Announcements

e [ab today (Feb 5):
» Compulsory presence at 14:00
» Brief tutorial on how to operate real Turtlebot.

»  Sign-up (3 students per Turtlebot).
e Turtlebot sharing:

» 3 students per robot; each robot in a dedicated locker in Intel lab

» Key to be stored at the reception - note weekend closure!

e Don’t break the robots.

5.3 UNIVERSITY OF
&Y CAMBRIDGE




Mobile Robot Systems

Lecture 6: Navigation & Path Planning

Dr. Amanda Prorok

asp45@cam.ac.uk

www.proroklab.org

B UNIVERSITY OF
@ ¥ CAMBRIDGE



mailto:asp45@cam.ac.uk

In this Lecture

* Navigation and path planning
e Configuration space

e 3 general method classes

» Combinatoria
» Sampling-based

» Potential fields
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Architecture of an Autonomous Mobile Robot
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Motion Planning

Simulation in an unstructured environment.
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Configuration Space

The ‘'world’ has two entities: robots and obstacles. Both considered as
closed subset of the world (or workspace): 6 c# , Zc W

The ‘space’ for motion planning is the set of possible transformations
that could be applied to the robot (considered as a rigid body).

We refer to this as the configuration space.

Important abstraction that allows to use the same motion planning
algorithms to problems that differ in geometry and kinematics.

[Two common views of the configuration space:
metric space, or topological manifold]
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Configuration Space

The robot is mapped to a single point in C-space &

Complete specification of robot configuration: ( € €
Robot's workspace: %" = RY  and points occupied by robot: A(q) C #"
Obstacle region: O C W

Set of configurations that avoid collision: %ﬁee — %\%obs

where we have: €, = {q € G |A(qQ) N O # B}

robot obstacle
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Configuration Space

How to compute €, and €, ?

.....

al
D g(.n

start start

Various methods, e.g. reflect points, Minkowski sum, convex Hull.
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Minkowski Sum

* |n geometry, the Minkowski sum (also known as dilation) of
two sets of position vectors A and B in Euclidean space is formed
by adding each vector in 4 to each vector in B, i.e., the set:

A®dB={a+blae A bec B}

A®B
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Minkowski Sum

static obstacle

—-ADB

‘moving robot’
robot motion control

reference point

As long as reference point stays outside dilated
area, there will be no collisions.
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The Path Planning Problem

Assume a workspace, obstacle region, and configuration space, with definitions
of free and occupied C-space 6 free and €,

Given a query (q;,qg) with
an initial configuration q, € Cgfree

a desired goal configuration d; € Cgﬁee

compute a path 7 : [0,1] = %ﬁ,ee such that 7(0) = q; and (1) = qg

* image credit: Pallotino
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Approaches and Guarantees

1. Combinatorial planning (exact)
2. Sampling-based planning (probabilistic)
3. Potential-field methods

These methods use the configuration space abstraction (hence, require
preliminary computation of Cgee and Cops)

Guarantees:

e Complete: if a solution exists, it finds one, otherwise returns failure
e Semi-complete: if a solution exists, if finds one; otherwise may run forever

 Resolution complete: If a solution exists, it finds one; otherwise, it
terminates and reports that no solution within a specified resolution exists.

* Probabilistically complete: If a solution exists, the probability that it will be
found tends to one as the number of iterations tends to infinity

8 UNIVERSITY OF
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Overview of Methods

e Combinatorial methods

» Exact and complete

» Underlying principle: Requires a-priori computation of C-space and
generation of a roadmap (e.g., a visibility graph). Then, use a discrete
graph-search method on the roadmap.

e Sampling-based methods

» Approximate and not complete; but can be resolution complete, or
probabilistically complete

» Underlying principle: Avoid explicit construction of roadmaps in C-space;
instead, sample a path segment and check for collisions

* Potential-field methods
» Approximate and not complete (suffer from local minima)

» Underlying principle: Integrate over a vector field to obtain a trajectory
(pose as a function of time). Can also be done in reactive mode.

