
In this Lecture

• Two parts: 

1. Further assignment problems 

‣ uncertainty in assignment 

‣ assignment under obfuscation 

2. State-of-the-art and outlook 

3. Final announcements
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The Hungarian Algorithm
• Assumptions when using an assignment algorithm such as the Hungarian method: 

‣ Costs (utilities) are known at a centralized computation unit. 

‣ Costs (utilities) are deterministic (no noise). 

‣ Costs (utilities) do not change (constant). 
‣ 1-to-1 assignment (one robot per task, one task per robot). 

• Complications: 

‣ Uncertainty around true utility U(i,j) 

‣ Dynamic environment (changes in utility / agents) 

‣ Robot / task dependencies (robot heterogeneity / redundancy). 

• Consequences: 

‣ Sub-optimality 

‣ Problems can become NP-hard (for combinatorial matching problems) 

‣ Practically infeasible (centralized solutions may not be possible)
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all of these issues are very 
common in robotics!!

Recall Lecture 8
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uncertainty along robot travel paths 

?

?
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Min. overall assignment cost  /  Max. overall assignment utility

Our focus:  minimize time to reach destinations

Assignment under Uncertainty
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optimal assignment

Assignment under Uncertainty
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sub-optimal assignment

Assignment under Uncertainty
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• [Mills-Tettey, Stentz, Dias; 2007]: dynamically repairs an initial 
assignment (Hungarian method) 
→ dynamic re-assignment is potentially disruptive / expensive  

• [Ponda, Johnson, How; 2012]: acceptable risk thresholds; 
chance-constrained allocation 
→ relation of risk threshold to quality of solution as costs change  

• [Nam, Shell; 2015], [Nam, Shell; 2017] : sensitivity analysis  
→ determines when solutions cross acceptable risk preferences  

• [Prorok; 2018]: redundant robots 
    → compensate for loss of certainty with system redundancy

Assignment under Uncertainty
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sub-optimal assignment

optimal assignment
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The Premise
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redundant, assigned

redundant, assigned

redundant, assigned

unassigned
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: path options
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: deployable robots

: redundant assign.
: initial assignment

Problem Statement

Mobile Robot Systems — Lecture 10-I: Multi-Robot Systems - Further Assignment
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Redundant Assignment
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Time is the primary asset
Goal: minimize time to get to goals

Redundant Assignment

Mobile Robot Systems — Lecture 10-I: Multi-Robot Systems - Further Assignment
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4 A. Prorok
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Fig. 1. Robot R1 is assigned to the goal via path A. Robot R2 is a redundant robot,
and must choose between paths B and C.

p
at
h
B

path A

(a)
path A

p
at
h
C

(b)

Fig. 2. Joint distributions of travel times, for (a) paths A and B, and (b) paths A and
C. The Pearson correlation coefficient is (a) 0.89 and (b) 0.0. The red line shows axis
equality (i.e., equal travel times). If robot R2 chooses path C, there is a small chance
that the waiting time at the goal will be improved upon, despite being slower than
path B on average.

aggregate cost over all goals, in expectation over the random edge costs:

JO(A) =
1

M

M∑

j=1

E
C
[Λ(Ij(A ∪O))] . (2)

We note that when no redundant robots are deployed, the assignment is reduced
to the set O, for which the performance is measured as

J0 = JO(∅) =
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E
C
[Cijk|(i, j, k) ∈ O]. (3)

We formalize our problem as follows.
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Path Uncertainty
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Path Uncertainty
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Greedy Redundant Assignment

Mobile Robot Systems — Lecture 10-I: Multi-Robot Systems - Further Assignment

Which redundant robots to assign to which tasks?

Theory shows us that we can use a Greedy assignment algorithm 
with near-optimal performance: pick the robot that minimizes the 
overall waiting time the most.

[Prorok; Redundant Robot Assignment on Graphs with Uncertain Edge Costs; 2018]



!15

Redundant assignments leads to diversity of paths
Greedy assignment of robots from 2 hubs to 1 goal

Redundant Robot Assignment 11

(a) (b)

Fig. 5. Paths selected by a robot coalition initially located at two separate hubs (red
nodes), and assigned to a goal (green node) for (a) Greedy and (b) Repeated Hungarian.

is reached. (4) Best a-posteriori: This corresponds to the best a-posteriori per-
formance for a given set of robot origins and goal destinations, based on true
(observed) travel times, on which we run the Hungarian method with Nd = M
robots.

Fig. 4(b) shows the correlation of paths in the solutions found by three strate-
gies (Greedy, as well as Repeated Hungarian and Random). For each robot coali-
tion assigned to one goal, we compute the average pairwise correlation between
all pairs of paths found for the robots belonging to that coalition. The latter
value is averaged over all coalitions. We observe that the correlation of coalition
paths generated by Greedy is lower than that of both Random and Repeated
Hungarian. This indicates that paths selected by Greedy tend to be more di-
verse. This is exemplified in Fig. 5, which shows paths selected by a coalition of
5 robots using Greedy in Fig. 5(a) and Repeated Hungarian in Fig. 5(b).

