of such decompositions is usually much
higher than that of variable-resolution grids. For example, some of the examples
in Chapter 7 use grid decompositions with cell sizes of 15 centimeters or less.
Hence, they are more accurate, but at the expense of increased computational
costs. Figure 8.2 illustrates such a fixed-resolution grid. Fine resolution like
these are commonly associated with metric representation of space.

When implementing grid localization for coarse resolutions, it is important to compen-
sate for the coarseness in the resolution in the sensor and motion models. In particular,
for a high-resolution sensor like a laser range finder, the value of the measurement
model p(zt | xt) may vary drastically inside each grid cell xk,t. If this is the case, just
evaluating it at the center-of-gravity will generally yield a poor result. Similarly, pre-

Grid Localization
• Application of the Bayes filter using a discrete representation (finite

state space).

‣ Approximate the posterior using a histogram filter

‣ Use grid decomposition of pose space

‣ The belief is a collection of discrete probability values (that is
normalized over the collection) :

!15

bel(xt) = {pk,t}

* image credit: Probabilistic Robotics; Thrun et al.

Mobile Robot Systems — Lecture 5: Localization

Grid Localization

!16Mobile Robot Systems — Lecture 5: Localization

190 Chapter 8

x

bel(x)

(a)

x

bel(x)

x

p(z|x)

(b)

x

bel(x)

(c)

x

bel(x)

x

p(z|x)

(d)

x

bel(x)

(e)

Figure 8.1 Grid localization using a fi ne-grained metric decomposition. Each picture
depicts the position of the robot in the hallway along with its belief bel(xt), represented by
a histogram over a grid.

* image credit: Probabilistic Robotics; Thrun et al.

Grid Localization

!17
8

Grid-based Localization

* image credit: Burgard, course notes.

Mobile Robot Systems — Lecture 5: Localization

time

Particle Filter
• Nonparametric implementation of the Bayes filter

• Similar to histogram filter, approximate posterior with finite number of
parameters.

• Key idea: distribution is represented by a set of samples drawn from
this distribution

‣ Belief bel(xt) is represented by a set of random state samples drawn
from this posterior. A ‘particle’ represents a state hypothesis.

‣ Filter: ‘survival of the fittest particles’!

‣ Very efficient for representing non-Gaussian distributions.

• Particles are denoted:

!18Mobile Robot Systems — Lecture 5: Localization

𝒳t := {⟨x[1], w[1]⟩, ⟨x[2], w[2]⟩, …, ⟨x[M], w[M]⟩}

state hypothesis importance factor (weight)

Particle Filter

• The samples represent the posterior:

!19

5

� Particle sets can be used to approximate functions

Function Approximation

� The more particles fall into an interval, the higher
the probability of that interval

� How to draw samples from a function/distribution?

Mobile Robot Systems — Lecture 5: Localization

p(x) =
M

∑
i=1

w[i] δx[i](x)

• The more particles fall into an interval, the higher its probability density.

• The more particles we use, the better the estimate!

Particle Filter

• Question: How are we to obtain samples from a new distribution?

• Importance sampling allows us to use samples from a proposal
distribution g to generate new samples from a target distribution f

• Account for difference between the distributions by weighting
particles according to quotient:

!20Mobile Robot Systems — Lecture 5: Localization

5

Particle Set

!  Set of weighted samples

!  The samples represent the posterior

state
hypothesis

importance
weight

6

Particles for Approximation

!  Particles for function approximation

!  The more particles fall into an interval,
the higher its probability density

How to obtain such samples?

7

Importance Sampling Principle

!  We can use a different distribution g
to generate samples from f

!  Account for the �differences between
g and f ��using a weight w = f / g

!  target f
!  proposal g
!  Pre-condition:

 f(x)>0 ! g(x)>0

7 8

Importance Sampling Principle
w[i] =

f(x[i])
g(x[i])

Particle Filter

• Three key steps (iterate over):

1. Sample particles from the proposal distribution

2. Compute the importance factors

3. Re-sample the particles: replace unlikely samples with more
likely ones.

• Applied to localization:

1. Proposal distribution is given by motion model: 

2. Particles are weighted by the measurement model:  
 

3. Particles are re-sampled

!21Mobile Robot Systems — Lecture 5: Localization

x[i]
t ∼ p(xt |xt−1, ut)

w[i]
t ∼ p(zt |xt) ∝

target
proposal

Monte Carlo Localization

!22Mobile Robot Systems — Lecture 5: Localization

78 Chapter 4

1: Algorithm Particle filter(Xt−1, ut, zt):
2: X̄t = Xt = ∅
3: form = 1 toM do
4: sample x[m]

t ∼ p(xt | ut, x
[m]
t−1)

5: w[m]
t = p(zt | x[m]

t)
6: X̄t = X̄t + ⟨x[m]

t , w[m]
t ⟩

7: endfor
8: form = 1 toM do
9: draw i with probability ∝ w[i]

t

10: add x[i]
t to Xt

11: endfor
12: return Xt

Table 4.3 The particle fi lter algorithm, a variant of the Bayes fi lter based on importance
sampling.

the number of particles in the particle set Xt. In practice, the number of particles M
is often a large number, e.g., M = 1, 000. In some implementations M is a function
of t or of other quantities related to the belief bel(xt).