B UNIVERSITY OF
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Combinatorial Methods

* Recipe: A valid roadmap guarantees

1. Compute C-space (Csee and Cobs) accessibility and is connectivity
preserving w.r.t. Cee

2. Generate a roadmap (i.e., a graph) in Cee

» Cell decomposition methods: visibility graphs / o]
Voronoi cells / occupancy grid maps

» Or: maximum clearance roadmaps (direct construction)

dsi
3. Compute the minimum-cost path from initial to goal configuration
(cast as a graph search algorithm)

_— 4
N
B

4. Result:
v:[0,1] » €}, suchthat 7(0)=q; and 7(1) =qg
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Discrete Search Methods
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How to search roadmap for minimum-cost path?

One well-known example: A* algorithm

Extension of Dijkstra’ search algorithm, to reduce number of states
explored (exploiting an informed search using a heuristic)

Forward search, applied to path planning:

4

4

Evaluation function: f(n) = g(n) + h(n)
Operating cost function g(n); cost of path already traversed.

Heuristic function A(n); information used to find promising
nodes to traverse; heuristic must be admissible (i.e., must
underestimate true cost)!
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A*
» START

l
yes

is O empty? ——>|END

l

remove first node n

from O and add itto C

l 19 __1is nthe goal state? yesl

expand all nodes n” that END
are neighbors of n and not in C

l

yes [ no
isn’ in O?

\ 4 A 4

if g(n”) > g(n) + c(n, n’)) add n’ to O
g(n’) = g(n) + c(n, n’);

O: ordered set / open list
(priority queue)
C: closed set
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A*

* Requirements

» Preprocessing to generate roadmap
(connected graph) that represents Cee

* Pros

» Optimal path cost and complete
e Cons

» Memory inefficient (see IDA*)

» Curse of dimensionality (exponential
growth of search space w.r.t. length of
solution)

2. UNIVERSITY OF
» CAMBRIDGE

Variants:

replanning algorithms (e.g. D¥)
anytime algorithms (e.g. ARA%),
anytime re-planning (e.g. AD¥)
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Complexity of Path Planning

* The general motion planning problem is PSPACE-hard
[Reit 1979; Hopcroft et al. 1984]

e NP ¢ PSPACE (polynomial amount of memory)
e Challenges:

» C-space has high dimensionality: E.g.: A rigid body in 3D space
has a C-space with 6 dimensions (€ = R x SO(3) )

» Simple obstacles have complex C-obstacles; impractical to
compute explicit representation of free space for high DOF robots

e Attention has turned to approximation and
randomized algorithms which trade full completeness
of the planner for a major gain in efficiency
— sampling-based approaches

EXPSPACE
?
EXPTIME
?

PSPACE

"' Iéi%l%{ﬁ}ggg » 6: Navigation and Path Planning 18




Sampling-Based Methods

* Probabilistic Roadmaps (PRMs) (Kavraki, LaValle, et al.)

1. Initialize an empty graph G.
Vertices will correspond to configurations, edges to collision-free paths.

2. Sample configurations a(i) in Cee

3. Use a metric defined in C-space to compute neighborhood set of a(i), of
vertices ¢ already in G.

4. Local planner: check if a(i) can be connected to points ¢ in neighborhood
set. Add to edge (a(i), q) to edge set if no collision detected.

5. Terminate when N edges added to roadmap.

LN

* image credit: Kavraki, 2008
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Probabilistic Roadmaps (PRMs)

Cfree

holonomic robot

S

initialize empty graph and C-space
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Probabilistic Roadmaps (PRMs)

° Cfree
o
o
o
o
o
® ® °

sample random configurations in C-space
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Probabilistic Roadmaps (PRMs)

° Cfree
o
o
o
o
o
¢ ®

test for collisions
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Probabilistic Roadmaps (PRMs)

° Cfree
o
o
o
o
o
® ® °

retain collision-free configurations
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Probabilistic Roadmaps (PRMs)

° Cfree
o
o
o
o
o
® ® °

create edges to nearest neighbors
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Probabilistic Roadmaps (PRMs)

° Cfree
o
o
o
o
o
® ® °

create edges to nearest neighbors
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Probabilistic Roadmaps (PRMs)

Cfree

/@

retain collision-free local paths to generate PRM
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Probabilistic Roadmaps (PRMs)

Cfree

LIRS

fi. "

search PRM for shortest path to goal configuration
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Probabilistic Roadmaps (PRMs)

* Primitives required:

» Method to sample contigurations in free C-space

» Method to check for collisions in C-space

* Pros:
» Probabilistically complete
» Apply easily to high-dimensional C-spaces
» Fast query processing (start, goal) I
e Cons:
S\

» Don't work well for narrow passages

» Hard to connect vertices for differential motion constraints
(generally requires solution to the Boundary Value Problem)

» Hard to sample uniformly in configuration space.