Fig. 6 shows the performance of our algorithm, as measured by the normalized
waiting time J/J0. Fig. 6(a) shows how, as we increase the total robot deploy-
ment Nd, the waiting time decreases, approaching the lower bound (given best
a-posteriori). Fig. 6(b) shows how, as we increase the number of paths K to be
considered by the assignment algorithm, performance improves initially, but then
flattens out. This validates our usage of a fixed cap (K) on the number of paths
to be considered by the algorithm. Overall, we see that any redundant assign-
ment strategy improves upon non-redundant assignment. Our solution Greedy
improves significantly upon the benchmarks Random and Repeated Hungarian.

Greedy Redundant Assignment

[Prorok; Redundant Robot Assignment on Graphs with Uncertain Edge Costs; 2018]
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“I want optimized service and short waiting times”

“I want my mobility patterns to remain private ”

Vehicle-Passenger Assignment
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Fig. 2. Analysis of Manhattan taxicab dataset for data collected on Friday
June 1st, 2016. From all rides recorded in that 24 h time-interval, we only
select rides that start and end on the island of Manhattan. We show the
number of passenger pick-ups made per 20 s intervals (green curve). We
also show the total number of occupied taxis at any given moment (blue
curve). The data is smoothed over 30 min rolling windows, and the shaded
areas show the corresponding standard deviations.

(side information) is known, and are explicitly modeled on
this assumption [13]. Such approaches have the downside
that any inconsistency or change in the attacker’s side
information leads to an immediate threat (and privacy is
no longer guaranteed). Indeed, a much stronger definition
of privacy is one that is independent of any current or
future attacker model. Consequently, there has been much
interest in differentially private formalisms that abstract from
adversary’s side information [6].

A. Differential Privacy

Stemming from the domain of statistical databases, the
goal of differential privacy is to protect individual entries in
a given database (in our case, passenger drop-off locations),
while simultaneously allowing aggregate information about
the database to be released through a query (in our case,
a query that outputs the vehicles’ origin locations). The
key requirement is that changing an individual’s entry in
the database (i.e., a vehicle origin location that corresponds
to a specific passenger drop-off location) should not have
a significant affect on the outcome of the query. More
formally, if the probability that a query returns a value from
a database lies within an eϵ multiplicative bound of the
probability that the same query returns the same value from
an adjacent 6 database, then the query is said to produce
ϵ-indistinguishable outcomes [7]. Notably, this definition is
void of any threat model, and hence, is independent of any
side information that the attacker might own. In order to
preserve ϵ-indistinguishability, privacy mechanisms consist
of adding random noise (commonly drawn from a Laplace
distribution) to the query output.

B. Geo-Indistinguishability

The location privacy formalism put forward by Andres et
al. [3], termed geo-indistinguishability, is a generalization of
differential privacy to the metric domain. In the following, we
introduce the main concepts with an adapted notation. Geo-
indistinguishability considers a query that exposes a position

6Two databases are adjacent if they differ by one entry.

x from a database. The privacy leakage can be formulated
as

L = sup
x,x′,x̃

∣∣∣∣ln
P(x̃|x)

P(x̃|x′)

∣∣∣∣ (1)

where x is a true position stored in the original database, x′

is the corresponding altered position stored in an adjacent
database, and x̃ is an obfuscated position. The idea of geo-
indistinguishability is to ensure that two positions x and x′

are indistinguishable when they are close to each other. In
other words, a user enjoys ϵr-privacy within a radius r, if
any two locations that are at most r apart produce query
results with similar distributions.

Definition 1 (Adapted from Def. 3.1 [3]: Geo-indistinguisha-
bility). A mechanism that returns x̃, for a given x or a given
x′, satisfies ϵ-geo-indistinguishability iff for all x and x′:

L = sup
x,x′,x̃

∣∣∣∣ln
P(x̃|x)

P(x̃|x′)

∣∣∣∣ ≤ ϵ sup
x,x′

||x− x′||2 (2)

Building on prior results [5], the authors argue that the
obfuscated position x̃ is to be drawn from a two-dimensional
Laplace distribution inversely scaled by ϵ, and centered at
x. Formally, we have that x̃ ∼ L(x, ϵ), and we define the
corresponding probability density function as PL(x̃|x, ϵ). In
order to satisfy ϵ-geo-indistinguishability, we implement this
proposed privacy mechanism. 7

Fig. 3 demonstrates the effect of this mechanism, applied
to the coordinates of the Flatiron building in Manhattan. We
observe how, as the scale of the Laplacian increases (i.e., ϵ
decreases), the noise (and hence privacy) increases. In the
context of vehicle routing, it becomes clear that increased
privacy comes at the cost of performance deterioration due to
an obfuscation of vehicle positions that leads to suboptimal
vehicle routing. In the following sections, we discuss this
effect and propose a method that enables a minimization of
this loss of performance.

