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In this Lecture

e Probabilistic localization

e Bayes (rule and algorithm)

e (Grid localization

e [ilters
» Particle filter

» Kalman Filter

* Map representations

e Credits:

» Examples from Probabilistic Robotics; Thrun et al.
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Architecture of an Autonomous Mobile Robot

basics of
autonomy

perception

\ oo

localization

autonomy
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Taxonomy of Localization Problems

e Dead-reckoning (position tracking): initial position known

» Blindly update pose based on differential movements @.

* Global localization: initial position unknown

odometry-based

» Map-based (with landmarks)

» Sensors: laser, camera, proximity

» Method: map-matching techniques (various)

» Beacon-based (with active infrastructure)

map_based
» Bluetooth, WiFi, GPS (outdoors only), etc.
» Method: trilateration, fingerprinting, proximity . .
* Global localization and position tracking combined.
o @

beacon-based
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Challenges

e Dead-reckoning

» wheel slip, slack in actuation mechanism @ kidnapped robot
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e Global localization

» random errors and failures dead-reckoning error
» non-Gaussian sensor noise

» unavailability of sensor (GPS-denial)

» map ambiguity

» dynamic environments

» kidnapped robot problem

ambiguity (multiple local maxima)
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Probabilistic Localization

* |n robotics, we deal with localization probabilistically.

* Three key components:
1. arobot's belief of where it is (its state)
2. arobot's motion model

3. arobot's sensor (observation) model

apply sensor model belief at time ¢

'xt+1 -xt
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Sensor and Control Data

* An autonomous robot interacting with the world

ity = L S+ 10 K420 -+ 0 K,

Ay
measurement data

control data
robot state at time t interaction with the world

ufl:tz — utl’ ut1+1’ ut1+2’ R utz
we will treat odometry readings as our control data!
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Bayes Rule in Robotics

e |et's assume x is the robot state, and z is measurement data.

prior probability distribution: p(x)
posterior probability distribution:  p(x|z)

e Estimate robot state using a ‘generative model’ p(z | x), which describes how
a state variable causes sensor measurements z.

Bayes rule (discrete version):

normalizes density

p(z|x) p(x) B p(z]x) p(x) :l
p) X pilx) pi) p(x|z) =7 p(z|x) p(x)

~_ ~_

theorem of total probability denominator does not depend on x

pix|z) =

* We can now update a robot's state estimate based on sensor measurements
and a prior belief.
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Probabilistic Generative Laws

* Robot state x; is ‘complete’ meaning that no extra knowledge
of past events can help us better predict the future.
* Robot state x; is ‘generated’ from a probability distribution:

p(xt | X0 11> 2411 M1;¢) the state is ’comflete' P(Xt | X,_1, ut)

state transition probability

the state is ‘complete’
>

Pz | x,)

measurement probability

Dynamic Bayes graph: @ 0 @
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The Belief

e A robot's true state cannot be measured directly, it has to be

inferred.

* Probabilistic robotics represents a belief (or state of knowledge)
through conditional probability distributions.

* A belief distribution is a posterior over state variables conditioned
on available data (i.e., after incorporating measurement data):

bel(x,) = p(x,|zy.;» Uy.,)

* Note: the posterior (belief) before incorporating measurement
data is denoted as:

w(xt) =p 2,15 Uy
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Bayes Filter

For all (Xt) do: /\\ apply motion model to previous belief

bel(x) = | p(x,|u,x,_;) bel(x,_))dx,_,

bel(x,) = n p(z,|x,) bel(x,)
¥~ __~apply measurement update to current belief

return:  bel(x,)

* (Recursively) calculates the posterior over the state x;, conditioned on
measurement and control data.