The intuition behind particle filters is to approximate the belief bel(xt) by the set of
particles Xt. Ideally, the likelihood for a state hypothesis xt to be included in the
particle set Xt shall be proportional to its Bayes filter posterior bel(xt):

x[m]
t ∼ p(xt | z1:t, u1:t) (4.23)

As a consequence of (4.23), the denser a subregion of the state space is populated by
samples, the more likely it is that the true state falls into this region. As we will discuss
below, the property (4.23) holds only asymptotically for M ↑ ∞ for the standard
particle filter algorithm. For finite M , particles are drawn from a slightly different
distribution. In practice, this difference is negligible as long as the number of particles
is not too small (e.g.,M ≥ 100).

Just like all other Bayes filter algorithms discussed thus far, the particle filter algo-
rithm constructs the belief bel(xt) recursively from the belief bel(xt−1) one time step
earlier. Since beliefs are represented by sets of particles, this means that particle filters

* see Probabilistic Robotics book for implementation of re-sampling algorithms for line 9.

• Application of the particle filter to the localization problem.

Monte Carlo Localization

!23

202 Chapter 8

x

bel(x)

(a)

x

bel(x)

x

p(z|x)

(b)

x

bel(s)

(c)

x

bel(x)

x

p(z|x)

(d)

x

bel(x)

(e)

Figure 8.11 Monte Carlo Localization, a particle fi lter applied to mobile robot localiza-
tion.

* image credit: Probabilistic Robotics; Thrun et al.

Mobile Robot Systems — Lecture 5: Localization

Kalman Filter
• An implementation of the Bayes filter with Gaussians

• Developed by Swerling (1958) and Kalman (1960)

• Technique for predicting and filtering linear Gaussian systems

‣ Discrete time

‣ Underlying concept: linear transformations conserve Gaussians

‣ It is optimal (in a least-squares sense)

• Belief in continuous (potentially multi-variate) space:

!24Mobile Robot Systems — Lecture 5: Localization

xt = Atxt−1 + But + ϵt

zt = Ctxt + δt

State transition model

Measurement model

The first moment describes the belief, and the second
moment describes its uncertainty

μt
Σt

Kalman Filter
• Components:

!25Mobile Robot Systems — Lecture 5: Localization

At

Bt

Ct

ϵt

δt

(n x n) matrix that describes how the state evolves from t-1
to t without controls or noise.

(n x l) matrix that describes how the control ut changes the
state from t -1 to t.

(k x n) matrix that describes how to map the state xt to an
observation zt

Random variables representing the process noise and
measurement noise. These are assumed to be independent and
normally distributed with covariance Rt and Qt , respectively.

For state dimensionality n, measurement dimensionality
k, control dimensionality l

Kalman Filter
• The prediction-correction cycle

!26Mobile Robot Systems — Lecture 5: Localization

Kalman Filter Updates

prediction

correction measurement

Kalman Filter Updates

prediction

correction measurement

Kalman Filter Updates

prediction

correction measurement

Kalman Filter
• The prediction-correction cycle

!27Mobile Robot Systems — Lecture 5: Localization

bel(xt)
μ̄t = Atμt−1 + But

Σt = AtΣt−1A⊤
t + Rt

prediction step

bel(xt)
μt = μ̄t + Kt(zt − Ctμ̄t)
Σt = (I − KtCt)Σt

correction step

﹛ ﹛

Kalman Filter Updates

prediction

correction measurement

Kalman Filter Updates

prediction

correction measurement

• Compute linear state transition

• Update the covariance (it increases); the
process noise follows a Normal distribution

• Compute the residual (differencing the predicted
measurement and obtained measurement)

• Update covariance: matrix K specifies Kalman
gain, tells us how much we believe the prediction
vs how much we believe in the measurement.

Kalman Filter

!28Mobile Robot Systems — Lecture 5: Localization

prediction

correction

μ̄t = Atμt−1 + But

Σt = AtΣt−1A⊤
t + Rt

μt = μ̄t + Kt(zt − Ctμ̄t)

Σt = (I − KtCt)Σt

Kt = ΣtCt(CtΣtC⊤
t + Qt)−1

μt−1, Σt−1, ut, zt

μt, Σt

Input:

Output:

Kalman gain

• Efficient: polynomial in the measurement dimensionality k and
state dimensionality n

• Optimal for linear Gaussian systems
• Only models unimodal beliefs

Kalman Filter

!29Mobile Robot Systems — Lecture 5: Localization

Mobile Robot Localization 167

x

bel(x)

1 2 3
(a)

x

bel(x)

1 2 3
(b)

x

bel(x)

x

p(z|x)

1 2 3
(c)

x

bel(x)

1 2 3
(d)

Figure 7.5 Application of the Kalman fi lter algorithm to mobile robot localization. All
densities are represented by uni-modal Gaussians.

