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In this Lecture

• Introduction to multi-robot systems 

• Taxonomy 

• Collective movement 

‣ Flocking (2 example methods) 

‣ Formations (2 example methods)  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What This Course is About
• Design of this course + focus on autonomous mobile robots
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What This Course is About
• Design of this course + focus on mobile robots 

• Multiple mobile robots  →  multi-robot systems 
• Higher-order goals 

• Coordination facilitated through communication
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Multi-Robot Systems
• Terms used: robot swarms / robot teams / robot networks 

• Why? 

‣ Distributed nature of many problems 

‣ Overall performance greater than sum of individual efforts 

‣ Redundancy and robustness 

• Numerous commercial, civil, military applications 

• Additional challenge: robot coordination
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Magnus Egerstedt - Aug. 2013 

Application Domains 

Sensor and 
communications networks Multi-agent robotics 

Coordinated control Biological networks 

surveillance / monitoring product pickup / deliverysearch & rescue
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Taxonomy

• Architecture: centralized vs. decentralized 

‣ Centralized: one control/estimation unit communicates with all 
robots to issue commands; requires synchronized, reliable 
communication channels; single-point failures 

‣ Decentralized: scalable, robust to failure; often asynchronous; 
sub-optimal performance (w.r.t centralized) 

• Communication: explicit vs. implicit 

‣ Implicit: observable states (e.g., in the environment); information 
exchanged through common observations 

‣ Explicit: unobservable states; need to be communicated explicitly 

• Heterogeneity: homogenenous vs. heterogeneous 

‣ Robot teams can leverage inter-robot complementarities
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Communication Topologies
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fully connected star topology random mesh

centralized / decentralized 
coordination

centralized / decentralized 
coordination

decentralized 
coordination

• Robot configurations / topologies are often 
defined by the maximum range of the available 
communication module.  

• A disc model can be used to represent the 
communication range (very crude approximation)
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Centralization vs Decentralization
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centralized decentralized

• Centralized control. The controller 
computes actions based on 
knowledge of the global state  

• Centralized estimation. The unit 
fuses partial information.

• Decentralized control. A robot’s 
control input is based on 
interactions with its neighbors.  

• Decentralized estimation. The 
robot’s estimate is based on 
relative observations.
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Centralization vs Decentralization
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automated warehouses

automated mobility-on-demand

search & rescue / surveillance

connected autonomous vehicles

min. time to product dispatch

min. time to passenger pickup

max. area coverage / min. time to target

max. throughput / min. collision probability
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Decentralization

• Goal:   Achieve similar (or same) performance as would be achievable with 
an ideal, centralized system. 

• Challenges: 

‣ Communication: delays and overhead 

‣ Input: asynchronous; with rumor propagation 

‣ Sub-optimality with respect to the centralized solution 

• Advantages: 

‣ No single-point failure 

‣ Can converge to optimum as time progresses 

‣ ‘Any-comm’ algorithms exist (graceful degradation under failing comms) 

‣ ‘Any-time’ algorithms exist (continuous improvement of solution)
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Collective Movement
In nature:
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flock of birds

flock of geese

school of fish

herd of mammals
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Collective Movement
• Collective movement in natural societies: 

‣ Properties: no collisions; no apparent leader; tolerance of loss 
or gain of group member; coalescing and splitting; reactivity to 
obstacles; different species have different flocking 
characteristics 

‣ Benefits: energy saving (e.g., geese extend flight range by 
70%); signs of better navigation accuracy 

• Engineered flocking - decentralized: 

‣ Reynolds’ virtual agents (Boids) 

‣ Graph-based distributed control for spatial consensus 

• Engineered flocking - centralized: 

‣ E.g.: Controls for each robot computed off-board, in the cloud
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Flocking with Boids

• A boid reacts only to its neighbors 

• Neighborhood defined by distance and angle (region of influence) 

• Each boid follows 3 steering rules based on positions and velocities 
of neighbors. Recipe: compute 3 components, then combine to form 
motion (vector)
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separation alignment cohesion

• In 1986, Craig Reynolds (computer animator) wanted to create a 
computationally efficient method to animate flocks 

• Goal: O(N); current best was O(N2)
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Flocking with Boids

• Sensory system: idealized, but local: 

‣ almost omni-directional 

‣ no delays (in sensing) 

‣ no noise (in range and bearing) 

• Behavior-based with priorities (cf Brooks): 

‣ Low priority acceleration request towards a point or in a 
direction (to direct flock) 

‣ Highest priority to obstacle avoidance (‘steer-to-avoid’ with a 
different sensory system)
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2D representation of boid  
neighborhood

