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In this Lecture

• Taxonomy of MR path planning problems 

• MR path planning methods: 

‣ Discrete 

‣ Continuous  

• Concurrent assignment and path planning
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Taxonomy of Multi-Robot Path Planning Problems

• Domain: continuous vs. discrete 

‣ Continuous: planning time-parameterized trajectories in metric space. 

‣ Discrete: planning on graphs, or regular grids 

• Goal assignment: labeled vs. unlabeled 

‣ Labeled: each robot has a predetermined goal destination 

‣ Unlabeled: all goals must be reached, but assignment is not predetermined 

• Problem representation: coupled vs. decoupled 

‣ Coupled: represent the joint state of all robots in the system 

‣ Decoupled: each robot’s state represented independently 

• Planning: reactive vs. deliberative 

‣ Reactive: dynamic obstacle avoidance; plan as you go (cf. decentralized) 

‣ Deliberative: planning for optimality (cf. centralized, coupled) 

• Computation: centralized vs. decentralized
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Multi-Agent Path Planning
• Multi-robot path planning  ⟶  multi-agent path planning: 

‣ discretized environment (grids or planar graphs) 

‣ point robots (holonomic, no motion constraints) 

• The problem: 

‣ Given: a number of agents at start locations  
with predefined goal locations, and a known  
environment   

‣ Task: find collision-free paths for the agents from their start to 
their goal locations that optimize some objective 

• Generally, we assumed a labeled problem. 

• Classical application domain: automated warehouses (e.g., Amazon)
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Multi-Agent Path Planning
• Allowed motion: North, East, South, West 

• Collisions:
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vertex-collision edge-collision

• Performance metrics 

‣ Makespan: time of last robot’s arrival time 

‣ Flowtime: sum of arrival times, over all robots

no collision



Coupled vs Decoupled Path Planning
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Completeness achieved.Potential deadlock

• Coupled planning provides completeness. 
• Decoupled path planning is not complete, in general.
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Coupled Path Planning

Coupled formulation:
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𝒞i

The joint state space is given by the Cartesian product:

X = 𝒞1 × 𝒞2 × … × 𝒞n

Robot i has configuration space:

The dimensionality grows linearly w.r.t. the number of robots. 
Complete algorithms (such as A*) require time that is at least 
exponential w.r.t. the search space dimension!



Coupled Path Planning
Coupled formulation for N robots and M cells in grid-world:
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𝒞1 𝒞2 𝒞3

…

For M possible states in each configuration space, we have MN 

states in the coupled system.

x x x

E.g., worst case complexity for A*: O( |E | ) ≈ O( |V | ) = O(MN)

* if graph is sparse
Exponential complexity in the number of robots!



Coupled Path Planning

• Hardness: NP-hard to solve optimally for makespan or flowtime 
minimization [Yu and LaValle; 2013] 

• It is impossible to minimize both objectives simultaneously (Pareto) 

• But: coupled method provides completeness and optimality 
‣ Lots of attention devoted to this field 

‣ Development of approximate solutions (see literature by Sven 
Koenig; Howie Choset; Maxim Likhachev)
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• Decoupled path planning is not complete, in general. 
• But: in well-formed environments, prioritized decoupled 

planning is complete! 
‣ Well-formed environment: goals are distributed in such a way 

that any robot standing on a goal cannot completely prevent 
other robots from moving between any other two goals.

Coupled vs Decoupled Path Planning
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Completeness achieved.Potential deadlock

[Cap, Novak, Klaeiner, Selecky; 2015]
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Decoupled Path Planning

• Well-formed environment: 

‣ There must exist a path between any two endpoints.  

‣ That path must have with at least R-clearance with respect to static 
obstacles and at least 2R-clearance to any other endpoint. 

‣ A robot is always able to find a collision-free trajectory to its goal by 
waiting for other robots to reach their goals, and then following a path 
around those occupied goals (any prioritization works!).