V. BATCH VEHICLE ROUTING UNDER PRIVACY

The goal is to assign and route vehicles to passengers such
that each passenger is picked up, while minimizing the total
assignment cost. We formalize this vehicle routing problem
as finding the optimal assignment solution A⋆:

A⋆ = argmin
A

N∑

i=1

M∑

j=1

cijaij (3)

with constraints
∑N

i aij ≤ 1 and
∑M

j aij ≤ 1 and
∑N

i

∑M
j aij = min(N,M). The element a⋆ij of matrix

A⋆ specifies whether the final solution routes vehicle i to
passenger j.

The system above is a linear sum assignment problem,
also known as the problem of minimum weight matching
in bipartite graphs. We use the Hungarian algorithm (or
Kuhn-Munkres algorithm), to solve the system and find an
optimal assignment A⋆. This assignment is deterministic,

7We note that Th. 4.1 of [3] proves that under double precision with 16
significant digits, the discretization of noisy data points onto a grid does
not incur a loss of privacy.

Vehicle-Passenger Assignment
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(a) ϵ = 0.005 (b) ϵ = 0.01 (c) ϵ = 0.02 (d) ϵ = 0.05 (e) ϵ = 0.1

Fig. 3. A sub-area of Manhattan, centered around the Flatiron building located at 40°44’ 27.8196” N 73°59’ 22.9164” W. We draw 100 position samples
from a two-dimensional Laplacian with inverse scale ϵ, centered around the Flatiron building. The random samples are subsequently projected to the nearest
vertices on the associated graph (shown in red), where the size of the node corresponds to the multiplicity of projected samples at that node.

and vehicles follow the shortest path (or one of the shortest
paths, if several exist) to reach their assigned passenger.

To compute the elements cij of the cost matrix C, we
consider the cost incurred when routing a vehicle located at
a node i to a passenger located at a node j. The cost of this
path is given by the sum of the weights of edges that lie on
it

f(i, j) =
∑

(k,l)∈Sij

wkl, (4)

where Sij is the set of edges in the shortest path between
node i and node j, and wkl ∈ W is the weight of an edge
(k, l), and corresponds to vehicle travel time, as described
in Sec. III. 8 We can now compute the cost for all possible
vehicle-to-passenger assignments

cij = f(vi, pj), ∀i, j (5)

and subsequently solve system (3).

A. Solving the Assignment Problem under Obfuscation

Our goal is to increase the privacy of vehicle origin
locations (we remind the reader that the vehicle origin and
the previous passenger drop-off locations are the same). We
do this by implementing the privacy mechanism described
in Sec. IV-B to produce obfuscated (noisy) vehicle origin
locations, denoted by xṽi

for all vehicles i = 1, . . . , N —
i.e., xṽi

∼ L(xvi
, ϵ). We compute the expected cost c̃ij of

routing a vehicle from a probable node vi to a true passenger
location pj , given that the vehicle is located around a noisy
position xṽi

generated by a planar Laplace distribution with
inverse scale parameter ϵ:

c̃ij = E[cij ] = η
∑

k∈V

PL(xṽi
|k, ϵ)f(k, pj). (6)

where η is a normalization constant.
We adapt the original objective in (3) to account for the

expected cost:

Ã
⋆ = argmin

A

E

[
M∑

i=1

N∑

j=1

cijaij

]

= argmin
A

M∑

i=1

N∑

j=1

E[cij ]aij . (7)

We note that, since the cost values c̃ij are noisy, this
assignment produces a suboptimal assignment Ã⋆ with re-
spect to the true vehicle origin locations. We measure the
performance of this assignment by considering the passenger

8For simplicity, this work considers time-invariant weights.

waiting times cij with ã⋆ij = 1, where cij corresponds to
the effective waiting time (based on the true, non-obfuscated
vehicle origins).

Proposition 1 (ϵ-geo-indistinguishable batch assignment).
The batch assignment where each vehicle i reports an obfus-
cated position xṽi

drawn from a planar Laplace distribution
is ϵ-geo-indistinguishable with respect to the true positions
xvi

.