Mobile Robot Systems — Lecture 7: Multi-Robot Systems - Collective Movement



Flocking with Boids
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more info on http://www.red3d.com/cwr/boids/
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Flocking with Consensus
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1 leader robot; robots apply consensus algorithm to agree on heading
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• Aim of consensus:  

‣ Reach decentralized agreement 

‣ Purely based on local interactions 

• Consensus 

‣ Based on a graph-topological definition of multi-robot system 

‣ Applications: motion coordination; cooperative estimation; synchronization  

• Discrete time consensus update: 
 

• Consensus outcome: 

‣ All robots converge to average of initial values (convergence rate is exponential):

The Consensus Algorithm
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Flocking with Consensus

!20

SAULNIER et al.: RESILIENT FLOCKING FOR MOBILE ROBOT TEAMS 7

−2 −1 0 1 2 3
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

x

(a) trajectories

0.0 0.5 1.0 1.5 2.0

−3

−2

−1

0

1

2

3

θ i

t

(b) shared heading value

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

14

λ
2

t

(c) λ2

Figure 4: Simulation results using the proposed controller with two non-cooperative robots. The non-cooperative robots are shown in red in
(a) and in (b) the bold black lines show the values they are sharing with their neighbors. In (c) the vulnerable, marginal, and resilient states
are shown in red, blue, and green.

−2 −1 0 1 2 3
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
x

(a) trajectories

0.0 0.5 1.0 1.5 2.0

−3

−2

−1

0

1

2

3

θ i

t

(b) shared heading value

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

14

λ
2

t

(c) λ2

Figure 5: Simulation results using the proposed controller in which a non-cooperative robot shares a time-varying signal with its neighbors.
The bold black line in (b) shows the shared value of the non-cooperative robot. In (c) the vulnerable, marginal, and resilient states are shown
in red, blue, and green.
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Figure 6: Simulation results using the proposed controller without W-MSR. The bold black lines in (b) show the shared values of the
non-cooperative robots. In (c) the vulnerable, marginal, and resilient states are shown in red, blue, and green.
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Figure 7: Simulation results when robots maintain λ2 > 2 instead of the resilience threshold in the presence of one non-cooperative robot.
The bold black line in (b) shows the shared value of the non-cooperative robot.

consensus.

VII. CONCLUSION & FUTURE WORK

We present a method that enables resilient flocking for
mobile robot teams in the presence of non-cooperative robots.
Our method builds on the concept of robust network topologies
that guarantee resilient consensus. Since determining the exact
robustness properties of the network is hard, we make use
of a lower bound metric that can be computed efficiently.
Combining these results, we propose a dynamic connectivity
management strategy that ensures that the communication

network topology remains above a critical resilience threshold.
We propose a switching control policy that allows a team of
mobile robots to achieve resilient consensus on the direction
of motion. Finally, we demonstrate the use of our framework
for resilient flocking, and show simulation results with groups
of holonomic mobile robots.

Our work has the limitation that we have to assume the
robots have access to the quantities λ2 and v2, which are
global properties of the communication graph. The com-
munication graph is defined by the robots’ locations. This
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heading as a function of timerobot trajectories

·x = uHolonomic robot: xi = [xi, yi]with

Note: Collision avoidance and connectivity maintenance are needed in addition to 
agreement on direction of motion. 

Consensus on heading θi



Other Consensus Applications
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Fig. 1 Variations on the consensus equation: (a) rendezvous, (b) cyclic
pursuit, (c) flocking, and (d) formation control. In these figures,
the robots start randomly in the environment and asymptotically
achieve the corresponding tasks.

sufficient condition is that the necessary and sufficient condi-
tions for the static case holds at each point in time, regardless
of whether the graph is undirected or directed. (The purpose
of this survey is not to cover all of the intricacies of the sta-
bility analysis of the consensus equation – for derivations and
full characterizations of these results, see for example [14] and
the references therein.) But, the consensus equation is not safe!
In fact, rendezvous is by design achieving a massive collision
among all the robots. To remedy this and turn the consensus
equation into a truly useful multi-robot coordination law, we
need to augment it to ensure that the robots do not get too close
to each other.

2.2 Weighted Protocols

The construction in Section 2.1 can be generalized by defin-
ing a symmetric, pairwise performance cost between robots i
and j as Ei j(∥xi − x j∥) = E ji(∥x j − xi∥), with the global perfor-
mance cost being defined by

E(x) =
N∑

i=1

∑

( j,i)∈E
Ei j(∥xi − x j∥).

The Chain Rule tells us that

∂Ei j(∥xi − x j∥)
∂xi

=
∂Ei j(∥xi − x j∥)
∂∥xi − x j∥

(xi − x j)
∥xi − x j∥

= wi j(∥xi − x j∥)(xi − x j),

i.e., the partial derivative is a scalar function of the inter-robot
distance times the relative displacement. As such, the gradient
descent rule is given by a weighted consensus protocol,

ẋi = −
∂E
∂xi
= −

∑

( j,i)∈E
wi j(∥xi − x j∥)(xi − x j).

