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In this Lecture

* |Introduction to sensing and perception for autonomous robots

* Introduction to a few popular sensors
» Basic HW concept
» Sensor model
» Application

e Odometry

e Credits:
» Odometry example for Thrun’s book (Probabilistic Robotics)

» MLE example from Zisserman’s course (Oxford)
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Control Architectures
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Perception-Action Loop

e Basic building block of autonomy

A@ptb\

action
decision-making and control \/ interaction with the world
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Perceiving the Environment

* A sensor is a component that measure some aspects about the
state of the world or the state of the robot.

* Recall open-loop vs. closed-loop:

» Example: a robot is to move towards a wall and stop 20cm away
from it. Floor unevenness, friction, and other environmental
factors mean that the robot cannot execute open-loop control
to arrive at the target pose.

distance = 20cm goal? start
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Classification of Sensors

measure something measure something
external to the robot internal to the robot
exteroceptive proprioceptive
active passive v
e infrared (distance) e ambient light e odometry
® sonar range finder e sound (microphone) @ speedometer
¢ |aser scanners (distance) ¢ camera (vision) * energy level
° ... ° ... ® accelerometer
o
affect environment do not affect
by emitting energy environment
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Distance Sensors

* Most distance sensors are active: emit a signal and receive its
reflection from an object (if any).
* Two principles:
» (round-trip) time-of-tlight (TOF); the signal travel speed is known
1
s = —Vt

» received signal intensity; the signal attenuation is known

Example signal modalities:
1. Infrared

> 2. Ultrasound
3. Coherent light (laser)
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Infrared Proximity Sensors

e |nfrared light has long wavelengths (700-1000nm); invisible to
numan eye

e Reflectance sensing hardware: The emitter is usually made with a
ight-emitting diode (LED), and the detector is usually a
photodiode/phototransistor.

* Measurement principle: Detect the presence of an object by
measuring the intensity of the reflected light

* \When ambient light must be subtracted, sensor takes a
measurement without emission.

e Common usage: cheap robots (e.g., for education)

 Main disadvantage: depends on object characteristics
(shape, color, surface)
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Sensor Calibration

* How to relate a sensor measurement to a perceptive feature?
e Example: calibrate an infrared proximity sensor

* Aim: determine mapping between sensor reading and desired feature
» Step 1: use ground-truth telemetry system to set up sensor
» Step 2: measure and tabulate values

» Step 3: Fit the curve.

A

How to represent this uncertainty?

output voltage [V]

10cm . 150cm
distance [cm]

oW -
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Representing Uncertainty

e Sensors are imperfect devices
» Random errors as well as systematic errors.

» What is the uncertainty in a given sensor measurement?

* We need a representation for random errors associated to a given
sensor.

* Repeat measurements and describe the sensor’s distribution

® OptiOﬂSI true measured

1. store original measurements (x;, z;)

2. store histogram of measurements p;

3. compute a compact representation of
distribution

frequency of reading

sensor reading at fixed distance
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Representing Uncertainty

 Compact representation that describes z: fit a model through
moment matching.

e Assumption: values are normally distributed. A Gaussian
distribution can be described through 1st and 2nd moments.

n n
mean: FE[z] = Zpizi = u variance: Var(z) = Zp,-(zl- — u)?
-I? |
5 - p(Elx)
_‘; | fitted model for measurement z;
E
3
o
o —

sensor reading at fixed distance
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IR Sensor Model

e What is the uncertainty around a given sensor measurement?

e Collect data for all distances in operational range.

Estimated range model
255 Raw sensor measurements
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A. Prorok et al., Indoor Navigation Research with the KIll Mobile Robot: An Experimental Baseline with a Case-Study on UWB Positioning, 2010
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Ultrasonic (Sonar) Sensors

2.3 UNIVERSITY OF

Emitter produces a chirp or ping (of ultrasound frequency > 20kHz;
inaudible to human ears)

A timer is started when the chirp is emitted. If the wave encounters a
barrier, it is reflected and measured upon return.

Hardware: a transducer (transforms one form of energy to another),
where mechanical energy is transformed to sound as the membrane
of the sensor tlexes; a microphone (detector)

Measurement principle: RTOF, with speed of sound: at room
temperature it is 343m/s

Common usage: underwater applications (sound travels well in water)

Main disadvantage: specular retlections (e.g., try
measuring distance to object at steep angle);
sensor cross-talk (interference)




US Sensor Model

e Collect data for all distances in operational range for retlection oft
of a planar surface.