Proof. Given a query that reports the current set of vehicle
positions, the leakage formula can be written as:

L = sup
xvi

,xv′
i
,xṽi

∣∣∣∣∣
ln

P(xṽ1
, ... ,xṽN

|xv1
, ... ,xvN

)

P(xṽ1
, ... ,xṽN

|xv1
, ... ,xv′

i
, ... ,xvN

)

∣∣∣∣∣
(8)

where xv′
i

represents an alternative position for vehicle i. The
numerator refers to the database containing all true positions,
while the denominator refers to an adjacent database where
the position of a single vehicle has been changed. By the
definition of ϵ-geo-indistinguishability (cf. Section IV-B) and
since all obfuscated positions are independent, we obtain:

L = sup
xvi

,xv′
i
,xṽi

∣∣∣∣∣
ln

P(xṽi
|xvi

)

P(xṽi
|xv′

i
)

∣∣∣∣∣
(9)

≤ ϵ sup
xvi

,xv′
i

∥xvi
− xv′

i
∥2

B. Redundant Vehicle Assignment

Vehicle-to-passenger assignments that are based on obfus-
cated positions will result in degraded performance. Some
of this performance loss can be recovered by realizing that,
in practice, a large proportion of the deployed vehicle fleet
is unoccupied. In fact, according to the 2014 NYC Taxicab
Factbook, during the 4pm-6pm rush hours only 64% of cabs
are occupied, while the rest of the fleet is traveling empty. 9

Consequently, our idea is to assign these unoccupied (re-
dundant) vehicles to passengers. Among assigned vehicles,
only the fastest vehicle will actually pick up the passenger.
This algorithm allows us to exploit the slack that is already
present in taxicab systems to re-route unoccupied traveling
vehicles, without deploying new vehicles, to reduce the

9http://www.nyc.gov/html/tlc/downloads/pdf/
2014_taxicab_fact_book.pdf
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Fig. 3. A sub-area of Manhattan, centered around the Flatiron building located at 40°44’ 27.8196” N 73°59’ 22.9164” W. We draw 100 position samples
from a two-dimensional Laplacian with inverse scale ϵ, centered around the Flatiron building. The random samples are subsequently projected to the nearest
vertices on the associated graph (shown in red), where the size of the node corresponds to the multiplicity of projected samples at that node.

and vehicles follow the shortest path (or one of the shortest
paths, if several exist) to reach their assigned passenger.

To compute the elements cij of the cost matrix C, we
consider the cost incurred when routing a vehicle located at
a node i to a passenger located at a node j. The cost of this
path is given by the sum of the weights of edges that lie on
it

f(i, j) =
∑

(k,l)∈Sij

wkl, (4)

where Sij is the set of edges in the shortest path between
node i and node j, and wkl ∈ W is the weight of an edge
(k, l), and corresponds to vehicle travel time, as described
in Sec. III. 8 We can now compute the cost for all possible
vehicle-to-passenger assignments

cij = f(vi, pj), ∀i, j (5)

and subsequently solve system (3).

A. Solving the Assignment Problem under Obfuscation

Our goal is to increase the privacy of vehicle origin
locations (we remind the reader that the vehicle origin and
the previous passenger drop-off locations are the same). We
do this by implementing the privacy mechanism described
in Sec. IV-B to produce obfuscated (noisy) vehicle origin
locations, denoted by xṽi

for all vehicles i = 1, . . . , N —
i.e., xṽi

∼ L(xvi
, ϵ). We compute the expected cost c̃ij of

routing a vehicle from a probable node vi to a true passenger
location pj , given that the vehicle is located around a noisy
position xṽi

generated by a planar Laplace distribution with
inverse scale parameter ϵ:

c̃ij = E[cij ] = η
∑

k∈V

PL(xṽi
|k, ϵ)f(k, pj). (6)

where η is a normalization constant.
We adapt the original objective in (3) to account for the

expected cost:

Ã
⋆ = argmin

A

E

[
M∑

i=1

N∑

j=1

cijaij

]

= argmin
A

M∑

i=1

N∑

j=1

E[cij ]aij . (7)

We note that, since the cost values c̃ij are noisy, this
assignment produces a suboptimal assignment Ã⋆ with re-
spect to the true vehicle origin locations. We measure the
performance of this assignment by considering the passenger

8For simplicity, this work considers time-invariant weights.

waiting times cij with ã⋆ij = 1, where cij corresponds to
the effective waiting time (based on the true, non-obfuscated
vehicle origins).

Proposition 1 (ϵ-geo-indistinguishable batch assignment).
The batch assignment where each vehicle i reports an obfus-
cated position xṽi

drawn from a planar Laplace distribution
is ϵ-geo-indistinguishable with respect to the true positions
xvi

.

