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Costs (utilities) are known at a centralized computation unit.

Costs (utilities) are deterministic (no noise).

v

v

Costs (utilities) do not change (constant).

v

1-to-1 assignment (one robot per task, one task per robot).

e Complications:

. . all of these issues are ver
» Uncertainty around true utility U(i) - roboticsl] Y
common in robotics!!

» Dynamic environment (changes in utility / agents)
» Robot / task dependencies (robot heterogeneity / redundancy).
e Consequences:
»  Sub-optimality
» Problems can become NP-hard (for combinatorial matching problems)

» Practically infeasible (centralized solutions may not be possible)
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Assignment under Uncertainty
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Min. overall assignment cost / Max. overall assignment utility

Our focus: minimize time to reach destinations

uncertainty along robot travel paths
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Assignment under Uncertainty

L 4

optimal assignment
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Assignment under Uncertainty
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sub-optimal assignment
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Assignment under Uncertainty

« [Mills-Tettey, Stentz, Dias; 2007]: dynamically repairs an initial
assignment (Hungarian method)
— dynamic re-assignment is potentially disruptive / expensive

« [Ponda, Johnson, How; 2012]: acceptable risk thresholds;
chance-constrained allocation
— relation of risk threshold to quality of solution as costs change

e [Nam, Shell; 2015], [Nam, Shell; 2017] : sensitivity analysis
— determines when solutions cross acceptable risk preferences

e [Prorok; 2018]: redundant robots
— compensate for loss of certainty with system redundancy
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The Premise
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sub-optimal assignment

redundancy

optimal assignment
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Problem Statement
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redundant, assigned

redundant, assigned

unassigned

redundant, assigned

C={Ci, - -,Cnmurx}~D

N :totalrobots Nq  :deployable robots
M :goals O : initial assignment
K :path options A :redundant assign.
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Redundant Assignment
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Redundant Assignment
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Time is the primary asset
Goal: minimize time to get to goals
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Path Uncertainty
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Path Uncertainty
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Greedy Redundant Assignment
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Which redundant robots to assign to which tasks?

Theory shows us that we can use a Greedy assignment algorithm
with near-optimal performance: pick the robot that minimizes the
overall waiting time the most.

[Prorok; Redundant Robot Assignment on Graphs with Uncertain Edge Costs; 2018]
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Greedy Redundant Assignment
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robot hubs

Greedy assignment of robots from 2 hubs to 1 goal
Redundant assignments leads to diversity of paths

[Prorok; Redundant Robot Assignment on Graphs with Uncertain Edge Costs; 2018]
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Venicle-Passenger Assignment

"l want optimized service and short waiting times”

"l want my mobility patterns to remain private ”
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Venhicle-Passenger Assignment

Example: sub-area of Manhattan, around Flatiron building

obfuscated sample true position

Obfuscate positions with Laplace noise.
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Venicle-Passenger Assignment
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Venhicle-Passenger Assi
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Venicle-Passenger Assignment

Example: sub-area of Manhattan, around Flatiron building
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Can we minimize average passenger waiting times?

[Prorok et al.; Privacy-Preserving Vehicle Assignment for Mobility-on-Demand Systems; 2017]
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Venicle-Passenger Assignment

Principle: first-come, first-to-serve!
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We can use Greedy to assign redundant vehicles
The algorithm is near-optimal.
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Venhicle-Passenger Assignment
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[Prorok et al.; Privacy-Preserving Vehicle Assignment for Mobility-on-Demand Systems; 2017]
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Mobile Robot Systems

Lecture 10-II: State-of-the-Art and Outlook
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Grand Challenges of Robotics

Al for Robotics e

New Materials and

Fabrication Schemes Brain- Computer
Interfaces

Biohybrid and

Bioinspired Robots

Social
Interaction e

Medical
Robotics °

Robot Ethics
and Security @

Power and Energy

° Robot Swarms

e Navigation anc
Exploration

[Yang et al; The grand challenges of Science Robotics; 2018]
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Robot Swarms

e Technology drivers

» Falling prices of sensors, processors, storage, communication

» Convergence of consumer electronics with myriad types of
intelligent autonomous systems (drones, robots, self-driving

cars, etc.)
» Mainstream availability of Al and predictive analytics

e Hyper-convergence: Software-centric architecture that tightly
couples computation, storage, networking, and virtualization

resources
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Robot Swarms - The Kilobot

103 150
EE

To start the assembly process, a user places 4 seed robots to mark the
position where the shape shouldbeformed.

[Rubenstein et al; 2014]
2 UNIVERSITY OF
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Robot Swarms - Challenges

e Challenges:

» Control models: in large collections of intelligent devices, where
the behavioral state-space is a Cartesian product of the individual
state spaces: number of interaction modes grows combinatorially

» Communication models: principled models for perception-
action-communication loops; current models do not optimize wrt.
communication.

» Resilience to faults, non-cooperation, malicious action, intrusion;
current paradigms assume perfect cooperation.

» Heterogeneity: re-focusing of coordination methods on systems
composed of heterogeneous, complementary robots; current
methods model homogeneous systems.

B UNIVERSITY OF
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What if some robots are

non-cooperative?

