
Announcements

• Lab today (Feb 5): 

‣ Compulsory presence at 14:00 

‣ Brief tutorial on how to operate real Turtlebot. 

‣ Sign-up (3 students per Turtlebot). 

• Turtlebot sharing: 

‣ 3 students per robot; each robot in a dedicated locker in Intel lab 

‣ Key to be stored at the reception - note weekend closure! 

• Don’t break the robots.



Mobile Robot Systems 
Lecture 6: Navigation & Path Planning 

Dr.  Amanda Prorok 
asp45@cam.ac.uk 

www.proroklab.org
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In this Lecture

• Navigation and path planning 

• Configuration space 

• 3 general method classes 

‣ Combinatorial 

‣ Sampling-based 

‣ Potential fields
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Architecture of an Autonomous Mobile Robot
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Motion Planning
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Configuration Space
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The ‘world’ has two entities: robots and obstacles. Both considered as  
closed subset of the world (or workspace):                , 

The ‘space’ for motion planning is the set of possible transformations 
that could be applied to the robot (considered as a rigid body). 

We refer to this as the configuration space. 

Important abstraction that allows to use the same motion planning 
algorithms to problems that differ in geometry and kinematics. 

[Two common views of the configuration space:  
metric space, or topological manifold]

𝒪 ⊂ 𝒲 ℛ ⊂ 𝒲



Configuration Space
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𝒞

𝒲 = ℝNRobot’s workspace:

The robot is mapped to a single point in C-space

A(q) ⊂ 𝒲

𝒞obs = {q ∈ 𝒞 |A(q) ∩ 𝒪 ≠ ∅}

𝒞free = 𝒞∖𝒞obs

and points occupied by robot:

Complete specification of robot configuration: q ∈ 𝒞

𝒪 ⊂ 𝒲Obstacle region:

Set of configurations that avoid collision:

where we have:
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Configuration Space
How to compute           and            ?
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C-obstacle Example 

Transforming to C-Space 

Various methods, e.g. reflect points, Minkowski sum, convex Hull.

𝒞free𝒞obs



Minkowski Sum
• In geometry, the Minkowski sum (also known as dilation) of 

two sets of position vectors A and B in Euclidean space is formed 
by adding each vector in A to each vector in B, i.e., the set:
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A ⊕ B = {a + b |a ∈ A, b ∈ B}

A ⊕ B

B

A



−A

Minkowski Sum

Mobile Robot Systems — Lecture 9: Multi-Robot Navigation and Path Planning !10

−A ⊕ B

B

B

B
robot motion control 

reference point

‘moving robot’

static obstacle

As long as reference point stays outside dilated 
area, there will be no collisions.



The Path Planning Problem
Assume a workspace, obstacle region, and configuration space, with definitions 
of free and occupied C-space
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τ : [0,1] ↦ 𝒞free

qI ∈ 𝒞freean initial configuration

a desired goal configuration

compute a path

qG ∈ 𝒞free

𝒞free 𝒞obsand

Given a query 

such that τ(0) = qI τ(1) = qGand

(qI, qG) with
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Basic motion planning problem

Given robot A and obstacle O models, C-space C, and qI , qG ∈ Cfree.

Given robot and obstacle models, C-space , and

Cobs

qI

qG

Cfree

Cobs

Cobs

Automatically compute a path τ : [0, 1]→ Cfree so that τ(0) = qI and τ(1) = qG.

* image credit: Pallotino



Approaches and Guarantees
1. Combinatorial planning (exact)  

2. Sampling-based planning (probabilistic) 

3. Potential-field methods 

These methods use the configuration space abstraction (hence, require 
preliminary computation of  Cfree and Cobs)
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• Complete: if a solution exists, it finds one, otherwise returns failure 

• Semi-complete: if a solution exists, if finds one; otherwise may run forever 

• Resolution complete: If a solution exists, it finds one; otherwise, it 
terminates and reports that no solution within a specified resolution exists.  

• Probabilistically complete: If a solution exists, the probability that it will be 
found tends to one as the number of iterations tends to infinity 

Guarantees:
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Overview of Methods
• Combinatorial methods 

‣ Exact and complete 

‣ Underlying principle: Requires a-priori computation of C-space and 
generation of a roadmap (e.g., a visibility graph). Then, use a discrete 
graph-search method on the roadmap.  