Proof. Given a query that reports the current set of vehicle
positions, the leakage formula can be written as:

L = sup
xvi

,xv′
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,xṽi
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ln
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where xv′
i

represents an alternative position for vehicle i. The
numerator refers to the database containing all true positions,
while the denominator refers to an adjacent database where
the position of a single vehicle has been changed. By the
definition of ϵ-geo-indistinguishability (cf. Section IV-B) and
since all obfuscated positions are independent, we obtain:

L = sup
xvi

,xv′
i
,xṽi

∣∣∣∣∣
ln

P(xṽi
|xvi

)

P(xṽi
|xv′

i
)
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≤ ϵ sup
xvi

,xv′
i

∥xvi
− xv′

i
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B. Redundant Vehicle Assignment

Vehicle-to-passenger assignments that are based on obfus-
cated positions will result in degraded performance. Some
of this performance loss can be recovered by realizing that,
in practice, a large proportion of the deployed vehicle fleet
is unoccupied. In fact, according to the 2014 NYC Taxicab
Factbook, during the 4pm-6pm rush hours only 64% of cabs
are occupied, while the rest of the fleet is traveling empty. 9

Consequently, our idea is to assign these unoccupied (re-
dundant) vehicles to passengers. Among assigned vehicles,
only the fastest vehicle will actually pick up the passenger.
This algorithm allows us to exploit the slack that is already
present in taxicab systems to re-route unoccupied traveling
vehicles, without deploying new vehicles, to reduce the

9http://www.nyc.gov/html/tlc/downloads/pdf/
2014_taxicab_fact_book.pdf
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and vehicles follow the shortest path (or one of the shortest
paths, if several exist) to reach their assigned passenger.

To compute the elements cij of the cost matrix C, we
consider the cost incurred when routing a vehicle located at
a node i to a passenger located at a node j. The cost of this
path is given by the sum of the weights of edges that lie on
it

f(i, j) =
∑

(k,l)∈Sij

wkl, (4)

where Sij is the set of edges in the shortest path between
node i and node j, and wkl ∈ W is the weight of an edge
(k, l), and corresponds to vehicle travel time, as described
in Sec. III. 8 We can now compute the cost for all possible
vehicle-to-passenger assignments

cij = f(vi, pj), ∀i, j (5)

and subsequently solve system (3).

A. Solving the Assignment Problem under Obfuscation

Our goal is to increase the privacy of vehicle origin
locations (we remind the reader that the vehicle origin and
the previous passenger drop-off locations are the same). We
do this by implementing the privacy mechanism described
in Sec. IV-B to produce obfuscated (noisy) vehicle origin
locations, denoted by xṽi

for all vehicles i = 1, . . . , N —
i.e., xṽi

∼ L(xvi
, ϵ). We compute the expected cost c̃ij of

routing a vehicle from a probable node vi to a true passenger
location pj , given that the vehicle is located around a noisy
position xṽi

generated by a planar Laplace distribution with
inverse scale parameter ϵ:

c̃ij = E[cij ] = η
∑

k∈V

PL(xṽi
|k, ϵ)f(k, pj). (6)

where η is a normalization constant.
We adapt the original objective in (3) to account for the

expected cost:

Ã
⋆ = argmin
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E

[
M∑

i=1
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j=1

cijaij

]

= argmin
A

M∑

i=1
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j=1

E[cij ]aij . (7)

We note that, since the cost values c̃ij are noisy, this
assignment produces a suboptimal assignment Ã⋆ with re-
spect to the true vehicle origin locations. We measure the
performance of this assignment by considering the passenger

8For simplicity, this work considers time-invariant weights.

waiting times cij with ã⋆ij = 1, where cij corresponds to
the effective waiting time (based on the true, non-obfuscated
vehicle origins).

Proposition 1 (ϵ-geo-indistinguishable batch assignment).
The batch assignment where each vehicle i reports an obfus-
cated position xṽi

drawn from a planar Laplace distribution
is ϵ-geo-indistinguishable with respect to the true positions
xvi

.

Proof. Given a query that reports the current set of vehicle
positions, the leakage formula can be written as:

L = sup
xvi

,xv′
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,xṽi
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where xv′
i

represents an alternative position for vehicle i. The
numerator refers to the database containing all true positions,
while the denominator refers to an adjacent database where
the position of a single vehicle has been changed. By the
definition of ϵ-geo-indistinguishability (cf. Section IV-B) and
since all obfuscated positions are independent, we obtain:

L = sup
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B. Redundant Vehicle Assignment

Vehicle-to-passenger assignments that are based on obfus-
cated positions will result in degraded performance. Some
of this performance loss can be recovered by realizing that,
in practice, a large proportion of the deployed vehicle fleet
is unoccupied. In fact, according to the 2014 NYC Taxicab
Factbook, during the 4pm-6pm rush hours only 64% of cabs
are occupied, while the rest of the fleet is traveling empty. 9

Consequently, our idea is to assign these unoccupied (re-
dundant) vehicles to passengers. Among assigned vehicles,
only the fastest vehicle will actually pick up the passenger.
This algorithm allows us to exploit the slack that is already
present in taxicab systems to re-route unoccupied traveling
vehicles, without deploying new vehicles, to reduce the

9http://www.nyc.gov/html/tlc/downloads/pdf/
2014_taxicab_fact_book.pdf

ε=0.005 ε=0.02 ε=0.1

Example: sub-area of Manhattan, around Flatiron building
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Vehicle-Passenger Assignment

Obfuscate positions with Laplace noise.
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Can we minimize average passenger waiting times?