!12Mobile Robot Systems — Lecture 9: Multi-Robot Navigation and Path Planning



Decoupled Path Planning
• De-coupling the problem: 

‣ Each robot plans in its own space-time 

‣ Robots negotiate path plans as conflicts arise 

‣ De-confliction can be online (dynamic) or offline (a-priori)
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x

x
visibility range or 
communication range



Decoupled, Prioritized Path Planning
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Graph representation. Each robot travels along the edges
of a directed graph Gn = ⟨Vn, En⟩, which allows only fea-
sible motion and accounts for all constraints (morphological,
kinematic, dynamic). In particular, a robot rn that travels along
edges in Gn cannot collide with any obstacles in O. The set Vn

is defined by vertices vi = ⟨xi, ti⟩ with xi ∈W and ti ∈ R+.
The set En is defined by edges eij : R+ $→ R2, between
vertex vi and vj , such that eij(ti) = xi and eij(tj) = xj . In
other words, the graph Gn exists in a three-dimensional space,
where the last dimension represents time.

Labeled assignment. Robot rn is assigned a start location
sn ∈ W (corresponding to vertex vi with xi = sn and
ti = 0). Similarly, robot rn is assigned a goal location
gn ∈ W (corresponding to a set of vertices vi with xi = gn

and ti ∈ R+). A labeled assignment A is a set of tuples
{⟨s1,g1⟩, . . . , ⟨sN ,gN ⟩}, for all robots in R. The start and
goal locations are assumed to be mutually disjunct.

Conflict-free trajectories. A robot rn has a trajectory πn :
R+ $→W that represents a sequence of edges traversed in Gn

such that two consecutive edges share a common vertex. A
trajectory πn is said to be satisfying if πn(0) = sn and there
exists a time tfn such that πn(tfn) = gn. A robot rn navigating
along this path defines a volume V (πn, ρn) that depends on its
size. To coordinate the navigation in W , two robots rn and rm
can share their path plans with each other if they are within
communication range, i.e., if their positions are separated by a
quantity less than c (all robots have the same communication
range, and hence, detections are always mutual). We make
use of a function TRIM(Gn, ρn, V (πm, ρm)) that removes all
unfeasible paths in Gn that would collide with the volume
defined by robot rm. Any path in the graph returned by TRIM

is ensured to be conflict-free with the path πm of robot rm.
Finally, we define the notion of an effective obstacle, which

is a set of original obstacles in O, such that no trajectories in a
given graph passes between them (see Figure 6). Specifically,
a robot rn has a set of effective obstacles Õn = {õ1, . . . , õB̃},

B̃ ≤ B, with õi ⊆ O and ∪iõi = O and ∩iõi = ∅.
Figure 2 shows a labeled assignment for two robots

that must plan minimum-cost trajectories from their start
positions to their goal positions. Figure 3 demonstrates
how robot r2 circumnavigates robot r1, after execution of
TRIM(G2, ρ2, V (π1, ρ1)).

Objective. Our goal is to find a method that strikes the best
balance between minimizing the mean flowtime (

∑
n t

f
n/N )

and minimizing the makespan (maxn tfn), such that each robot
rn follows a satisfying trajectory πn which is conflict-free
with all other robots’ paths. We note that, in general, these
objectives demonstrate a pairwise Pareto optimal structure, and
cannot be simultaneously optimized [31].

IV. DECENTRALIZED COORDINATION

Our decentralized path planning algorithm can be broken
down into two levels: at the higher level (i.e., coordinated
planning), we consider how robots communicate and negotiate
a priority ordering; at the lower level (i.e., individual planning),
we consider how an individual robot (re)plans a trajectory to
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x

y

Fig. 2: Planar workspace with two robots, r1 and r2, and their respective
start and goal positions. Robot r2 has an effective size ρ2 that is twice that
of robot r1. The minimum-cost paths would result in a collision.
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Fig. 3: On the left, we plot the space-time graph G1 with a minimum-cost
trajectory π1 for robot r1. On the right, we see how trajectory π2 sweeps a
volume V (π2, ρ2) that does not intersect with V (π1, ρ1).

its goal given its current knowledge about the environment
and the plans of other robots within communication range.
We make use of the following definitions.

Definition 1 (Priority ordering). A priority ordering ≺ is such

that a robot rn ∈ R with priority ξn is of higher priority than

robot rm with priority ξm iff ξn ≺ ξm.

Definition 2 (Ordered robot set). Given a priority ordering

≺ on a set of robots R, the pair (R,≺) is a strict partially

ordered robot set.