The reason why this construction is systematic and theoret-
ically justified is that if we restrict E to positive semi-definite
functions that are 0 only at the desired, global configuration, we
note that

dE
dt
=
∂E
∂x

ẋ =
N∑

i=1

∂E
∂xi

ẋi = −
∥∥∥∥∥
∂E
∂x

∥∥∥∥∥
2

.

In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
locally asymptotically stable equilibrium point as long as the
edge set E does not change. If E does change, i.e., edges come
and go, then E will experience discontinuities, and either a hy-
brid version of the LaSalle Invariance Principle must be used,
or arguments must be employed that establish that sooner or
later, the edge set becomes static, see e.g., [43]–[45].

A number of examples of this construction have been dis-
cussed in the literature. First, the standard consensus equation
covered above can be derived from

Ei j(∥xi − x j∥) =
1
2
∥xi − x j∥2 ⇒ wi j = 1.

If the error is just the norm, as opposed to the square of the
norm, then

Ei j(∥xi − x j∥) = ∥xi − x j∥ ⇒ wi j =
1

∥xi − x j∥
,

which is a form that has been used in [25] to describe coordi-
nated behaviors among schooling fish. The interpretation here
is that, as fish pay more attention to near-by fish, the square
norm counter-acts this by penalizing far-away fish in an overly
aggressive manner.

If the robots are supposed to arrange themselves at a pre-
scribed inter-robot distance δ, we obtain a formation control
protocol, [16],[24],[46]–[49], as opposed to a rendezvous pro-
tocol. An example of this found in [14] is given by

Ei j(∥xi − x j∥) =
1
2

(∥xi − x j∥ − δ)2 ⇒ wi j =
∥xi − x j∥ − δ
∥xi − x j∥

.

The interpretation here is that the weight is negative if the
robots are closer than δ apart, thereby repelling away from each
other, while agents that are further than δ apart are attracted
through the corresponding positive weight.

An additional complication associated with multi-robot net-
works is that, throughout the maneuvers, the robot network
should stay connected, [15],[50]–[52]. One way of ensuring
this connectivity maintenance property is to ensure that the
weights become sufficiently large as the inter-robot distance
approaches ∆, which is the distance where the robots are no
longer able to sense each other. In [15], the following choices
were shown to guarantee connectivity maintenance

Ei j(∥xi − x j∥) =
∥xi − x j∥2
∆ − ∥xi − x j∥

⇒ wi j =
2∆ − ∥xi − x j∥

(∆ − ∥xi − x j∥)2 .

A combined formation control and connectivity maintenance
protocol could thus become

Ei j(∥xi − x j∥) =
1

2(∆ − δ)

( ∥xi − x j∥ − δ
∆ − ∥xi − x j∥

)2

⇒ wi j =
1 − δ

∥xi−x j∥

(∆ − ∥xi − x j∥)3 ,

as seen in Fig. 1 (d).
What all of these constructions show is that it is possible to

achieve rich and diverse multi-robot responses through a sys-
tematic selection of scalar weights in the consensus equation.
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Fig. 1 Variations on the consensus equation: (a) rendezvous, (b) cyclic
pursuit, (c) flocking, and (d) formation control. In these figures,
the robots start randomly in the environment and asymptotically
achieve the corresponding tasks.
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In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
locally asymptotically stable equilibrium point as long as the
edge set E does not change. If E does change, i.e., edges come
and go, then E will experience discontinuities, and either a hy-
brid version of the LaSalle Invariance Principle must be used,
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1
2
∥xi − x j∥2 ⇒ wi j = 1.

If the error is just the norm, as opposed to the square of the
norm, then

Ei j(∥xi − x j∥) = ∥xi − x j∥ ⇒ wi j =
1

∥xi − x j∥
,

which is a form that has been used in [25] to describe coordi-
nated behaviors among schooling fish. The interpretation here
is that, as fish pay more attention to near-by fish, the square
norm counter-acts this by penalizing far-away fish in an overly
aggressive manner.

If the robots are supposed to arrange themselves at a pre-
scribed inter-robot distance δ, we obtain a formation control
protocol, [16],[24],[46]–[49], as opposed to a rendezvous pro-
tocol. An example of this found in [14] is given by

Ei j(∥xi − x j∥) =
1
2

(∥xi − x j∥ − δ)2 ⇒ wi j =
∥xi − x j∥ − δ
∥xi − x j∥

.

The interpretation here is that the weight is negative if the
robots are closer than δ apart, thereby repelling away from each
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pursuit, (c) flocking, and (d) formation control. In these figures,
the robots start randomly in the environment and asymptotically
achieve the corresponding tasks.
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through the corresponding positive weight.