Whitzer, Kennedy, Prorok,



Resilient Swarms

Coordinate robots to c:reate a redundant

communication topology.
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Resilient Swarms

[Saulnier et al; Resilient Flocking for Mobile Robot Teams; 2017]
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Perception-Action-Communication Loop

/m

Q Q communication

interaction with the world

perception

e Communication ability must be embedded in control loop

* Perception-action-communication loop: currently no systematic
approaches for multi-dimensional control loops.
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Resilient, Heterogeneous Systems

/m

hﬂﬁ

-I communication

interaction with the world

perception

e Robots with complementary capabilities can truly collaborate to achieve
difficult, complex tasks

e Coordination in heterogeneous systems is poorly addressed: new inter-
robot dependencies and combinatorial state-space.
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Navigation and Exploration - Challenges

* New terrains: deep sea, tunnels, mines, nuclear sites, outer space:
» unknown and unmapped areas
» perception and communication is degraded

e SLAM in non-static, dynamic, deformable environments

* Resource constraints (computational / commes): robots have to learn
what is important = semantics
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Navigation and Exploration - Approaches

e Current trends:
» SLAM: beyond rigid and static world assumptions
» Active interaction with the environment to discover key traits 2

» End-to-end learning of navigation strategies 3

Experiment: One active and one passive kitten explore
their world. Only the active kitten developed
meaningful visually guided behavior.

1[C. Cadena et al.; Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age; 2016]

2[J. Bohg et al.; Interactive Perception: Leveraging Action in Perception and Perception in Action; 2017]

3 [Gupta et al.; Cognitive Mapping and Planning for Visual Navigation; 2017]
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Learning and Al

* The great hope:

» Al that can learn complex tasks on its own and with a minimum of initial
training data

» Artificial General Intelligence (beyond robotics)
e Opportunities:

» Domain- and task-specitic problems: given enough resources (i.e.,
computing and data), applications can be made to work. General
intelligence, however, is far from being solved.

» Meta-learning: learning how to learn (beyond statistical correlation)

» Cloud robotics (robotic loT)

v Yoy v

By - PO
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Perception-Action Loop in RL

Note: The agent does not necessarily see the full world state. For simplicity,
this slide assumes full world observability.

perception
state: S,
reward: 7,

\\\\“-.jiifiZ—fi—¢~"/)'
decision-making and control interaction with the world

policy: a, ~ n(s,) = P(a,|s,) Markov decision process:
learning: a ~ 7*(s,) Sip1 ~ PGSy | s, a,)
i ] Fip1 ~ Pty Isp ap)

® )
such that [ Z Y711 | is maximized
| k=0 _
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Successes of RL

OpenAl (Dota 2) - 2018

3 BA‘%’QM} } 4 i |
= LE:Ac,véleE LN DeepMind AIphaZero (Chess Shog| Go) - 2017

DeepMind AlphaStar (StarCraft Il) - 2019
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Challenges for Using RL in Robotics

* Remains extremely challenging:

» Goal specification (not limited to robotics): The agent will maximize its sum of
rewards. The reward needs to encode what we want the robot to do.

» Be careful what you wish for! (e.g., paperclip maximizer from Bostrom, 2003).*

» Reward-shaping is hard

» Safety: There is limited exploration. The robots have to operate under some
safety constraints.

» Real-world: The real-world is messy and more noisy than typical games. Also,
experiences in the real-world are not repeatable.

» Real-time: We cannot learn faster than real-time. Data efficiency is really
Important.

We need more samples to train the robots (due to noisy
worlds) - but we are hindered by robots being limited by
safety requirements and time.

* https://wiki.lesswrong.com/wiki/Paperclip_maximizer
8 UNIVERSITY OF
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Solution #1: Robot Farms

*image credit: Google
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Solution #2: Sim2Real

¢ |n simulation:

» Create a faithful simulation environment (e.q.,
using Gazebo or Mujoco).

» Add randomization to observed state (e.qg.,
different color schemes for cameras, sensor
noise), and to physics (e.g., actuation noise).

» Learn a policy (or ensemble of policies) in
simulation.

e |n the real-world:

» Normalize observations (e.g., preprocess real-
world images to make them look like the

simulation environment).

» Run a few episodes to |
fine-tune the policy.

FINGER PIVOTING SLIDING FINGER GAITING

*Credits to OpenAl
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Robot Ethics and Security - Challenges

“Robotics and Al may de-responsibilize “Robotics could change the workforce
people whenever an autonomous structure and facilitate de-skilling of
system could be blamed for a failure. the work force (even in safety-critical

contexts). “ What if the Al gets it
wrong?

“Excessive reliance on robotics
leads to the delegation of tasks
that should remain subject to

human supervision.” S Ethical
Challenges
of Artificial
Intelligence “Unwelcome changes in human
behaviors to accommodate the
+ routines that make automation
Securit "
“Unethical application of Problen¥s work.
robotics/Al by those who

Lack of
control

. 7
control it. Escalation

[Yang et al; The grand challenges if Science Robotics; 2018]
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Robot Ethics and Security -

Solutions

Laws need to be changed

and adapted.

Gradual deployment of Al
Ultimately, only systems that are
proven to be safe should be able

to operate autonomously. 3 Ethical

Challenges
of Artificial
Intelligence

+
Enforce clear ethical guidelines at Security
the governmental, academic and Problems

company level (e.g., Principles of Lack of

Escalation

Google Al, DeepMind Ethics & control
Society)

Education has a big role to play here.
Why are we still teaching integrals and
derivatives?

Develop systems that
understand human behavior
and adapt to it (rather than
the opposite).

[Yang et al; The grand challenges if Science Robotics; 2018]
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Further Announcements

* Mini-project support:
» Tuesdays (up to March 5), 14:00-15:00 in Intel lab

» Teaching Assistant support
* Thanks!

e |f you are interested in staying involved... let me know.

» Research projects

» PhD in the future?

» Collaborations
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