Definition 3 (Ordered robot neighborhood). Given a priority

ordering ≺, for a given robot rn, Hn = {rm|ξm ≺ ξn} is

the set of robots with higher priority, and Ln = {rm|ξm ≻
ξn} is the set of robots with lower priority. The neighborhood

of robot rn defined as Nn = Hn ∪ Ln ∪ {rn} is strongly

connected (by symmetry of communication). By definition, the

robot neighborhood Nn is an ordered robot set (Nn,≺).
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[Wu, Bhattacharya, Prorok]

The red robot is prioritized and plans a space-time path that is optimal. 
The blue robot plans a path that does not collide with the red robot’s path.

Ideal trajectories for 2 robots Space-time graphs
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Decoupled, Prioritized Path Planning
• Key question: How to prioritize robots? 

• Online, exhaustive method: 

‣ Evaluate all N! options (where N is robots within communication or 
visibility neighborhood) [Azarm, Schmidt; 1997] 

• Existing prioritization heuristics (online and offline): 

‣ Ideal path length: Robots with longer ideal path length have higher 
priority. [Van den Berg et al.] 

‣ Planning time: Robots that take longer to plan their paths get 
higher priority. [Velagapudi, Sycara, Scerri; 2010] 

‣ Workspace clutter: Robots with more clutter in local vicinity have 
higher priority. [Clark, Bretl, Rock; 2002] 

‣ Path prospects: Robots with fewer path options have higher priority 
[Wu, Bhattacharya, Prorok; 2019]
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Decoupled, Prioritized Path Planning
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Algorithm 3: Path Prospects

Input : current position of rn: vn, goal location gn,
untrimmed graph Gn, effective obstacles Õn,
estimated longest path length T

Output: path prospects P (t)
n

F (t)
n ← GETFORWARDSVERTICES(vn,gn, Gn, T )

A← COMPUTEAREA(F (t)
n , En)

κ← 0
for o ∈ Õn do

if o ∩A = o then
κ← κ+ 1 // count this obstacle

return 2κ

Algorithm 4: Compute Set of Forwards Vertices

Function: GETFORWARDSVERTICES(v,g, G, T )
visited ← ∅
priority queue ← {v} // prioritizes by smallest t
while priority queue ≠ ∅ do

q ← POPSMALLEST(priority queue) with
q = ⟨xq, tq⟩
if xq /∈ visited then

neighbours ← FINDNEIGHBOURS(G, q)
for n ∈ neighbours with n = ⟨xn, tn⟩ do

if tn + TRUEDISTANCE(n,g) ≤ T then
APPEND(priority queue,n)

visited ← visited ∪{xq}

return visited

be estimated locally by broadcasting TRUEDISTANCE(sn,gn)
along with priority ξn in Algorithm 1. Figure 5 illustrates the
path prospects for a robot navigating towards its goal, at two
consecutive moments in time.

C. Prioritization Heuristic

We use the path prospect algorithm (Algorithm 3) to prior-
itize robots with conflicting paths. For robots rn and rm, we
define the ordering ≺ such that

P (t)
n < P (t)

m ⇔ ξn ≺ ξm. (1)

Priority orderings are negotiated through Algorithm 1. By
prioritizing robots that have fewer path prospects, we force
those robots that have more options to deviate from their
preferred (best) plans, and to give way to the robots that
have fewer options. Figure 6 illustrates how different robot
sizes affect the available path prospects (and hence the priority
ordering).

VI. EVALUATION

We implement our method in grid-worlds. This allows us
to easily create valid graphs Gn for all robots, implement the
corresponding TRIM function, and create a set of effective
obstacles Õn for any robot rn by inflating original obstacles in

(a) Maze-1 (b) Maze-2

(c) Crossing (d) Clutter

(e) Corridor (f) Tunnel

Fig. 7: Examples of path solutions for the six maps used in our problem sets.
In each problem, 10 robots of five different sizes are assigned random start
and goal positions.

O by ρn. We note that this dilation can be done more generally
(beyond regular grid-worlds) by applying Minkowski addition.
We evaluate the performance of our method in six different
cluttered environments, depicted in Figure 7. Environments (a)
to (f) are of size 75×75. We use a team of 10 robots of five
different sizes, with two robots per size, and sizes ranging from
1 to 5. For each base environment, we generate 500 problems
(random assignments), and record the performance of the path
plan solutions provided by our algorithm (with two alternative
tie-break options to guarantee strict orderings), as well as by
five additional benchmark algorithms (described below). We
solve each problem across communication ranges c that vary
between 30 and 50.