* Requires definition of 3 probability distributions:
initial belief: p(xp)

measurement probability: p(z | x,)

state transition probability: px, | u,x,_q)
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The Markov Assumption

e Plays a fundamental role in probabilistic robotics (and is equivalent
to our assumption of a ‘complete’ state):

“Past and future data are independent if
one knows the current state x;”

* Violations happen when:
» there are unmodeled dynamics (e.g., dynamic obstacles)
» probabilistic models are inaccurate

» we have approximation errors

o Still: it is an indispensable assumption, since computations would
otherwise become intractable.
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Markov Localization

posterior, before measurement update

measurement probability distribution given x

posterior, after measurement update

apply motion model to obtain new posterior

posterior, after measurement update

* image credit: Probabilistic Robotics; Thrun et al.

apply motion model to obtain new posterior

bel(x)

X

p(zlx)

[ §

X

1 bel(x)

bel(x)

X

p(zlx)

[ bel(x)

e —
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‘ bel(x)

X
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Discrete Bayes Filter

e Otherwise known as a histogram filter:

For all k£ do:
Pry = Zp(Xt = X | up Xy_1 = X;) Diyy
l _
Prs =1 P X, = x) Dy,

return: {Pr;}

e Recall the Bayes filter:
Forall (x,) do:

d

bel(x) = | p(x,|u,x,_,) bel(x,_,)dx,_,
bel(x)) = n p(z,|x,) bel(x,)

return: bel(x,)
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Grid Localization

e Application of the Bayes filter using a discrete representation (finite
state space).

» Approximate the posterior using a histogram filter
» Use grid decomposition of pose space

» The belief is a collection of discrete probability values (that is
normalized over the collection) :

bel(x;) = Py}

* image credit: Probabilistic Robotics; Thrun et al.
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Grid Localization
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Grid Localization

time

* image credit: Burgard, course notes.
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Particle Filter

* Nonparametric implementation of the Bayes filter

e Similar to histogram filter, approximate posterior with finite number of
parameters.
e Key idea: distribution is represented by a set of samples drawn from

this distribution

» Beliet bel(x)) is represented by a set of random state samples drawn
from this posterior. A ‘particle’ represents a state hypothesis.

» Filter: ‘survival of the fittest particles’!
» Very efficient for representing non-Gaussian distributions.

e Particles are denoted:

X, = (O Y G221y 2 (M LMY

T

state hypothesis importance factor (weight)
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Particle Filter

M
e The samples represent the posterior:  p(x) = Z w8 (%)
i=1

f(x) f(x)
= samples = samples
D =
5 &)
= =
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* The more particles fall into an interval, the higher its probability density.

* The more particles we use, the better the estimate!
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Particle Filter

e Question: How are we to obtain samples from a new distribution?

* Importance sampling allows us to use samples from a proposal
distribution g to generate new samples from a target distribution f

e Account for difference between the distributions by weighting
particles according to quotient:

S

g( x[i]) proposal(x)
= target(x)
.%‘) samples
=
E
<
O
S
) |
..... |||I||“|JLHNIIJJI".“J_|_“_II”| ‘ I 1

X
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Particle Filter

* Three key steps (iterate over):

1. Sample particles from the proposal distribution

2. Compute the importance factors

3. Re-sample the particles: replace unlikely samples with more
ikely ones.

* Applied to localization:
1. Proposal distribution is given by motion model:
xt[l] ~ plx | x,_y, uy)

2. Particles are weighted by the measurement model:
target

Wt[i] ~P (Ztlxt) X
proposal

3. Particles are re-sampled

5% UNIVERSITY OF D
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Monte Carlo Localization

* Application of the particle filter to the localization problem.

1: Algorithm Particle_filter(X;_ 1, u, 2¢):
2: A?t — Xt — @

3: form =1to M do

4. sample :C,[fm] ~ p(xs | ug, :137[577_7’]1)
5: w™ = p(z | 2™

6: Xy =X, + <337[5m]7w1[5m]>

T endfor

8: form =1to M do

9: draw i with probability oc w."
10: add 21" to X,

11: endfor

12: return X}

* see Probabilistic Robotics book for implementation of re-sampling algorithms for line 9.

