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In this Lecture

* |ntroduction to multi-robot systems
* Jaxonomy

e Collective movement
» Flocking (2 example methods)

» Formations (2 example methods)
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What This Course is About

e Design of this course + focus on autonomous mobile robots

basics of
autonomy
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What This Course is About

e Design of this course + focus on mobile robots

e Multiple mobile robots — multi-robot systems

 Higher-order goals

e Coordination facilitated through communication

perception action cognition

navigation
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Multi-Robot Systems

* Terms used: robot swarms / robot teams / robot networks
o \Why?
» Distributed nature of many problems
» Overall performance greater than sum of individual efforts

» Redundancy and robustness
 Numerous commercial, civil, military applications

e Additional challenge: robot coordination
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Taxonomy

e Architecture: centralized vs. decentralized

» Centralized: one control/estimation unit communicates with all

robots to issue commands; requires synchronized, reliable
communication channels; single-point failures

» Decentralized: scalable, robust to failure; often asynchronous;
sub-optimal performance (w.r.t centralized)

e Communication: explicit vs. implicit

» Implicit: observable states (e.g., in the environment); information
exchanged through common observations

» Explicit: unobservable states; need to be communicated explicitly

e Heterogeneity: homogenenous vs. heterogeneous

» Robot teams can leverage inter-robot complementarities
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Communication Topologies

* Robot configurations / topologies are often
defined by the maximum range of the available

communication module. ® ®
e A disc model can be used to represent the
communication range (very crude approximation)
fully connected star topology random mesh
centralized / decentralized centralized / decentralized decentralized
coordination coordination coordination
28 UNIVERSITY OF ystems - Collective Movement
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Centralization vs Decentralization

centralized

e Centralized control. The controller
computes actions based on
knowledge of the global state

e Centralized estimation. The unit
fuses partial information.
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decentralized

¢ Decentralized control. A robot's
control input is based on
interactions with its neighbors.

¢ Decentralized estimation. The
robot’s estimate is based on
relative observations.
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Centralization vs

Decentralization

max. area coverage / min. time to target
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Decentralization

* Goal: Achieve similar (or same) performance as would be achievable with
an ideal, centralized system.

e Challenges:
» Communication: delays and overhead
» Input: asynchronous; with rumor propagation

» Sub-optimality with respect to the centralized solution

e Advantages:
» No single-point failure
» Can converge to optimum as time progresses
» 'Any-comm’ algorithms exist (graceful degradation under failing comms)

» 'Any-time’ algorithms exist (continuous improvement of solution)

"' UNIVERSITY OF tems - Collective Movement 11
4P CAMBRIDGE




Collective Movement

In nature:

school of fish

flock of geese herd of mammals
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Collective Movement

e Collective movement in natural societies:

» Properties: no collisions; no apparent leader; tolerance of loss
or gain of group member; coalescing and splitting; reactivity to
obstacles; different species have different flocking
characteristics

» Benefits: energy saving (e.g., geese extend flight range by
70%); signs of better navigation accuracy

e Engineered flocking - decentralized:

» Reynolds' virtual agents (Boids)

» Graph-based distributed control for spatial consensus
e Engineered flocking - centralized:

» E.g.: Controls for each robot computed off-board, in the cloud

7 UNIVERSITY OF
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Flocking with Boids

* |In 1986, Craig Reynolds (computer animator) wanted to create a
computationally efficient method to animate tlocks
e Goal: O(N); current best was O(N?)