A. Benchmarks

In order to test the efficacy of our prioritization method, we
perform an ablation analysis. The aim of this ablation study is
to identify the efficacy of our proposed path prospects heuristic
by isolating its two key components: (i) the spatial area within
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Example of a multi-agent system where agents have heterogeneous sizes. 
Agents with fewer path prospects are prioritized.

start positions
goal positions
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The Continuous Domain
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Minkowski Sum (Reminder)
• In geometry, the Minkowski sum (also known as dilation) of 

two sets of position vectors A and B in Euclidean space is formed 
by adding each vector in A to each vector in B, i.e., the set:
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A ⊕ B = {a + b |a ∈ A, b ∈ B}

A ⊕ B

B

A



−A

Minkowski Sum (Reminder)
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−A ⊕ B

B

B

B
robot motion control 

reference point

‘moving robot’

static obstacle

As long as reference point stays outside dilated 
area, there will be no collisions.



Velocity Obstacle Method
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B

A

vA

vB

Two robots, A and B, translating in space. Will they collide?

[Fiorini, Shiller; 1998]

robot motion control 
reference point



Velocity Obstacle Method
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B

A

vA

vB

Two robots, A and B, translating in space. Will they collide? 
Step 1: inflate robot B by area of robot A. 

−A ⊕ B

VOA
B(vB = 0)



Velocity Obstacle Method
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−A ⊕ B

B

A

VOA
B(vB)

VOA
B(vB = 0)

vA

vB

(vB)

Step 2: determine whether vA lies in the velocity obstacle of B to A 
If vA is outside the VO, then the robots will never collide.



Velocity Obstacle Method
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−A ⊕ B

B

A

VOA
B(vB)

VOA
B(vB = 0)

vA − vB

vB

(vB)

Equivalence: vA lies in the velocity obstacle of B to A  ⟶  the relative velocity vA - vB 

lies in the velocity obstacle of B to A, assuming B does not move.

vA



Velocity Obstacle Method
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B

A

vA(t0)

vB

Compute set of admissible accelerations for robot A.

··xAΔt

vA(t0 + Δt)

set of admissible accelerations



Velocity Obstacle Method
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B

A

vA(t0)

vB

··xAΔt

VOA
B(vB)

vA(t0 + Δt)

Check that new velocity is outside VO.

set of admissible accelerations



Velocity Obstacle Method

• Assumptions: 

‣ Robots share their current (noise-free) position and velocity 

‣ Robots truthfully execute reported velocities 

• Complications: 

‣ Oscillations! Scenario: Robots with current velocities vA and vB 
currently lie in each others VOs. Both robots select new v’A and 
v’B such that new velocities lie outside respective VOs. In new 
situation, the old velocities vA and vB lie outside VOs. If vA and vB 
are preferable (e.g., they lie on direct path to goal), they will be 
chosen again, hence, leading to oscillations. 

‣ Solution: See reciprocal velocity obstacle method.

Mobile Robot Systems — Lecture 9: Multi-Robot Navigation and Path Planning !26



Reciprocal Velocity Obstacle Method
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B

A
vA + vB

2

vB

(vB)

vA

VOA
B(vB)

Geometric interpretation: 
the apex of the RVO lies at:

RVOA
B(vB, vA)

The old velocity of A is inside the new RVO of B to A, given the new velocities. 

[Van den Berg, Lin, Manocha; 2008]

Choosing the closest velocity 
outside the other agent’s RVO 
guarantees oscillation-free 
navigation.  

The RVO of B to A contains all 
the velocities of A that are the 
average of the current velocity 
vA and a velocity inside the 
VO of B to A. 

Idea: Choose a new velocity that is the average of its current velocity and a velocity that lies 
outside the other agent’s velocity obstacle.



Reciprocal Velocity Obstacle Method
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[D. Manocha et al.]



• New problem formulation: 

‣ N robots need to reach N goal locations as efficiently as possible: we want to find the 
assignment as well as generate the trajectories, simultaneously. 