* image credit: Kavraki, 2008
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Rapidly Exploring Random Trees (RRTs)

e | aValle and Kuffner, 2000.
e Similar to PRMs, but for single-query problems, a tree is enough.

e Basic idea: Build a tree by generating ‘next states’ in the tree, by
executing random control

1. Initialize a graph G with a vertex corresponding to qr.

Vertices correspond to configurations, edges to collision-free paths.

2. Sample a random state in C-space grana (With small probability, sample g¢)

Find its nearest vertex guear in G.

4. Local planner: For non-holonomic robots, tind a new vertex guew in Ciee
close to grana and check that edge (guear, gnew) is collision-free. If so, add
new edge and new vertex to G (and discard grana).

5. Check it G encodes a solution (path from ¢r to g¢), return G.

6. Return to step 2 or terminate with failure at time-out.

w
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Rapidly Exploring Random Trees (RRTs)

Cfree

goal
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Rapidly Exploring Random Trees (RRTs)

Cfree

qrand

qnear
goal
A'/. .
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Rapidly Exploring Random Trees (RRTs)

Cfree

qrand

* I
¢
4
"
4
Anear -

A '

"' Iéﬁ%%{ﬁ?ggg Lecture 6: Navigation and Path Planning 32




Rapidly Exploring Random Trees (RRTs)

Cfree

goal
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Rapidly Exploring Random Trees (RRTs)

Cfree

goal
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Rapidly Exploring Random Trees (RRTs)

Cfree

.

goal
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Rapidly Exploring Random Trees (RRTs)

* Primitives required:

» Method to sample configurations in free C-space

» Method to check for collisions in C-space

* Pros:
» Probabilistically complete
» Exponential rate of decay for the probability of failure
» Asymptotically optimal (RRT*)

e Cons:

» For non-holonomic robots, generating edges to sampled
configurations requires solution to the two-point boundary
value problem. (Alternate trick: use motion primitives).

* image credit: Kavraki, 2008
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Rapidly Exploring Random Trees (RRTs)

Example: Integration of motion primitives with RRT-based search.
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Potential Field Method

* No explicit roadmap; instead, construct a real-valued potential
function: U:R" - R

Attractive potential:  U,(q)  Repulsive potential: U (q)

obstacle

S
SRR
SIS ICHOTIHS
S oeeTaty

oS

goal

oU oU

Differentiate potential VU(q) =

...,

oq,  dq,,

and compute a path via gradient descent (gradient motion).

* image credit: Kavraki, 2008
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Potential Field Method

* Creating the potential field in C-space is hard.

* One possible strategy:
1. Create potential field in robot work-space
2. Compute gradient
3. Use feedback linearization to get control inputs
A

(Compute gradient in C-space from control inputs)

obstacle 1. Define potential

2 Gradient at offset

point for feedback
linearization .\)‘C ,yp
@ goal
@ 3. fCromputZ.u, @
om gradient Xp, yp

4. Compute X, Y, 0.
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Vector Fields

* Requirements

» Representation of work-space / C-space

* Pros
» Computationally efficient (once C-space is constructed)

» More than just 1 path: motion strategy (feedback control) is
readily computed from any point in field.

e Cons
» Local minima (require methods to resolve them)

» Representation of C-space is hard in high dimensions
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Further Reading

Books that cover fundamental concepts:

e Steven M. LaValle. "Planning Algorithms". 2006. Cambridge
University Press.

* http://planning.cs.uiuc.edu/

Seminal papers:
e S. M. LaValle and J. J. Kuttner; Rapidly-exploring random trees; 2001.

e S. Karaman, E. Frazzoli; Sampling-based Algorithms for Optimal
Motion Planning; 2011

e J. Barraquand and J-C. Latombe. Robot motion planning: A
distributed representation approach;1991.
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