4, a0\ g b\ B a N\

I

l'.\‘ /’|| k 1|““ /]

\ }X \ /
< /A 4\ S/

N

separation allgnment cohesion

e A boid reacts only to its neighbors

e Neighborhood defined by distance and angle (region of influence)

e Each boid follows 3 steering rules based on positions and velocities
of neighbors. Recipe: compute 3 components, then combine to form

motion (vector)
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Flocking with Boids

e Sensory system: idealized, but local:

» almost omni-directiona

» no delays (in sensing)

» no noise (in range and bearing) 2D representation of boid
neighborhood

* Behavior-based with priorities (cf Brooks):

» Low priority acceleration request towards a point or in a
direction (to direct flock)

» Highest priority to obstacle avoidance ('steer-to-avoid’ with a
different sensory system)
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Flocking with Boids
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Flocking with Consensus
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1 leader robot; robots apply consensus algorithm to agree on heading
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The Consensus Algorithm

e Aim of consensus: i
) ' :
Reach decentralized agreement e iewn
» Purely based on local interactions

e Consensus
» Based on a graph-topological definition of multi-robot system

» Applications: motion coordination; cooperative estimation; synchronization

e Discrete time consensus update:

1
wli+ 1] = g il +j§%xj[t])

e Consensus outcome:

» All robots converge to average of initial values (convergence rate is exponential):
t — 00, xlt] = —— x;[0]
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Flocking with Consensus

Holonomic robot: X=u with X = [x;, y/]

Consensus on heading 0,

3
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robot trajectories heading as a function of time

Note: Collision avoidance and connectivity maintenance are needed in addition to
agreement on direction of motion.
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Other Consensus Applications
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Formation Control

e Formations (versus flocks): specific geometric configurations

e Some applications benefit from multiple robots navigating as a group:
» Transport (vehicle formations; platooning); scout platoons for reconnaissance

and search; environmental monitoring; lawn mowing

e Generally required: information on state (e.g. pose) of all robots
e Challenges: J
» Noisy sensors; delay in sensing / actuation ,

» Anonymous robots (no IDs)
e.g.: diamond formation

» Non-holonomicity

e Variants:
» Behavior-based (Balch et al., 1999) (recall: reactive control paradigm)

» Closed-loop control (Das et al., 2002) (recall: error-based control paradigm)

22
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Formation Control

e Referencing schemes:

» Unit-center-referenced: obtained by averaging positions of all robots. A
robot determines its position relative to this center.

» Leader-referenced: robots determine pose relative to leader, which does
not attempt to maintain the formation.

» Neighbor-referenced: robots attempt to maintain relative pose to one (or
a select group) of neigboring robots.

3\ /1 3~ 1 3 ="
4 _—— T 2 4 2 4 2
unit-center leader neighbor

* How is positioning information obtained?
» Each robot estimates its own pose, and communicates this to other robots.

» Or: robots estimate their relative pose via sensor observations

*image credit: Balch 1999
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Behavior-Based Formation Control

¢ Method based on ‘Motor-Schema’ [Balch, Arkin: 1999]

e Different motor schemes are defined; each generates a vector
representing a behavioral response (direction and magnitude of
movement) as a function of sensor stimuli

e A gain value is used to attribute relative importance of schemes

Parameter Value Units
avoid-static-obstacle
gain 1.5
sphere of influence 50 meters
minimum range 5  meters
avoid-robot
gain 2.0
sphere of influence 20  meters
minimum range 5  meters
move-to-goal
gain 0.8
noise
gain 0.1
persistence 6  time steps
maintain-formation
gain 1.0
desired spacing 50 meters
controlled zone radius 25  meters
dead zone radius 0  meters

*image credit: Balch 1999
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Behavior-Based Formation Control

Motor schemas:

1. move-to-goal: attract to goal with variable gain = Vmanitua = adjustable gain value

Vigirection = 10 direction towards perceived

goal
2. avoid-obstacle / robot: repel from object Omanitude =
. . . . S—d or
with variable gain and sphere of influence. ;szff;ggdﬁ

where:
S = Adjustable Sphere of Influence
(radial extent of force from
the center of the obstacle)
R = Radius of obstacle
G = Adjustable Gain
d = Distance of robot to center of obstacle
Odirection = along a line from robot to center
of obstacle moving away from obstacle