‣ Un-labeled problem (any robot may go to any goal) 

‣ Robots must have collision-free trajectories 

• Assumptions: 

‣ Robots have a minimum separation distance at start / goal locations 

‣ Robots are holonomic and arrive simultaneously at goals
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Concurrent Assignment and Planning of Trajectories

goal locations

start locations
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Given start and goal locations, find assignments AND trajectories 
that are optimal and collision-free

Concurrent Assignment and Planning of Trajectories
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Concurrent Assignment and Planning of Trajectories

Given start and goal locations, find assignments AND trajectories 
that are optimal and collision-free
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Concurrent Assignment and Planning of Trajectories

What is the optimization objective?

Sum of distances:

Sum of distances squared:
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[Turpin et al.; IJRR 2013]

goalsstarts
half-time
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Fig. 3. For the example with two agents in (a) we can see that the minimum sum of distances paths (calculated by (10)) never intersect.
However, having intersection-free paths does not guarantee collision-free trajectories for agents with finite size. In this case, merely
switching goal assignments, as shown in (b), does ensure collision-free trajectories. It should be noted that minimizing the sum of
distance traveled squared arrives at the collision-free assignment in (b).

are suboptimal, may require enlargement of the region K,
and are more difficult to compute than those which will be
presented in Section 3.2.

3.2. Minimum velocity squared trajectories

The second method we propose is to minimize the sum of
the integral of velocity squared traveled by all agents:

minimize
φ,γ (t)

N∑

i=1

∫ tf

t0

ẋi( t) Tẋi( t)dt

subject to (1), (2), (3), (4), (5), (6)

which is equivalent to:

minimize
φ,γ (t)

∫ tf

t0

Ẋ ( t) TẊ ( t) dt

subject to (1), (2), (3), (4), (5), (6)

(11)

We propose C-CAPT as the solution to this problem and
detail its development in the remainder of this section.

To clarify how the optimization in Section 3.2 differs
from that in Section 3.1, consider moving a contiguous
block of a number of books each with identical width
to another contiguous block, but moved one book over
and ignoring collisions. One solution is to move the first
book to the last position, where another is to move each
book one position over. Both schemes result in the same
sum of distance traveled, however moving each book one
unit over results in a lower sum of distances squared as a
result of distance squared being a strictly convex cost func-
tion. Notice that in the many smaller moves solution, one
book will not cross another. To relate this simple exam-
ple to the CAPT problem, we note that all of the books
can be simultaneously shifted to their new location without
collision.

We will temporarily relax (11) to ignore the clearance
requirements in (6):

minimize
φ,γ (t)

∫ tf

t0

Ẋ ( t) TẊ ( t) dt

subject to (1), (2), (3), (4), (5)

(12)

Fig. 4. Solution times for the Hungarian Algorithm to solve (13)
in MATLAB on a standard laptop computer. The box-plot is gener-
ated based on 10 trials for each value of N . Note that the algorithm
runtime trends toward N3 growth. Boxes represent the 25th and
75th percentiles, whiskers denote the 99% confidence interval and
outliers are marked using “+”.

The solution to (12) will consist of straight line trajecto-
ries which satisfy the boundary conditions while minimiz-
ing the sum of distance traveled squared.

3.2.1. Optimal assignment. We first consider the assign-
ment problem and create a distance squared matrix D ∈
RN×M :

Di,j = ||xi( t0)−gj||2 i ∈ IN , j ∈ IM

We then solve for the optimal distance squared assignment
matrix φ⋆:

φ⋆ = argmin
φ

N∑

i=1

M∑

j=1

φi,jDi,j (13)

We note that φ⋆ satisfies (1) and (2).
This is a linear assignment problem and therefore an opti-

mal assignment solving algorithm such as the Hungarian
Algorithm can be used to solve for φ⋆. In practice, we see
solve times of under 10 seconds for 400 robot–goal pairs in
MATLAB on a standard laptop computer. Figure 4 displays
run times that trend toward cubic growth in N .
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3.2.2. Trajectory generation. The termination time tf can
be computed as follows:

tf = maximize
i

∣∣∣
∣∣∣xi( t0)−

∑M
j=1 φ∗i,jgj

∣∣∣
∣∣∣
2

vmax
(14)

Define the polynomial function of time:

β( t) ≡
k∑

i=0

αiti ∈ [0, 1]

such that β( t0) = 0 and β( tf ) = 1.
A straight forward application of the calculus of varia-

tions shows that the trajectories which minimize the integral
of velocity squared are those with constant velocity and
satisfy the boundary conditions:

γ ⋆( t) = (1−β( t)) X(t0) + β( t) (&G + ( INn−&&T) X(t0))
(15)

where β is defined by the first order polynomial:

α0 = −t0
tf − t0

, α1 = 1
tf − t0

, α2 = 0 . . . αk = 0

It is clear that at t = t0, γ ⋆( t0) = X( t0), and therefore
(15) satisfies the initial conditions in (3).