An additional complication associated with multi-robot net-
works is that, throughout the maneuvers, the robot network
should stay connected, [15],[50]–[52]. One way of ensuring
this connectivity maintenance property is to ensure that the
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achieve rich and diverse multi-robot responses through a sys-
tematic selection of scalar weights in the consensus equation.
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Fig. 1 Variations on the consensus equation: (a) rendezvous, (b) cyclic
pursuit, (c) flocking, and (d) formation control. In these figures,
the robots start randomly in the environment and asymptotically
achieve the corresponding tasks.

sufficient condition is that the necessary and sufficient condi-
tions for the static case holds at each point in time, regardless
of whether the graph is undirected or directed. (The purpose
of this survey is not to cover all of the intricacies of the sta-
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∑
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∂Ei j(∥xi − x j∥)
∂xi

=
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∂∥xi − x j∥
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∥xi − x j∥
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∑
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functions that are 0 only at the desired, global configuration, we
note that
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∂x
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N∑

i=1

∂E
∂xi

ẋi = −
∥∥∥∥∥
∂E
∂x

∥∥∥∥∥
2

.

In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
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1
2
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which is a form that has been used in [25] to describe coordi-
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.
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other, while agents that are further than δ apart are attracted
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this connectivity maintenance property is to ensure that the
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⇒ wi j =
2∆ − ∥xi − x j∥

(∆ − ∥xi − x j∥)2 .

A combined formation control and connectivity maintenance
protocol could thus become

Ei j(∥xi − x j∥) =
1

2(∆ − δ)

( ∥xi − x j∥ − δ
∆ − ∥xi − x j∥

)2

⇒ wi j =
1 − δ

∥xi−x j∥

(∆ − ∥xi − x j∥)3 ,

as seen in Fig. 1 (d).
What all of these constructions show is that it is possible to

achieve rich and diverse multi-robot responses through a sys-
tematic selection of scalar weights in the consensus equation.

rendezvous cyclic pursuit

flocking configuration
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Formation Control
• Formations (versus flocks):  specific geometric configurations 

• Some applications benefit from multiple robots navigating as a group: 

‣ Transport (vehicle formations; platooning); scout platoons for reconnaissance 
and search; environmental monitoring; lawn mowing 

• Generally required: information on state (e.g. pose) of all robots 

• Challenges: 

‣ Noisy sensors; delay in sensing / actuation 

‣ Anonymous robots (no IDs) 

‣ Non-holonomicity 

• Variants: 

‣ Behavior-based (Balch et al., 1999) (recall: reactive control paradigm) 

‣ Closed-loop control (Das et al., 2002) (recall: error-based control paradigm)
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Rus et al., MIT



• Referencing schemes: 

‣ Unit-center-referenced: obtained by averaging positions of all robots. A 
robot determines its position relative to this center. 

‣ Leader-referenced: robots determine pose relative to leader, which does 
not attempt to maintain the formation. 

‣ Neighbor-referenced: robots attempt to maintain relative pose to one (or 
a select group) of neigboring robots. 
 
 
 
 

• How is positioning information obtained? 

‣ Each robot estimates its own pose, and communicates this to other robots. 

‣ Or: robots estimate their relative pose via sensor observations

Formation Control
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Behavior-Based Formation Control
• Method based on ‘Motor-Schema’ [Balch, Arkin; 1999] 

• Different motor schemes are defined; each generates a vector 
representing a behavioral response (direction and magnitude of 
movement) as a function of sensor stimuli 

• A gain value is used to attribute relative importance of schemes
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Behavior-Based Formation Control
Motor schemas:

!26

                                    

1.  move-to-goal: attract to goal with variable gain

2.  avoid-obstacle / robot: repel from object 
with variable gain and sphere of influence.

3. noise: random wander with variable 
gain and persistence; used to 
overcome local maxima, cycles, and 
for exploration.
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Behavior-Based Formation Control

!27

4. maintain-formation: decomposed into two parts

maintain-formation-steer

maintain-formation-speed

Robot

Formation Axis
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Formation Position
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Robot
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Behavior-Based Formation Control
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Example of results, for leader-referenced scheme [Balch ’99]:

diamond wedge line column

Assumptions:  
• fully networked system; robots have IDs (non-anonymous) 
• robot positioning with little noise and delay 
• straight-forward implementation for holonomic (point-) robots

*image credit: Balch 1999



Formation Control
• Non-holonomic robots: 

‣ Proposed method: fore-aft / side-side corrections 

‣ Separate motor behaviors a generated for steering / 
speed. Arbiters accept votes from the motor schemas 
to compute speed / steering values. 