• Sampling-based methods 
‣ Approximate and not complete; but can be resolution complete, or 

probabilistically complete 

‣ Underlying principle: Avoid explicit construction of roadmaps in C-space; 
instead, sample a path segment and check for collisions 

• Potential-field methods 

‣ Approximate and not complete (suffer from local minima) 

‣ Underlying principle: Integrate over a vector field to obtain a trajectory 
(pose as a function of time). Can also be done in reactive mode.
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Combinatorial Methods
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• Recipe:  

1. Compute C-space (Cfree and Cobs) 

2. Generate a roadmap (i.e., a graph) in Cfree  

‣ Cell decomposition methods: visibility graphs /  
Voronoi cells / occupancy grid maps 

‣ Or: maximum clearance roadmaps (direct construction)  

3. Compute the minimum-cost path from initial to goal configuration 
   (cast as a graph search algorithm) 

4. Result:

qI

qG

τ : [0,1] ↦ 𝒞free such that τ(0) = qI τ(1) = qGand

A valid roadmap guarantees 
accessibility and is connectivity 
preserving w.r.t. Cfree
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Approximate Cell Decomposition

Idea: Decompose the space into cells with predefined shapes so that any path

inside a cell is obstacle free. The union of such cells is a lower approximation of

Cfree.

Define a discrete grid in C-Space and mark any cell of the grid that intersects

Cobs as blocked. Find a path through remaining cells by using algorithms for

discrete optimization.



Discrete Search Methods
• How to search roadmap for minimum-cost path? 

• One well-known example: A* algorithm  

• Extension of Dijkstra’ search algorithm, to reduce number of states 
explored (exploiting an informed search using a heuristic) 

• Forward search, applied to path planning: 

‣ Evaluation function: f(n) = g(n) + h(n) 

‣ Operating cost function g(n); cost of path already traversed. 

‣ Heuristic function h(n); information used to find promising 
nodes to traverse; heuristic must be admissible (i.e., must 
underestimate true cost)!
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A*
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is O empty?

remove first node n  
from O and add it to C 

is n the goal state? 

expand all nodes n’  that  
are neighbors of n and not in C

is n’ in O?

if g(n′) > g(n) + c(n, n′)) 
g(n′) = g(n) + c(n, n′);

add n’ to O

END

START

END

O: ordered set  / open list  
(priority queue) 
C: closed set

yes

yesno

noyes



A*
• Requirements 

‣ Preprocessing to generate roadmap 
(connected graph) that represents Cfree  

• Pros 

‣ Optimal path cost and complete 

• Cons 

‣ Memory inefficient (see IDA*) 

‣ Curse of dimensionality (exponential 
growth of search space w.r.t. length of 
solution)
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Variants: 
replanning algorithms (e.g. D*) 
anytime algorithms (e.g. ARA*),  
anytime re-planning (e.g. AD*) 



Complexity of Path Planning
• The general motion planning problem is PSPACE-hard  

[Reif 1979; Hopcroft et al. 1984]  

• NP ⊆ PSPACE (polynomial amount of memory) 

• Challenges: 

‣ C-space has high dimensionality: E.g.: A rigid body in 3D space 
has a C-space with 6 dimensions (                          ) 

‣ Simple obstacles have complex C-obstacles; impractical to 
compute explicit representation of free space for high DOF robots  

• Attention has turned to approximation and  
randomized algorithms which trade full completeness 
of the planner for a major gain in efficiency  
→ sampling-based approaches
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𝒞 = ℝ3 × SO(3)



1. Initialize an empty graph G.  
Vertices will correspond to configurations, edges to collision-free paths. 

2. Sample configurations a(i) in Cfree 
3. Use a metric defined in C-space to compute neighborhood set of a(i), of 

vertices q already in G. 
4. Local planner: check if a(i) can be connected to points q in neighborhood 

set. Add to edge (a(i), q) to edge set if no collision detected. 
5. Terminate when N edges added to roadmap.