In equation (15), the term, INn − &&T, selects all unas-
signed robots and ensures that these robots remain at their
original location. If M ≥ N , using (2), this term will disap-
pear as expected, resulting from the fact that all robots will
be assigned.

We also verify that γ ⋆( t) satisfies the final boundary
conditions specified in (4):

γ ⋆( tf ) = &G + ( INn −&&T) X( t0)

If M ≥ N , then using (2), &&T = INn and γ ⋆( tf ) = &G. If
instead N ≥ M , we can premultiply (15) by &T:

&Tγ ⋆( tf ) = &T&G + ( &TINn −&T&&T) X( t0)

We also know from (2) that &T& = IMn to thus verify that
&Tγ ⋆( tf ) = G. Therefore, the trajectories defined in (15)
satisfy the terminal conditions in (4).

The definition of the termination time tf in (14)
guarantees that all robots satisfy their actuation bounds
in (5).

3.2.3. Collision avoidance. We have shown that (13) and
(15) generate the solution to the relaxed problem without
considering collisions in (12). However, we will utilize the
properties of the CAPT problem to demonstrate in Theorem
3.3 that if ' > 2

√
2R, these equations also provide the

solution to the full collision avoidance problem in (11).
For notational convenience, we define:

ri,j ≡ xj( tf )−xi( t0) uij ≡ xj( t0)−xi( t0)

wij ≡ xj( tf )−xi( tf )

We first prove a lemma related to the geometry of the
optimal solutions.

Lemma 3.2. The optimal solutions to (12) satisfy:

wi,j
Tui,j ≥ 0 ∀i, j ∈ IN (16)

Proof. We globally minimized the sum of integrated veloc-
ity squared in (12) such that switching goal states of agent i
with agent j will not decrease the sum of distance squared,
or:

||ri,i||2 + ||rj,j||2 ≤ ||ri,j||2 + ||rj,i||2 ∀i, j ∈ IN (17)

We then substitute:

||ri,j||2 = ri,j
Tri,j

=xj( tf ) Txj( tf )−2xi( t0) Txj( tf ) + xi( t0) Txi( t0)

into (17) and simplify:

( xj( tf )−xi( tf )) T( xj( t0)−xi( t0))≥ 0 ∀i, j ∈ IN

or
wi,j

Tui,j ≥ 0 ∀i, j ∈ IN (18)

Theorem 3.3. If ' > 2
√

2R, trajectories in (15) will satisfy
(6) and be collision-free.

Proof. The location of robot i following the trajectory
specified in (15) is:

xi( t) = ( 1− β) xi( t0) + βxi( tf )

Therefore the distance between robots i and j is:

||xj( t)−xi( t) || = ||( 1− β) xj( t0) +βxj( tf )

− ( 1− β) xi( t0)−βxi( tf ) ||

and the distance squared between these robots is:

||xj − xi||2=||(1−β) ( xj( t0)−xi( t0)) +β(xj( tf )−xi( tf ))||2

=||uij + β( wij − uij) ||2

We can simplify this result:

||xj − xi||2 = ( uij + β( wij − uij)) T( uij + β( wij − uij))
(19)

Define for notational convenience:

a ≡ uij
Tuij b ≡ wij

Tuij c ≡ wij
Twij

Equation (19) simplifies to:

||xi − xj||2 = a− 2β( a− b) + β2( a− 2b + c) (20)

We can find the value of β which minimizes the distance
squared (and therefore the distance) between agents i and j
(i ̸= j):

β⋆
i,j = argmin

β

||xi − xj|| = a− b
a− 2b + c

(21)
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Fig. 3. For the example with two agents in (a) we can see that the minimum sum of distances paths (calculated by (10)) never intersect.
However, having intersection-free paths does not guarantee collision-free trajectories for agents with finite size. In this case, merely
switching goal assignments, as shown in (b), does ensure collision-free trajectories. It should be noted that minimizing the sum of
distance traveled squared arrives at the collision-free assignment in (b).

are suboptimal, may require enlargement of the region K,
and are more difficult to compute than those which will be
presented in Section 3.2.