‣ Combined with a rule-based program that selects final speed / 
steering value. 

• Issues: 

‣ Behavior-based methods have no guarantees: 

‣ Convergence to desired formation? Stability of formation? 

‣ Need for more principled approaches 
• Introduction of control-theoretic principles to provide these guarantees 

‣ One of the first such approaches presented by Das et al., 2002
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controllers for formation control. We discuss the assignment of
formations, changes in formations, and stable switching strate-
gies in Section III using a group of three robots as an example.
Section IV addresses our sensing and estimation schemes for
formation control. Hardware details and experimental results il-
lustrating the application of our multirobot coordination frame-
work are in Section V. Finally, in Section VI, we draw conclu-
sions and suggest future work.

II. CONTROL ALGORITHMS

Before describing the individual components of our control
framework, we list several important assumptions concerning
the group of robots and the formation. We assume, as in [17],
the robots are labeled and one of the robots, designated as ,
is the lead (or reference) robot. The lead robot’s motion de-
fines the bulk motion of the group. The motion of individual
members within the formation is then described in reference to
the lead robot. As in [17] and [19], the relationship between a
robot and its neighboring robots is described by a control graph.
The control graph is an acyclic, directed graph with robots as
nodes, as the parent node, and edges directed from nodes
with smaller integer label values to those with with larger in-
teger values. Each edge denotes a constraint between the robots
connected by the edge and a controller that tries to maintain the
constraint. We present more details on control graphs in the fol-
lowing sections.
In this section, we describe control algorithms that specify

the interactions between each robot and its neighbor(s) or the
environment. The robots are velocity-controlled nonholonomic
car-like platforms and have two independent inputs. The control
laws are motivated by ideas from the well-established area of
input–output feedback linearization [10]. This means we can
regulate two outputs. The kinematics of the th robot can be
abstracted as a unicycle model (other models can be adapted
to this framework)

(1)

where we let , and and are the
linear and angular velocities, respectively.

A. Basic Leader-Following Control
We start with a simple leader-follower configuration (see

Fig. 1) (denoted ), in which robot follows with
a desired Separation and desired relative Bearing . Note
that this relative bearing describes the heading direction of the
follower with respect to the leader. The two-robot system is
transformed into a new set of coordinates where the state of the
leader is treated as an exogenous input. Thus, the kinematic
equations are given by

(2)

where is the system output,
is the relative orientation, is the input for ,

is ’s input, and

(a)

(b)

Fig. 1. Two robots using (a) basic leader-following controller and (b) the
leader-obstacle controller.

with . By applying input–output feedback lin-
earization, the control velocities for the follower are given by

(3)
where is the offset to an off-axis reference point on the
robot and is an auxiliary control input given by

and are the user-selected controller gains. The
closed-loop linearized system is simply given by

(4)
In the following, we prove that under suitable assumptions

on the motion of the lead robot, the closed-loop system is stable.
Since we are using input–output feedback linearization [10], the
output vector will converge to the desired value arbi-
trarily fast. However, a complete stability analysis requires the
study of the internal dynamics of the robot, i.e., the relative ori-
entation .
Theorem 1: Assume that the lead vehicle’s linear velocity

along the path is lower bounded, i.e., , its
angular velocity is bounded, i.e., , and the initial
relative heading is bounded away from , i.e., ,
for some . If the control input (3) is applied to , then
the system described by (2) is stable and the output in (4)
converges exponentially to the desired value .

Proof: Let the system error be de-
fined as

(5)
By looking at (4), we have that and converge to zero ex-
ponentially. Then, we need to show that the internal dynamics

*image credit: Das 2002



Closed-Loop Control for Formations
• Method based on feedback linearization [Das et al., 2002] 

• Basic case: leader-referenced control based on separation distance 
and relative bearing:
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controllers for formation control. We discuss the assignment of
formations, changes in formations, and stable switching strate-
gies in Section III using a group of three robots as an example.
Section IV addresses our sensing and estimation schemes for
formation control. Hardware details and experimental results il-
lustrating the application of our multirobot coordination frame-
work are in Section V. Finally, in Section VI, we draw conclu-
sions and suggest future work.

II. CONTROL ALGORITHMS

Before describing the individual components of our control
framework, we list several important assumptions concerning
the group of robots and the formation. We assume, as in [17],
the robots are labeled and one of the robots, designated as ,
is the lead (or reference) robot. The lead robot’s motion de-
fines the bulk motion of the group. The motion of individual
members within the formation is then described in reference to
the lead robot. As in [17] and [19], the relationship between a
robot and its neighboring robots is described by a control graph.
The control graph is an acyclic, directed graph with robots as
nodes, as the parent node, and edges directed from nodes
with smaller integer label values to those with with larger in-
teger values. Each edge denotes a constraint between the robots
connected by the edge and a controller that tries to maintain the
constraint. We present more details on control graphs in the fol-
lowing sections.
In this section, we describe control algorithms that specify

the interactions between each robot and its neighbor(s) or the
environment. The robots are velocity-controlled nonholonomic
car-like platforms and have two independent inputs. The control
laws are motivated by ideas from the well-established area of
input–output feedback linearization [10]. This means we can
regulate two outputs. The kinematics of the th robot can be
abstracted as a unicycle model (other models can be adapted
to this framework)

(1)

where we let , and and are the
linear and angular velocities, respectively.