3. noise: random wander with variable Nomagnitude = Adjustable gain value
. . Ngirection = Random direction that persists
gain and persistence; used to for Npersistence Steps
(Npersistence 18 adjustable)

overcome local maxima, cycles, and
for exploration.
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Behavior-Based Formation Control

4. maintain-formation: decomposed into two parts

o Ryos, Ryir the Tobot’s present position and heading.
maintain-formation-speed ¢ R4y, the robot’s present speed.
¢ Fyos, the robot’s proper position in formation.
o Fyir, the direction of the formation’s movement; to-
wards the next navigational waypoint.
o Faris, the formation’s axis, a ray passing through £,
in the Fy;, direction.
o Hycsireq, desired heading, a computed heading that
will move the robot into formation.
¢ Oheading, the computed heading correction.
¢ dspeed, the computed speed correction.

‘/speed — Rmag + K X 5speed

maintain-formation-steer

Hdesz’red — Fdz’r — 6hea,dz'ng o Viteer, steer vote, representing the directional output
of the motor behavior, sent to the steering arbiter.
Viteer = Hacsired — Rdir ¢ Vipeed, speed vote, the speed output of the motor be-

havior, sent to the speed arbiter.

[Balch, Arkin: 1999]
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Behavior-Based Formation Control

Example of results, for leader-referenced scheme [Balch '99]:

diamond wedge line column

Assumptions:

e fully networked system; robots have |IDs (non-anonymous)

* robot positioning with little noise and delay

e straight-forward implementation for holonomic (point-) robots

*image credit: Balch 1999
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Formation Control

e Non-holonomic robots:

» Proposed method: fore-aft / side-side corrections

» Separate motor behaviors a generated for steering /
speed. Arbiters accept votes from the motor schemas

(x; v 0))

to compute speed / steering values. - . X

» Combined with a rule-based program that selects final speed /
steering value.

* [ssues:
» Behavior-based methods have no guarantees:
» Convergence to desired formation? Stability of formation?

» Need for more principled approaches

* Introduction of control-theoretic principles to provide these guarantees

» One of the first such approaches presented by Das et al., 2002

*image credit: Das 2002

A5 UNIVERSITY OF [
o I(J:AMBIS{ID((})E tems - Collective Movement 29




Closed-Loop Control for Formations

e Method based on feedback linearization [Das et al., 2002]

e Basic case: leader-referenced control based on separation distance
and relative bearing:

Control input: u; = [v,

follower, robot j

(x., y 0_ )

f [ idhaf |

> X

Aim: Find u; such that desired separation [ and desired
bearing l//g are reached, and stably maintained.

2. UNIVERSITY OF '
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Closed-Loop Control for Formations

Dynamical system model: 7z, =G u, + F u,

with:
COS ¥;; d sin Yii —COos 0
G = | —sin v;j  dcosy; I = SIn y;; 1
B o B ] »

where relative orientation is: f;=6,—6, and y;=/p;+w;

Control: u=qG"! <k(z4. — zl.j) — F“i)

J 7
which satisfies: izj = k(Zg- — le) This guarantees convergence
to desired relative state zg.
closed-loop linearized system (Stability is proven in paper.)
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Closed-Loop Control for Formations

12

10

58 UNIVERSITY OF : .
5 CAMBRIDGE ulti-Robot Systems - Collective Movement 32




Closed-Loop Control for Formations

Four robots with omnidirectional cameras:
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A Figure 8 with Range & Bearing

*movie credit: Gowal, Martinoli, EPFL
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Further Reading

Seminal papers:

e Behavior-Based Formation Control for Multi-Robot Teams: T Balch, R
Arkin: 1999

Seminal papers (advanced):

e A Vision-Based Formation Control Framework: A K. Das, R Fierro, R. V
Kumar, J P. Ostrowski, J Spletzer, C J. Taylor; 2002

e Consensus and cooperation in networked multi-agent systems; Olfati-
Saber, Fax, Murray; 2007
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