Example: sub-area of Manhattan, around Flatiron building

Algorithm 1 Iterative Redundant Assignment under Obfuscation

1: c̃ij ← η
∑

k∈V

PL(xṽi
|k, ϵ)f(k, pj) ∀i, j

2: Ã⋆ ← argminA

N∑

i=1

M∑

j=1

c̃ijaij

3: for {2, . . . , D} do
4: if N < MD then
5: break
6: end if
7: Zj ← {i|a⋆ij = 1}

8: c̃ij ←

⎧
⎪⎨

⎪⎩

+∞ if ∃j′ s.t. i ∈ Zj′

η
∑

k∈V|Zj |+1

w(k|pj) · P (k|Zj ∪ {i})

9: Ã⋆ ← Ã⋆ + argmin
Ã

N∑

i=1

M∑

j=1

c̃ijaij

10: end for

expected passenger waiting time (with respect to the non-
redundant assignment strategy). 10 Clearly, this strategy needs
be carefully implemented to account for other factors (e.g.,
load re-balancing) — this, however, is outside the scope of
this paper.

Algorithm 1 proposes a polynomial-time procedure that
assigns D vehicles to each passenger. When D > 1, we
refer to the assignment as redundant. The key component of
this algorithm is that it computes the optimal assignment of
(several) vehicles to each passenger based on a cost matrix
that is built incrementally with each additionally assigned
vehicle. Lines 1 and 2 compute the solution to the basic
non-redundant assignment, as seen in the previous section.
At each iteration (starting on line 3), the procedure adds
an additional vehicle to each passenger such that the sum
of expected waiting time is minimized. On line 7, the set
Zj contains the indeces of the currently assigned vehicles
for passenger j. Line 8 computes the expected waiting
time resulting from assigning an additional vehicle i to a
passenger j. The computation makes use of the waiting time
for servicing a passenger j with a set of vehicles located at
nodes k,

w(k, pj) = min
k∈k

f(k, pj). (10)

The computation in line 8 also makes use of the probability
that a set of vehicles Z is effectively located at nodes k,
given that a vehicle i reports a noisy position xṽi

,

P (k|Z) =
∏

{k,i}∈zip(k,Z)

PL(xṽi
|k, ϵ), (11)

where zip(A,B) corresponds to the list of pairs obtained by
combining elements of A and B in the same order (with
|A| = |B|). 11 Line 9 combines the previous assignment
with the newly optimized one. It is worth noting that line 8

10The underlying reasoning is that for two random variables X and
Y representing passenger pick-up times, we have that E[min(X,Y )] ≤
min(E[X],E[Y ]).

11E.g., zip({{1, 2}, {3, 4}}) = {{1, 3}, {2, 4}}).
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Fig. 4. Passenger waiting times for batch vehicle-to-passenger assignment,
for 500 vehicles and 250 passengers. Passenger and vehicle locations
are sampled according to the actual distribution of pick-up and drop-off
locations, respectively, over the month of June 2016. The dashed line shows
the mean. (a) Optimal assignment strategy. (b) Private assignment using
geo-indistinguishable vehicle origins, with ϵ = 0.02. (c) Private assignment
using geo-indistinguishable vehicle origins, with ϵ = 0.01.

can be computed quickly (i) by memorizing the results of
the previous iteration for the next, (ii) by ignoring nodes
that have a minor impact on the computation of c̃ij (e.g.,
nodes k such that PL(xṽi

|k, ϵ) ≤ pmin for some arbitrary
threshold pmin, and (iii) by pre-computing for each node in
the graph, this list of relevant nodes (nearest nodes given
the latter threshold), and their shortest route lengths to every
other node in the graph. Hence, the overall complexity is
bounded by the Hungarian algorithm, and is in the order
of O((min(M2N,N2M) +MNDs2(V))D) where s(V) =
maxk∈V |{l|l ∈ V ∨ PL(l|k, ϵ) > pmin}| represents the
size of largest set of vertices that contribute minimally (as
determined by pmin) to the computation of the expected
waiting times. For example, setting pmin = 10−6 with
ϵ = 0.02 results in s(V) = 30 on the Manhattan graph.