7.5.1 Illustration

Figure 7.5 illustrates the EKF localization algorithm using our example of mobile
robot localization in the one-dimensional corridor environment (cf. Figure 7.3). To
accommodate the unimodal shape of the belief in EKFs, we make two convenient
assumptions: First, we assume that the correspondences are known: we will attach
unique labels to each door (1, 2, and 3), and we will denote the measurement model
by p(zt | xt, ct) where ct ∈ {1, 2, 3} is the identity of the door observed at time

* image credit: Probabilistic Robotics; Thrun et al.

Kalman Filter
• Example: evolution of covariance as robot navigates; localization

based on odometry and exteroceptive sensors capable of
detecting a landmark.

!30Mobile Robot Systems — Lecture 5: Localization

170 Chapter 7

Figure 7.6 Example of localization using the extended Kalman fi lter. The robot moves
on a straight line. As it progresses, its uncertainty increases gradually, as illustrated by the
error ellipses. When it observes a landmark with known position, the uncertainty is reduced.

corresponding uncertainty ellipse. Lines 5 to 15 implement the measurement update.
The core of this update is a loop through all possible features i observed at time t.
In Line 7, the algorithm assigns to j the correspondence of the i-th feature in the
measurement vector. It then calculates a predicted measurement ẑi

t and the Jacobian
Hi

t of the measurement model. The Kalman gain K i
t is then calculated in Line 12 for

each observed feature. The sum of all updates is then applied to obtain the new pose
estimate, as stated in Lines 14 and 15. Notice that the last row ofH i

t is all zero. This is
because the signature does not depend on the robot pose. The effect of this degeneracy
is that the observed signature si

t has no effect on the result of the EKF update. This
should come at no surprise: knowledge of the correct correspondence zi

t renders the
observed signature entirely uninformative.

Figure 7.6 illustrates the EKF localization algorithm in a synthetic environment with
a single landmark. The robot starts out on the left and accrues uncertainty as it moves.
Upon seeing the landmark, its uncertainty is gradually reduced as indicated.

7.5.3 Mathematical Derivation

To understand the motion update, let us briefly restate the motion model that was
defined in Equation (5.13):

⎛

⎝
x′

y′

θ′

⎞

⎠ =

⎛

⎝
x
y
θ

⎞

⎠+

⎛

⎝
− vt

ωt
sin θ + vt

ωt
sin(θ + ωt∆t)

vt
ωt

cos θ − vt
ωt

cos(θ + ωt∆t)
ωt∆t + γt∆t

⎞

⎠ (7.4)

Comparison

!31Mobile Robot Systems — Lecture 5: Localization

Grid Localization Monte Carlo
Localization

(Extended) Kalman
Filter

Measurements raw measurements raw measurements landmarks

Measurement noise any any Gaussian

Posterior any any Gaussian

Efficiency (memory) - - - - + +

Efficiency (time) - - - - + +

Robustness + + + + -

Resolution + + + +

Ease of
implementation

- + + +

Unknown initial pose possible possible not possible

• Measurement models implicitly assume knowledge of a map:

Map Representation

!32Mobile Robot Systems — Lecture 5: Localization

p(zt |xt) p(zt |xt, m)is actually:

• Map representations:

7

Features vs. Volumetric Maps

Courtesy by E. Nebot feature map volumetric map (e.g., grid map) 7

Features vs. Volumetric Maps

Courtesy by E. Nebot
* image credits: E. Nebot and W. Burgard.

Grid Maps

!33Mobile Robot Systems — Lecture 5: Localization

7

Features vs. Volumetric Maps

Courtesy by E. Nebot

7

Features vs. Volumetric Maps

Courtesy by E. Nebot

• World discretized into cells
• Each cell is either occupied or free space
• Non-parametric model (space intensive)
• Probabilistic model for mapping purposes

p(mi) → 1 p(mj) → 0

p(mj) → 0.5

occupied free

unknown

What is SLAM?
• Simultaneous Localization and Mapping

• Hard problem - why?

‣ Chicken-or-egg problem: a map is needed for localization; a
pose is needed for mapping.

‣ Errors in robot pose and map are correlated.

‣ Data association problem 
 
 

‣ Uncertainties collapse after loop-closure  
(recognition of an already mapped area)

!34

xt-1 xt xt+1

zt-1 zt zt+1

ut-1 ut ut+1

m

graphical model of full SLAM

Mobile Robot Systems — Lecture 5: Localization

Further Reading

Books that cover fundamental concepts:

• Probabilistic Robotics, S. Thrun et al., 2006

!35Mobile Robot Systems — Lecture 5: Localization