Sampling-Based Methods
• Probabilistic Roadmaps (PRMs) (Kavraki, LaValle, et al.)
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4 CHAPTER 5. MOTION PLANNING BY LYDIA E. KAVRAKI AND STEVEN M. LAVALLE

or not. Many packages represent the geometric models
hierarchically, avoid computing all-pairwise interactions
and conduct a binary search to evaluate collisions. Ex-
cept from configurations, a planner must also validate
entire paths. Some collision detectors return distance-
from-collision information, which can be used to infer
that entire neighborhoods in C are valid. It is often more
expensive, however, to extract this information; instead
paths are usually validated point-by-point using a small
stepping size either incrementally or by employing bi-
nary search. Some collision detectors are incremental by
design, which means that they can be faster by reusing
information from a previous query [68].

5.2.1 Multi-Query Planners:
Mapping the Connectivity of Cfree

Planners that aim to answer multiple queries for a cer-
tain static environment use a preprocessing phase during
which they attempt to map the connectivity properties
of Cfree onto a roadmap. This roadmap has the form of
a graph G, with vertices as configurations and edges as
paths. A union of 1D curves is a roadmap G if it satisfies
the following properties:

1. Accessibility: From any q ∈ Cfree, it is simple and
efficient to compute a path τ : [0, 1] → Cfree such
that τ(0) = q and τ(1) = s, in which s may be any
point in S(G). S(G) is the swath of G, the union of
all configurations reached by all edges and vertices.
This means that it is always possible to connect a
planning query pair, qI and qG to some sI and sG,
respectively, in S(G).

2. Connectivity Preserving: The second condition
requires that if there exists a path τ : [0, 1]→ Cfree

such that τ(0) = qG and τ(1) = qG, then there also
exists a path τ ′ : [0, 1]→ S(G), such that τ ′(0) = sI

and τ ′(1) = sG. Thus, solutions are not missed
because G fails to capture the connectivity of Cfree.

The Probabilistic Roadmap Method (PRM) approach
[50] attempts to approximate such a roadmap G in a
computationally efficient way. The preprocessing phase
of PRM, which can be extended to sampling-based
roadmaps in general, follows these steps:

1. Initialization: Let G(V, E) represent an undi-
rected graph, which initially is empty. Vertices of G
will correspond to collision-free configurations, and
edges to collision-free paths that connect vertices.

α(i)

Cobs

Cobs

Figure 5.3: The sampling-based roadmap is constructed
incrementally by attempting to connect each new sam-
ple, α(i), to nearby vertices in the roadmap.

2. Configuration Sampling: A configuration α(i) is
sampled from Cfree and added to the vertex set V .
α(·) is an infinite, dense sample sequence and α(i)
is the i-th point in that sequence.

3. Neighborhood Computation: Usually, a metric
is defined in the C-space, ρ : C × C → R. Vertices
q already in V are then selected as part of α(i)’s
neighborhood if they have small distance according
to ρ.

4. Edge Consideration: For those vertices q, which
do not belong in the same connected component of G
with α(i), the algorithm attempts to connect them
with an edge.

5. Local Planning Method: Given α(i) and q ∈
Cfree a module is used that attempts to construct
a path τs : [0, 1] → Cfree such that τ(0) = α(i)
and τ(1) = q. Using collision detection, τs must be
checked to ensure that it does not cause a collision.

6. Edge Insertion: Insert τs into E, as an edge from
α(i) to q.

7. Termination: The algorithm is typically termi-
nated when a predefined number of collision-free
vertices N has been added in the roadmap.

The algorithm is incremental in nature. Computation
can be repeated by starting from an already existing
graph. A general sampling-based roadmap is summa-
rized in Algorithm 1.

An illustration of the algorithm’s behavior is depicted
in Figure 5.3. To solve a query, qI and qG are connected
to the roadmap, and graph search is performed.