C. Performance

The following results are based on the dataset and graph
described in Section III, and show the performance of
the batch assignment strategy for varying levels of noise.
Fig. 4 shows passenger waiting times for 500 vehicles and
250 passengers, obtained after non-redundant single-vehicle
assignments. Passenger and vehicle locations are sampled
according to the actual distribution of pick-up and drop-off
locations, respectively, as recorded over the month of June
2016. Using an optimal (noise-free) assignment algorithm,
the mean waiting time is just under 1 minute. We observe that
as the noise level increases, the distribution shifts, resulting
in higher mean waiting times.

Fig. 5 shows the performance of the batch assignment
algorithm, as a function of the Laplace inverse scale param-
eter ϵ, for 250 passengers and 1000 vehicles. We consider
non-redundant as well as redundant assignments. The left
side panel shows the average waiting time, and the right
side shows the degradation in performance of the private
(suboptimal) assignment with respect to the non-private
(optimal) assignment (also shown by a dashed line on the
left panel). As we increase the redundancy level, we reduce
the loss of performance, as measured by the mean waiting
time.
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[Prorok et al.; Privacy-Preserving Vehicle Assignment for Mobility-on-Demand Systems; 2017]
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We can use Greedy to assign redundant vehicles  
The algorithm is near-optimal.

Vehicle-Passenger Assignment

Mobile Robot Systems — Lecture 10-I: Multi-Robot Systems - Further Assignment

Principle: first-come, first-to-serve!
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Mean ± std. dev. Median 95th percentile

Noise-free 171 ± 243 [s] 102 [s] 564 [s]
Non-Redundant 233 ± 255 [s] 162 [s] 664 [s]
Redundant 190 ± 190 [s] 143 [s] 503 [s]

TABLE I

deviation of σ = 100 meters to the origins of all vehicles.
Since the allowable deployment size Nd varies as a function of
the time-of-day, the number of redundant vehicles also varies.
Fig. 4 shows the average number of vehicles assigned per pas-
senger. We see that this value fluctuates between one vehicle
(i.e., no redundancy), and three vehicles (i.e., two redundant
vehicles). The highest value is reached around midday, which
is a time of high vehicle abundance that coincides with a dip
in passenger demand (as seen in Fig. 5, on the right axis).

Fig. 5 shows the average passenger waiting time for six
4-hour segments of the time-of-day, for the redundant and
non-redundant assignment algorithms. In four out of the six
segments, the redundant scheme performs significantly better.
The remaining two segments show equal performance. We
have found that periods with equal performance correspond
to moments either when (i) passenger and vehicle locations
are densely collocated (with high positioning noise w.r.t lo-
cation distributions) around noon, or when (ii) the number of
available vehicles is low (thus preventing redundancy), after
midnight. This performance is further summarized in Table I,
where the waiting time is computed over all passenger requests
in the dataset. In average, the non-redundant scheme performs
36% worse than the noise-free instance, whereas the redundant
scheme performs only 11% worse. This represents a 18%
improvement over the non-redundant scheme. Furthermore,
the standard deviation is reduced by 25% with respect to the
non-redundant scheme. We note that this reduced spread of
waiting times is also confirmed by the 95th percentile value,
which is 24% smaller for the redundant assignment scheme.

Fig. 6 shows the mean waiting time as a function of the ratio
of occupied vehicles to non-occupied vehicles. The density is
obtained from data points processed by a Gaussian KDE with a
Scott’s rule bandwidth. The plot shows that the non-redundant
scheme has a large spread of vehicle occupation ratios, with a
concentration around 45%. In contrast, the redundant scheme
utilizes any slack available to the system, with a concentration
of occupation ratios above 95%; this allows the redundant
scheme to reduce the variance of passenger waiting times.

V. DISCUSSION

In this work, we provided a framework for redundant robot-
to-goal assignment. Our main contribution is a supermodular
optimization framework that efficiently and near-optimally
selects robot matchings to minimize the average waiting time
at the goal locations. Our first-come-first-to-serve principle
implies a minimum aggregation over redundant assignments.
This allows us to compute our objective function efficiently
by dynamic programming, leading to a polynomial-time algo-
rithm that can be run in real-time, even for large numbers
of robots, goals, and graph nodes. Our results show that
redundant assignment reduces waiting time with respect to
non-redundant assignments. This performance gap between
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Fig. 6. Kernel density plot of waiting times as a function of occupation ratio.
For each batch of passenger requests, we compute the average waiting time
for all passengers serviced in that batch. These data points are processed as
a function of the occupation ratio at the time that the batch was assigned.

redundant and non-redundant assignment increases with in-
creasing noise levels.