Distance [m]
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Estimated range model
Raw sensor measurements

1 15 2 25
Raw US values [m]

A. Prorok et al., Indoor Navigation Research with the KIll Mobile Robot: An Experimental Baseline with a Case-Study on UWB Positioning, 2010
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Laser Scanner (LIDAR)

e LIDAR: light detection and ranging

* Measure the TOF of a pulse of light.
e Coherent light (usually infrared). All the energy is
concentrated in a narrow beam. %
e Distance can be computed by measuring the time
of tlight; e.g., for 30cm round-trip TOF is 0.002ps

* Hardware: receiver/emitter pairs (channels);
combined with rotating mirrors for sweeping. @

e Common usage: high-end research robots;
autonomous vehicles

e Advantages: very high sampling rates possible; no
interference between emitted beams; precision

* + F bttt

e Disadvantages: moving parts (high energy usage);

expensive, large, heavy; affected by weather
* By Mike1024, via Wikimedia Commons
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LIDAR Sensor Model

e Range finders have may have multiple components to their uncertainty
models. The model depends on the environment, this is an example:

correct range
with measurement noise

e~
8 random measurements failures
—_ unexpected dynamic
NG objects
.

Z
* The likelihood of data Z with associated positions X for a given map
(environment) M is given by: p(Z|X,M,®) which can be determined

through Maximum Likelihood estimators.

*image: Probabilistic Robotics; Thrun et al.
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Laser Scanner (LIDAR)

e Turtlebot lll Range Finder:

» scanning area: 360°
» resolution: 1°

» detection range: 0.12 - 3.5m

» price: < USD 500
e Hokuyo UTM-30LX

» scanning area: 240°
» resolution: 0.25°
» detection range: 0.002 - 30m
» price: > USD 5000
e Velodyne VLS-128

» scanning area: 360°

» resolution: 0.11°; up to 9.6 mio. points per second

» detection range: up to 300m
» price: > USD 24000
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Laser Scanner (LIDAR)
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e Point clouds are collected (e.g., 1 mio. data points per second)
e Disadvantages: price; energy consumption; size; does not work
well in bad weather (e.g., rain)
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Vision

* Vision for robotics is concerned with different problems than classical
computer vision:

» must guarantee real-time, fast operation
» perception is task-driven (less general)
» vision in motion: streams (rather than still images)

» applications: object tracking, visual-odometry, information gathering

A -
»
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RGB image raw depth segmentation optical flow

* image credit: N. Silberman NYU
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Fiducials

* Fiducial markers (AprilTag, U. Michigan, E. Olson et al.)
» Place easy to recognize landmarks in your environment

» AprilTags are conceptually similar to QR Codes (bar code) and use
quad detection and a smart coding scheme.

» A tag encodes between 4 and 12 bits
» Detection of identity

» Designed for high localization accuracy (3D pose w.r.t. camera): 6
DOF localization of features from a single image.

» Reterence paper: AprilTag: A robust
and flexible visual fiducial system;
Edwin Olson; ICRA, 2011

* https://april.eecs.umich.edu/software/apriltag
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Mobile Robot & loT

* Using fiducial markers to create a robotic-loT setup.

An Internet of
Robots and Sensors

By:
| ¥
o2 ! Pe_nn . GRASP Marcus Pan (UPenn)

Engmccrmg Lal)()l'at()l'}'
General Robotics, Automation, Sensing & Perception Lab

| | In Collaboration With:
Amanda Prorok (UPenn)

Berkeley EE Philip Dames (UPenn)
ELECTRICAL ENGINEERING & COMPUTER SCIENCES Mark Oeh|berg (UC Berkeley)

Edward A. Lee (UC Berkeley)
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Leader-Follower Setup

e Using fiducial markers to find distance and bearing to leader robot.

R Aﬁ;
“.
-
§ .

Whitzer, Kennedy, Prorok, Kumar; 2016
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Considerations

* Sensor response rating:

» Dynamic range: spread between lower and upper limits of input values;
often measured as a ratio of max/min input.

» Resolution: min. distance between two values that can be detected by a
Sensor.

» Linearity: behavior of output as input varies.

» Frequency: speed at which sensor can provide readings.

e Sensor performance:

» Sensitivity (and cross-sensitivity): degree to which incremental change in
target input signal changes output signal; cross-sensitivity is undesirable

» Errors: accuracy and precision; random vs systematic error;

|error| o range
accuracy: 1 — precision:
lrue o

e Other factors: price, energy consumption, size, weight...

8 UNIVERSITY OF
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Perceptual Pipeline

scene

sensing interpretation

e How to control robot behavior?

» Proximal architecture: robot behavior is close to sensor readings
(with actions being triggered by some low-level model).

» Distal architecture: sensor readings are processed to generate a
higher-level model that informs a robot's scene interpretation.

e Feature extraction is the process of generating higher-level
perception. This is useful for long-term, more sophisticated tasks.