* image credit: Kavraki, 2008



Probabilistic Roadmaps (PRMs)
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Cfree

Cobs

initialize empty graph and C-space

holonomic robot



Probabilistic Roadmaps (PRMs)
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Cfree

Cobs

sample random configurations in C-space



Probabilistic Roadmaps (PRMs)
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Cfree

Cobs

test for collisions



Probabilistic Roadmaps (PRMs)
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Cfree

Cobs

retain collision-free configurations



Probabilistic Roadmaps (PRMs)
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Cfree

Cobs

create edges to nearest neighbors



Probabilistic Roadmaps (PRMs)
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Cfree

Cobs

create edges to nearest neighbors



Probabilistic Roadmaps (PRMs)
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Cfree

Cobs

retain collision-free local paths to generate PRM



Probabilistic Roadmaps (PRMs)
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Cfree

Cobs

start
goal

search PRM for shortest path to goal configuration



• Primitives required: 

‣ Method to sample configurations in free C-space 

‣ Method to check for collisions in C-space 

• Pros: 

‣ Probabilistically complete 

‣ Apply easily to high-dimensional C-spaces 

‣ Fast query processing (start, goal) 

• Cons: 

‣ Don’t work well for narrow passages 

‣ Hard to connect vertices for differential motion constraints 
(generally requires solution to the Boundary Value Problem) 

‣ Hard to sample uniformly in configuration space.

Probabilistic Roadmaps (PRMs)
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* image credit: Kavraki, 2008



Rapidly Exploring Random Trees (RRTs)
• LaValle and Kuffner, 2000. 

• Similar to PRMs, but for single-query problems, a tree is enough. 

• Basic idea: Build a tree by generating ‘next states’ in the tree, by 
executing random control 
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1. Initialize a graph G with a vertex corresponding to qI.  
Vertices correspond to configurations, edges to collision-free paths. 

2. Sample a random state in C-space qrand  (with small probability, sample qG) 
3. Find its nearest vertex qnear in G. 
4. Local planner: For non-holonomic robots, find a new vertex qnew in Cfree 

close to qrand  and check that edge (qnear, qnew) is collision-free. If so, add 
new edge and new vertex to G  (and discard qrand). 

5. Check if G encodes a solution (path from qI to qG), return G. 
6. Return to step 2 or terminate with failure at time-out.



Rapidly Exploring Random Trees (RRTs)
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Cfree

Cobs

goal
start



Rapidly Exploring Random Trees (RRTs)
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Cfree

Cobs

goal

qrand

qnear



Rapidly Exploring Random Trees (RRTs)
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Cfree

Cobs

goal

qrand

qnear



Rapidly Exploring Random Trees (RRTs)
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Cfree

Cobs

goal



Rapidly Exploring Random Trees (RRTs)
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Cfree

Cobs

goal



Rapidly Exploring Random Trees (RRTs)
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Cfree

Cobs

goal



Rapidly Exploring Random Trees (RRTs)
• Primitives required: 

‣ Method to sample configurations in free C-space 

‣ Method to check for collisions in C-space 

• Pros: 

‣ Probabilistically complete 

‣ Exponential rate of decay for the probability of failure 

‣ Asymptotically optimal (RRT*) 

• Cons: 

‣ For non-holonomic robots, generating edges to sampled 
configurations requires solution to the two-point boundary 
value problem. (Alternate trick: use motion primitives).
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* image credit: Kavraki, 2008



Rapidly Exploring Random Trees (RRTs)
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Example: Integration of motion primitives with RRT-based search.



Potential Field Method
• No explicit roadmap; instead, construct a real-valued potential 

function:
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U : ℝm ↦ ℝ

Ua(q) Ur(q)

∇U(q) = [ ∂U
∂q1

, …,
∂U
∂qm ]

⊤

Differentiate potential

Attractive potential: Repulsive potential:

and compute a path via gradient descent (gradient motion).
* image credit: Kavraki, 2008
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is given considerable attention in computational geome-
try [27]. Determining the decomposition of a polygonal
obstacle region with holes that uses the smallest number
of convex cells is NP-hard [51]. Therefore, we are willing
to tolerate non-optimal decompositions.

In three-dimensional C-spaces, if Cobs is polyhedral,
then the vertical decomposition method directly extends
by applying the plane sweep recursively. For example,
the critical events may occur at each z coordinate, at
which point changes a 2D vertical decomposition over
the x and y coordinates are maintained. The polyhedral
case is obtained for a translating polyhedral robot among
polyhedral obstacles in R3; however, for most interesting
problems, Cobs, becomes nonlinear. Suppose C = R2×S1,
which corresponds to a robot that can translate and ro-
tate in the plane. Suppose the robot and obstacles are
polygonal. For the case of a line-segment robot, an O(n5)
algorithm that is not too difficult to implement is given
in [89]. The approaches for more general models and C-
spaces are are extremely difficult to use in practice, they
are mainly of theoretical interest and they are summa-
rized in Section 5.6.3.