5% UNIVERSITY OF i7ati
CAMBRIDGE ystems — Lecture 5: Localization 22




1zation

Monte Carlo Local

* image credit: Probabilistic Robotics; Thrun et al.
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Kalman Filter

* An implementation of the Bayes filter with Gaussians
* Developed by Swerling (1958) and Kalman (1960)
e Technique for predicting and filtering linear Gaussian systems

» Discrete time
> Underlying concept: linear transformations conserve Gaussians

» Itis optimal (in a least-squares sense)

e Belief in continuous (potentially multi-variate) space:

The first moment HU; describes the belief, and the second
moment X, describes its uncertainty

State transition model X, = Atxt—l + Bl/tt + €,

Measurement model T = Ctxt -+ 5t
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Kalman Filter

e Components:

For state dimensionality n, measurement dimensionality
k, control dimensionality |

At (n x n) matrix that describes how the state evolves from ¢-1
to ¢ without controls or noise.

B, (n x I) matrix that describes how the control u; changes the
state from -1 to .

Ct (k x n) matrix that describes how to map the state x; to an
observation z;

€, Random variables representing the process noise and
measurement noise. These are assumed to be independent and
0 normally distributed with covariance R; and O; respectively.
t y P y
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Kalman Filter

* The prediction-correction cycle
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Kalman Filter

* The prediction-correction cycle

prediction step
———

prediction

ais e Q1S
o1 Jd atf 4
o0s \ 4 aos b 4
S
o 5 . i - : ° s . L L
) s 10 5 25 £ o s 10 t 20 =

£

i, = Au,_1 + Bu,

bel(xt) {
> =AY AT +R

e Compute linear state transition

* Update the covariance (it increases); the
process noise follows a Normal distribution

8 UNIVERSITY OF
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correction step
—

measurement | correction |

= j, + K(z, — C,j1,)

pel(x) { = (I-KC)Z

e Compute the residual (differencing the predicted
measurement and obtained measurement)

e Update covariance: matrix K specifies Kalman
gain, tells us how much we believe the prediction
vs how much we believe in the measurement.
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Kalman Filter

Input: M1, 2415 Uy 2

i, = Au,_; + By,

B prediction
> =AY A'+R
K=ZC(CEC'+0Q)™! Kalman gain
He =+ Kz, — Cfiy)

correction

> = (- KC)S,
Output: My, 2,

e Efficient: polynomial in the measurement dimensionality k and
state dimensionality n

e Optimal for linear Gaussian systems

e Only models unimodal beliefs
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Kalman Filter

I'I'I'I'I'I'I'I'I'I'I'II'I'I'I'I'I'I'I'I'I'I'I'I'I'.'I'I'I'I'I'I'I'I'I'I'I(a)

* image credit: Probabilistic Robotics; Thrun et al.
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Kalman Filter

 Example: evolution of covariance as robot navigates; localization
based on odometry and exteroceptive sensors capable of
detecting a landmark.

landmark

oW -
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Comparison

. .. Mon rl . (Exten Kalman
Grid Localization ° t.e Ca. ° g (Exte d?d) aima
Localization g Filter
Measurements raw measurements | raw measurements landmarks
Measurement noise any any Gaussian
Posterior any any Gaussian

Unknown initial pose possible possible not possible
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Map Representation

* Measurement models implicitly assume knowledge of a map:

p(z,| x,) is actually: p(z, | x,, m)

* Map representations:

feature map volumetric map (e.g., grid map)

* image credits: E. Nebot and W. Burgard.
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Grid Maps

>\ e World discretized into cells

y Q' e Each cell is either occupied or free space
* Non-parametric model (space intensive)

* Probabilistic model for mapping purposes

free

P(mj) — 0

occupied

pim;) — 1

unknown
p(m;) — 0.5

B UNIVERSITY OF

%% CAMBRIDGE Lecture 5: Localization 33




What is SLAM?

* Simultaneous Localization and Mapping

 Hard problem - why?

» Chicken-or-egg problem: a map is needed for localization; a
pose is needed for mapping.

» Errors in robot pose and map are correlated.

C L raphical model of full SLAM
» Data association problem gl

D T e

\ /

o‘\Robortt p.o?e/'o @ w
uncertainty
» Uncertainties collapse after loop-closure f

(recognition of an already mapped area)

\
\
\
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Further Reading

Books that cover fundamental concepts:
e Probabilistic Robotics, S. Thrun et al., 2006
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