» E.g., map building and route planning (see next lectures)

2 UNIVERSITY OF | .
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Odometry

e Application of light sensors for speedometers / odometers

e Shaft encoding is the underlying sensing mechanism.

break-beam shaft encoder reflectance-based shaft encoder

* image credit: The Robotics Primer (Mataric)
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Odometry

e How can we detect the direction of motion?

e Quadrature encoder detects direction of motion. A 2nd detector is
shifted by a phase of 90° that allows for determining the sense of

rotation.

* image credit: Matt Hercules (Wikipedia)
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Odometry

e Compute updated position based on left and right wheel readings.

current pose:

X
x, = |V

0.

traveled distance:
axle length

As,. + As;

As =
2

path traveled in last sampling interval:
Ax = Ascos(0+ AG/2) updated pose:

Ay = Assin(d + A6/2) x1 | Ascos@+ A0/2)
As, — As;

X1 = |Y| + | Assin(@ + A6/2)

d 0. AO

AO =

5.3 UNIVERSITY OF
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Odometry Motion Model

* |ntegrate wheel encoder information over time to obtain odometry.
e Challenge: drift and slippage.

e Key question: How to model motion uncertainty?

Xy = [X, YV, 9] robot pose at time ¢

xt position from odometry measurements

U, = (’xt—l’ )_ct) relative motion information

e Odometry model for a differential drive robot: Given a time
interval, approximate motion in that interval by two rotations

and one translation, all of which are noisy: (8,1, Syranes Oror2)

* Probabilistic Robotics: Thrun et al.
3B UNIVERSITY OF
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Odometry Motion Model

e |dea: use error distributions defined over rotational and translational
movement to evaluate likelihood of a given robot pose.

5r0t1 — arctan2(y’—y,x’—x) .. ) ) )
Error distribution over a with mean 0 and variance b:

Otrans = \/()C’ — x)2 + (' = y)Z Orot2 prOb(a, b)
5 =0 —0-5

ro rotl

We assume independent error sources:

5trans A~ A~ A~
Xy = (-x/, y/, 0,) P1 — prOb(5r0t1 — 5rot17 Q10rot1 + a25trans)
P2 = prOb((Strans — 5trans; 3 5trans + 044(51"0‘51 + 5rot2))

A

P3 = prOb(5r0t2 — 51"0‘527 O‘lgrotZ + 0428trans)

x_1=(x,y,0)

Ay, Ay, A3, Ay are robot-specific parameters
that characterize the noise in robot motion:

* Probabilistic Robotics; Thrun et al.
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Odometry Motion Model

e Algorithm to compute likelihood of a pose for given odometry
information:  p(x,|u, x,_;)

X, pose to evaluate

X, pose inferred from odometry

A1

1. Compute 6,1, 0,912 0 from odometry information u, = (x,_;, x,)

trans

VaN VaN VaN

2. Compute § .,6. ,,0
3. Return: p;-p, - ps

from (x._;,x,)

rotl? trrans
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How is a Sensor Model Useful?

e |ikelihood of a position (equivalent to conditional probability of
obtaining measurement z given that the true value is x):

Z(x) = p(z]x)

probability of z (given x), or, likelihood
of x (given that z was observed)

* Now, let us find the ‘'most likely’ pose:

X = arg max Z£(x)
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Maximum Likelihood Estimation

e Suppose we have two independent measurements z; and z> of
position x, from two sensors with same variance. The sensor error is
modeled as a Normal:

p(z|x) = N (x,067)

* The likelihood is hence expressed as:

ZL(x) = p(zy, 2| x) = p(z; [ X)p(z5 | x)

=8 UNIVERSITY OF )
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Maximum Likelihood Estimation

* We ignore normalization constants to compute:

(z =) _(@-»*

g(X) ~ e_ 262 X e 262

(=37 | . 4t
L(x)~e 2 with X =—
_(z— 2
< E(:U) ~ e g2 The likelihood is a Gaussian and
p(z1]z) < . p(z2|®) the variance is reduced.

This is the foundation of sensor
fusion.

N
N —»
N
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Maximum Likelihood Estimation

e MLE trick: we minimize the negative log-likelihood, and then
differentiate w.r.t. x:

X =argmax Z(x) —— X =argmin{—-InZ(x)}

<1 +Z2

1
=

b
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Further Reading

Books that cover fundamental concepts:

e Sensors for Mobile Robots, H. R. Everett, 1995

e Probabilistic Robotics, S. Thrun et al., 2006

e Elements of Robotics, F Mondada et al., 2018

e Autonomous Mobile Robots, R Siegwart et al., 2004
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