3.2. Minimum velocity squared trajectories

The second method we propose is to minimize the sum of
the integral of velocity squared traveled by all agents:

minimize
φ,γ (t)

N∑

i=1

∫ tf

t0

ẋi( t) Tẋi( t)dt

subject to (1), (2), (3), (4), (5), (6)

which is equivalent to:

minimize
φ,γ (t)

∫ tf

t0

Ẋ ( t) TẊ ( t) dt

subject to (1), (2), (3), (4), (5), (6)

(11)

We propose C-CAPT as the solution to this problem and
detail its development in the remainder of this section.

To clarify how the optimization in Section 3.2 differs
from that in Section 3.1, consider moving a contiguous
block of a number of books each with identical width
to another contiguous block, but moved one book over
and ignoring collisions. One solution is to move the first
book to the last position, where another is to move each
book one position over. Both schemes result in the same
sum of distance traveled, however moving each book one
unit over results in a lower sum of distances squared as a
result of distance squared being a strictly convex cost func-
tion. Notice that in the many smaller moves solution, one
book will not cross another. To relate this simple exam-
ple to the CAPT problem, we note that all of the books
can be simultaneously shifted to their new location without
collision.

We will temporarily relax (11) to ignore the clearance
requirements in (6):

minimize
φ,γ (t)

∫ tf

t0

Ẋ ( t) TẊ ( t) dt

subject to (1), (2), (3), (4), (5)

(12)

Fig. 4. Solution times for the Hungarian Algorithm to solve (13)
in MATLAB on a standard laptop computer. The box-plot is gener-
ated based on 10 trials for each value of N . Note that the algorithm
runtime trends toward N3 growth. Boxes represent the 25th and
75th percentiles, whiskers denote the 99% confidence interval and
outliers are marked using “+”.

The solution to (12) will consist of straight line trajecto-
ries which satisfy the boundary conditions while minimiz-
ing the sum of distance traveled squared.

3.2.1. Optimal assignment. We first consider the assign-
ment problem and create a distance squared matrix D ∈
RN×M :

Di,j = ||xi( t0)−gj||2 i ∈ IN , j ∈ IM

We then solve for the optimal distance squared assignment
matrix φ⋆:

φ⋆ = argmin
φ

N∑

i=1

M∑

j=1

φi,jDi,j (13)

We note that φ⋆ satisfies (1) and (2).
This is a linear assignment problem and therefore an opti-

mal assignment solving algorithm such as the Hungarian
Algorithm can be used to solve for φ⋆. In practice, we see
solve times of under 10 seconds for 400 robot–goal pairs in
MATLAB on a standard laptop computer. Figure 4 displays
run times that trend toward cubic growth in N .
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ries which satisfy the boundary conditions while minimiz-
ing the sum of distance traveled squared.

3.2.1. Optimal assignment. We first consider the assign-
ment problem and create a distance squared matrix D ∈
RN×M :
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We then solve for the optimal distance squared assignment
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We note that φ⋆ satisfies (1) and (2).
This is a linear assignment problem and therefore an opti-

mal assignment solving algorithm such as the Hungarian
Algorithm can be used to solve for φ⋆. In practice, we see
solve times of under 10 seconds for 400 robot–goal pairs in
MATLAB on a standard laptop computer. Figure 4 displays
run times that trend toward cubic growth in N .
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Fundamental planning concepts: 

• Some of the planning concepts in Steven LaValle’s book.  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1998 
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• J. Van Den Berg, M. Overmars. "Prioritized motion planning for multiple robots." 2005 

 
More recent papers: 

• M. Turpin, N. Michael and V. Kumar; “CAPT: Concurrent assignment and planning of trajectories 
for multiple robots”; IJRR 2013  

• M. Čáp, P. Novák, A. Kleiner, M. Selecký; “Prioritized Planning Algorithms for Trajectory; 
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