A. Basic Leader-Following Control
We start with a simple leader-follower configuration (see

Fig. 1) (denoted ), in which robot follows with
a desired Separation and desired relative Bearing . Note
that this relative bearing describes the heading direction of the
follower with respect to the leader. The two-robot system is
transformed into a new set of coordinates where the state of the
leader is treated as an exogenous input. Thus, the kinematic
equations are given by

(2)

where is the system output,
is the relative orientation, is the input for ,

is ’s input, and

(a)

(b)

Fig. 1. Two robots using (a) basic leader-following controller and (b) the
leader-obstacle controller.

with . By applying input–output feedback lin-
earization, the control velocities for the follower are given by

(3)
where is the offset to an off-axis reference point on the
robot and is an auxiliary control input given by

and are the user-selected controller gains. The
closed-loop linearized system is simply given by

(4)
In the following, we prove that under suitable assumptions

on the motion of the lead robot, the closed-loop system is stable.
Since we are using input–output feedback linearization [10], the
output vector will converge to the desired value arbi-
trarily fast. However, a complete stability analysis requires the
study of the internal dynamics of the robot, i.e., the relative ori-
entation .
Theorem 1: Assume that the lead vehicle’s linear velocity

along the path is lower bounded, i.e., , its
angular velocity is bounded, i.e., , and the initial
relative heading is bounded away from , i.e., ,
for some . If the control input (3) is applied to , then
the system described by (2) is stable and the output in (4)
converges exponentially to the desired value .

Proof: Let the system error be de-
fined as

(5)
By looking at (4), we have that and converge to zero ex-
ponentially. Then, we need to show that the internal dynamics
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γij = βij + ψijwhere relative orientation is: 
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Dynamical system model: ·zij = G uj + F ui
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cos γij d sin γij
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with:

βij = θi − θj and

Control:

·zij = k(zd
ij − zij)which satisfies: This guarantees convergence 

to desired relative state 
(Stability is proven in paper.)
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controllers for formation control. We discuss the assignment of
formations, changes in formations, and stable switching strate-
gies in Section III using a group of three robots as an example.
Section IV addresses our sensing and estimation schemes for
formation control. Hardware details and experimental results il-
lustrating the application of our multirobot coordination frame-
work are in Section V. Finally, in Section VI, we draw conclu-
sions and suggest future work.

II. CONTROL ALGORITHMS

Before describing the individual components of our control
framework, we list several important assumptions concerning
the group of robots and the formation. We assume, as in [17],
the robots are labeled and one of the robots, designated as ,
is the lead (or reference) robot. The lead robot’s motion de-
fines the bulk motion of the group. The motion of individual
members within the formation is then described in reference to
the lead robot. As in [17] and [19], the relationship between a
robot and its neighboring robots is described by a control graph.
The control graph is an acyclic, directed graph with robots as
nodes, as the parent node, and edges directed from nodes
with smaller integer label values to those with with larger in-
teger values. Each edge denotes a constraint between the robots
connected by the edge and a controller that tries to maintain the
constraint. We present more details on control graphs in the fol-
lowing sections.
In this section, we describe control algorithms that specify

the interactions between each robot and its neighbor(s) or the
environment. The robots are velocity-controlled nonholonomic
car-like platforms and have two independent inputs. The control
laws are motivated by ideas from the well-established area of
input–output feedback linearization [10]. This means we can
regulate two outputs. The kinematics of the th robot can be
abstracted as a unicycle model (other models can be adapted
to this framework)

(1)

where we let , and and are the
linear and angular velocities, respectively.