5.3.3 Potential Fields

A different approach for motion planning is inspired from
obstacle avoidance techniques [52]. It does not explicitly
construct a roadmap, instead it constructs a differen-
tiable real-valued function U : Rm → R, called a po-
tential function, that guides the motion of the moving
object. The potential is typically constructed so that
it consists of an attractive component Ua(q), that pulls
the robot towards the goal, and a repulsive component
Ur(q), that pushes the robot away from the obstacles as
Figure 5.8 shows. The gradient of the potential function
is the vector∇U(q) = DU(q)T = [ ∂U

∂q1

(q), . . . , ∂U
∂q

m

(q)]T ,
which points in the direction that locally maximaly in-
creases U . After the definition of U , a path can be
computed by starting fom qI and applying “gradient de-
scent”:
1 q(0) = qI ; i = 0;
2 while ∇U(q(i)) ≠ 0 do
3 q(i + 1) = q(i) +∇U(q(i))
4 i = i + 1
However, this gradient descent approach does not

guarantee a solution to the problem. Gradient descent
can only reach a local minimum of U(q), which may not
correspond to the goal state qG as Figure 5.9 shows.

A planner that makes uses of potential functions and
attempts to avoid the issue of local minima is the ran-

Figure 5.8: An attractive and a repulsive component de-
fine a potential function.

Figure 5.9: Two examples of the local minimum problem
with potential functions.

domized potential planner [7]. The idea is to combine po-
tential functions with random walks by employing mul-
tiple planning modes. In one mode, gradient descent is
applied until a local minimum is reached. Another mode
uses random walks to try to escape local minima. A
third mode performs backtracking whenever several at-
tempts to escape a local minimum have failed. In many
ways, this approach can be considered as a sampling-
based planner. It also provides the weaker complete-
ness guarantee but it requires parameter tuning. Recent
sampling-based methods achieve better performance by
spending more time exploring the space, rather than fo-
cusing heavily on a potential function.

The gradient of the potential function can be also used
to define a vector field, which assigns a motion for the
robot at any arbitrary configuration q ∈ C. This is an
important advantage of the approach, beyond its com-
putational efficiency, since it does not only compute a
single path, but a feedback control strategy. This makes
the approach more robust against control and sensing
errors. Most of the techniques in feedback motion plan-
ning are based on the idea of navigation functions [86],
which are potential functions properly constructed so as
to have a single minimum. A function φ : Cfree → [0, 1]
is called a navigation function if it:

• is smooth (or at least Ck for k ≥ 2)
• has a unique minimum at qG in the connected com-

ponent of the free space that contains qG,
• is uniformly maximal on the free space boundary
• and is Morse, which means that all its critical

points, such as saddle points, are isolated and can
be avoided with small random perturbations.

goal

obstacle



Potential Field Method
• Creating the potential field in C-space is hard. 

• One possible strategy: 

1. Create potential field in robot work-space 

2. Compute gradient 

3. Use feedback linearization to get control inputs 

4. (Compute gradient in C-space from control inputs)
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Gradient at offset 
point for feedback 
linearization xp, yp

u, ωCompute 
from gradient ·xp, ·yp

·xc, ·yc,
·θcCompute

2.

3.

4.

obstacle

goal

1. Define potential



Vector Fields
• Requirements 

‣ Representation of work-space / C-space  

• Pros 

‣ Computationally efficient (once C-space is constructed) 

‣ More than just 1 path: motion strategy (feedback control) is 
readily computed from any point in field. 

• Cons 

‣ Local minima (require methods to resolve them) 

‣ Representation of C-space is hard in high dimensions
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Books that cover fundamental concepts: 

• Steven M. LaValle. "Planning Algorithms". 2006. Cambridge 
University Press. 

• http://planning.cs.uiuc.edu/

Further Reading
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Seminal papers: 

• S. M. LaValle and J. J. Kuffner; Rapidly-exploring random trees; 2001.  

• S. Karaman, E. Frazzoli; Sampling-based Algorithms for Optimal 
Motion Planning; 2011 

• J. Barraquand and J-C. Latombe. Robot motion planning: A 
distributed representation approach;1991.