A. Basic Leader-Following Control
We start with a simple leader-follower configuration (see

Fig. 1) (denoted ), in which robot follows with
a desired Separation and desired relative Bearing . Note
that this relative bearing describes the heading direction of the
follower with respect to the leader. The two-robot system is
transformed into a new set of coordinates where the state of the
leader is treated as an exogenous input. Thus, the kinematic
equations are given by

(2)

where is the system output,
is the relative orientation, is the input for ,

is ’s input, and

(a)

(b)

Fig. 1. Two robots using (a) basic leader-following controller and (b) the
leader-obstacle controller.

with . By applying input–output feedback lin-
earization, the control velocities for the follower are given by

(3)
where is the offset to an off-axis reference point on the
robot and is an auxiliary control input given by

and are the user-selected controller gains. The
closed-loop linearized system is simply given by

(4)
In the following, we prove that under suitable assumptions

on the motion of the lead robot, the closed-loop system is stable.
Since we are using input–output feedback linearization [10], the
output vector will converge to the desired value arbi-
trarily fast. However, a complete stability analysis requires the
study of the internal dynamics of the robot, i.e., the relative ori-
entation .
Theorem 1: Assume that the lead vehicle’s linear velocity

along the path is lower bounded, i.e., , its
angular velocity is bounded, i.e., , and the initial
relative heading is bounded away from , i.e., ,
for some . If the control input (3) is applied to , then
the system described by (2) is stable and the output in (4)
converges exponentially to the desired value .

Proof: Let the system error be de-
fined as

(5)
By looking at (4), we have that and converge to zero ex-
ponentially. Then, we need to show that the internal dynamics
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Once again we use input–output linearization to derive a control
law for which gives us the following closed-loop dynamics:

(11)

where is an auxiliary control input and is the
chosen positive definite controller gain matrix. As before, we
will show that the closed-loop system is stable and the robots
navigate keeping formation.
Theorem 2: Assume that the lead vehicle’s linear velocity

along the path is lower bounded, i.e., , its
angular velocity is also bounded, i.e., , and the
initial relative orientation with
and . If the control input obtained from the feed-
back linearization is applied to and , then the formation is
stable and the system output in (11) converges exponentially
to the desired value .

Proof: By Theorem 1, the internal dynamics of are
stable, i.e., the orientation error ( ) is bounded. As a result
for , the relative velocities and orientations of and can
be shown to be bounded under the assumptions of the theorem.
By an analysis similar to Theorem 1, the internal dynamics of

can be shown to be stable (see [20] for details).
Remark 5: In contrast to the previous two-robot formation

controller, this controller allows explicit control of all separa-
tions and minimizes the risk for collisions. Hence, it is preferred
when the separations between robots are small, and when, co-
incidentally, the estimates of distance through vision are better.
Remark 6: Theorems 1 and 2 guarantee that all signals in the

closed-loop formation system are bounded and the output error
vanishes exponentially. However, as in any practical system, un-
modeled dynamics andmeasurement errors will degrade perfor-
mance. The best we can do is guarantee that the output error con-
verges to a neighborhood of the origin. Robust control theory
applied to nonholonomic systems (e.g., [25]) points to a sys-
tematic way of approaching this problem analytically. As can
be seen from our experimental results, since velocities of indi-
vidual robots and sensor errors are bounded, the system errors
are also bounded.

D. Extension to Robots
Results similar to Theorems 1 and 2 are possible for forma-

tions of robots, but they have to be hand crafted, i.e., there
currently are no general results. Instead, we present a discussion
on propagation of stability bounds and formation shape errors
along the leader-follower chains in a given formation.
As we saw earlier in this section, to guarantee stability of the

internal dynamics of a robot following using SBC, we
need and . This, in turn, means that

and will have to be appropriately constrained, e.g.,
and . Notice it is not

enough that , but instead where
will depend on the initial formation error, controller

gains, and . This idea can be applied to an robot
inline formation. Basically, the smaller the initial formation er-
rors and the smoother the leader’s trajectory, the easier it is to
maintain a formation shape.
Thus, the performance associated with a choice of formation

for nonholonomic robots with input–output feedback linearized

(a)

(b)

Fig. 3. Five-robot formation. (a) All SBC controller chains. (b) One SBC and
four SSC controllers. For the same leader trajectory, notice the higher transient
formation shape errors for the control graph (a).

controllers depends on the length of the path for flow of control
information (feedforward terms) from the leader to any follower
in the assigned formation. As this length becomes greater, the
formation shape errors have a tendency to grow. This leads to
a simple heuristic: when deciding between two formation con-
trol assignments that are otherwise similar, we prefer the one
that minimizes the length of leader-follower chains (we prefer

over or whenever possible, see Fig. 3
for an example). We revisit the robot formation assignment
problem in the next section using the notion of control graphs.
We consider two types of scenarios: the control graph is fixed,
and where the control graph is dynamically adapted to the envi-
ronment and the relative robot positions.

III. COORDINATION PROTOCOL

In Section II, we have shown that under certain assumptions
a group of robots can navigate maintaining a stable formation.
However, in real situations mobile robotic systems are subject
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Fig. 10. Triangular to pair-wise localization switch resulting from team geometry (a)–(b) or occlusions in the environment (c).

then switches to . Once the obstacle has been suc-
cessfully negotiated, switches back to according to
the following switching rules:

We now illustrate the application of these concepts to a sim-
ulation of three nonholonomic robots with one obstacle [Fig. 6
(bottom)]. Robot is the lead robot and the desired shape is
an equilateral triangle. The formation shape is achieved and the
robots successfully negotiate the obstacle. During the course of
the motion, robot switches modes to successfully navigate
the obstacle, while robot switches modes based on its loca-
tion with respect to the lead robot, .

B. Formation Control Graphs
When , we can construct more complex formations by

using the same set of controllers and similar switching strate-
gies. However, we need a representation of an robot formation
which scales easily with and allows decentralized decision
making. At the coordination level, for an robot formation to
maintain a desired shape, we need to model the choice of con-
trollers between the individual robots as they move in a given
environment. We use directed graphs to accomplish this [17].
Wemodel the group of autonomousmobile robots as a tuple

where (or, e.g., , see [27])
is the reference trajectory of the lead robot, is a set of shape
vectors describing the relative positions of each vehicle with re-
spect to the reference formation frame , and is a control
graph where nodes represent robots and edges represent rela-
tions between nodes (see details below and in [17]). Without
loss of generality, the formation reference frame is fixed
to the lead robot; however, it is not a requirement in our method.
Sometimes it is necessary to add virtual robots to the group to
represent either moving targets, or trajectories that are along
such features as walls, lanes, or obstacles.
The control graphs describing the formation are designed

from the basic controllers described in the previous section.
In Fig. 7, for example, the formation of a group of four robots
involves one leader following controller ( following ) and
two formation shape controllers ( following and , and

following and ). We call such a directed graph ,
with nodes representing robots and edges describing the
control policy between the connected robots, a control graph.
Fig. 7 shows a directed graph represented by its adjacency
matrix (see [19] for definition). Note the control flow from
leader to follower . If a column has a nonzero entry in
row , then robot is following . A robot can have up to two

Fig. 11. (top) Clodbuster team used for experiments. (bottom) Typical view
from the omnidirectional camera.

leaders. Note that can be written as an upper triangular
matrix for any directed acyclic graph (with possible reordering
of vertices).
For a formation of robots, we can consider a triangulation

approach and Fig. 5 can be used to assign control graphs for
labeled robots. For robot , we use Fig. 5. For , we
select the two nearest neighbors from the set
, and select controllers based on and . Fig. 8 shows

two example simulations of teams of six robots converging to
the desired shape while following the desired trajectory. The
robots apply the above technique to reassign the control graph at
every timestep while relying on the cooperative localization to
reparameterize the shape setpoints for the controllers. The final
assignment is different in the two cases even though the same
desired formation shape is achieved.
An obvious concern regarding stability of the formation arises

when we switch between control graphs and shape vectors to
achieve and maintain a desired physical shape. In Section III-A,
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Fig. 15. Follower separation and relative bearing for a feedforward controller.
Notice the jump at s as we manually restrained the follower for 5 s. The
controller recovers within a few seconds.

tered environment. However, we note though that when the pose
problem is reduced to 2-D space, relative localization can be ac-
complished by a pair of robots. Using this fact, our implemen-
tation dynamically switches between triangulation-based and
pair-wise localization estimation, based on team geometry and
the external environment.
Consider the case of a triangular formation approaching a

narrow passage through obstacles shown in Fig. 10. A forma-
tion switch is ordered to allow the team to proceed through
the passage [Fig. 10(a)]. As the robots approach a linear for-
mation, there comes a point where the improved accuracy af-
forded by exploiting the triangle constraint is compromised by
operating in proximity to its singularity. At this point, the cen-
tralized observer automatically switches to pair-wise localiza-
tion mode [Fig. 10(b)]. Robot exchanges information with
the team leader ( ) to localize relative to the leader’s frame.

performs a similar exchange with and, as a result, deter-
mines its pose relative to . While this mode switch resulted
from the formation geometry, it can also be directly triggered
by the environment. This is shown in Fig. 10(c), where the line
of sight between two robots is occluded by an obstacle. This oc-
clusion can be detected from a global visibility matrix, resulting
in a pair-wise localization switch.
The pair-wise method serves as the secondary localization

mode for the centralized observer. In most formation geome-
tries, the constraint obtained by determining the relative forma-
tion scale—along with the redundant range measurements for
estimating the absolute scale—result in improved performance

Fig. 16. Ground plane data for formation switching, two runs. The line change
from solid to dotted corresponds to the initiation of the switch.

Fig. 17. Triangular to inline formation switch to avoid obstacles.

in the triangulation-based mode. Mean range errors were typi-
cally 3%–5%, compared with 10% for the pair-wise case.
The advantages resulting from this internal switching are

twofold. It allows the centralized observer to robustly estimate
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