Although the idea of engineering systems with redundant
resources to increase reliability, robustness and resilience is
not new [16, 20], our ideas in this work provide a different
take on the concept of redundancy. In particular, we provide
a mathematical framework that allows us to reason about
the added value of redundancy for mobile systems. Building
on this framework, future work should address the trade-off
between the cost of providing redundancy (e.g., travel costs,
robot costs) and performance gains. Richer variants would
consider budget constraints and heterogeneous robots with
different costs. Furthermore, redundant assignment schemes
have the side-effect of redistributing robots. Whether this robot
re-balancing is beneficial remains to be addressed. Finally, we
believe there are numerous applications for which the first-
come-first-to-serve principle holds, and which could benefit
from our framework to boost their performance.

APPENDIX

The objective function for the application described in
Sec.II-B is:

JO(A) =
1

M

M
∑

j=1

∑

v∈V|Ij(A∪O)|

wj(v) ·
∏

i,k∈Ωj(v)

PDi
(vk|x̃i)

(18)
where wj(v) = min

vk∈v

{f(vk, gj)|(k, j) ∈ Ij(A ∪O)} (19)

is the effective waiting time at node j given that its set of
redundant robots is located at nodes in v, and where the
set Ωj(v) pairs those robots to potential node locations, i.e.,
zip({i|(i, j) ∈ Ij(A ∪ O)}, {1, . . . , |v|}), to evaluate their
probability of truly being located there. The nominal cost of
evaluating (18) is O(Nd|V|Nd). Since O(N2M) calls to the
objective function are made, it is worth reducing this run-
time. We do so by computing the total cost JO(A) in an
incremental fashion using dynamic programming to cache the
interim probability of a node being closer to a goal than any
other node. Consequently, each call to our objective function
has complexity O(|V|2), leading to an overall complexity of
O(N2M |V|2) for our greedy algorithm (Alg. 1). In practice,
the complexity can be further reduced to O(N3M), for a
constant transport graph node density, when N ≪ |V|.
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[Prorok et al.; Privacy-Preserving Vehicle Assignment for Mobility-on-Demand Systems; 2017]
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while developing novel robotic platforms that 
will enable new scientific discoveries. Of the 
10 grand challenges listed here, the first seven 
represent underpinning technologies that have 
a wider impact on all application areas of ro-
botics. For the next two challenges, we have 
included social robotics and medical robotics 
as application-specific areas of development 
to highlight the substantial societal and health 
impacts that they will bring. Finally, the last 
challenge is related to responsible innovation 
and how ethics and security should be care-
fully considered as we develop the technology 
further.

CURRENT STATE OF THE ART AND  
10 GRAND CHALLENGES
New materials and fabrication schemes
Gears, motors, and electromechanical actu-
ators are fundamental to many of the robotic 
platforms in use today, but laboratories around 
the world have begun to explore new materials 
including artificial muscles (11), compliant 
materials for soft robots (12), and emerging 
advanced manufacturing and assembly strat-
egies (13). As illustrated in Fig. 2, these promise 
a new generation of robots that are power- 
efficient, multifunctional, compliant, and au-
tonomous in ways that are similar to biological 
organisms. However, most demonstrations 
using new materials and fabrication strategies 
have been “one-offs” and must still overcome 
basic hurdles to achieve wide-scale adoption. 
These hurdles include improved portable en-
ergy storage and harvesting, new materials with 

tunable properties, and new fabrication strat-
egies to embody these functional materials 
as new capabilities for future robots, includ-
ing the robot building and repairing itself.

New materials that combine sensing and 
actuation challenge the physical limitations 
of traditional mechatronic systems and offer 
a range of opportunities for the design of new 
robots (14). Many of the design principles 
draw inspiration from nature. In vertebrates, 
one finds a wide range of material properties 
from soft tissue to bone—over seven orders 
of magnitude in modulus—that is mediated 
by a continuous gradient of compliance. As 
opposed to the more “nuts-and-bolts” assem-
bly approaches currently used to combine basic 
components into complete robots, a seamless 
integration of dissimilar material properties 
(e.g., rigid with soft, conductive with dielec-
tric, etc.), spatially patterned with resolution 
several orders of magnitude smaller than the 
characteristic dimension of the robot, could 
obviate the need for complex assembly and 
lead to distributed function.

Similar to functionally graded materials, 
multifunctional materials can increase the ef-
ficiency of robot design and simultaneously 
offer distributed networks of hierarchically 
structured sensors and actuators. Opportuni-
ties exist to leverage breakthroughs in folding- 
based metamaterials that have demonstrated 
tunable electromagnetic (15) or mechanical 
(16) properties beyond what is possible with 
the base material itself. Similarly, multiphase 
composites may be used for simultaneous flu-
idic actuation or sensing (17, 18). Textiles are 

a promising material for soft and wearable 
robotics, generating significant interest in em-
bedding electrical functionality into fabrics. 
Finally, bidirectional transducers can enable 
sensors and actuators to behave as materials 
for energy harvesting or storage. While de-
veloping new materials for the future of ro-
botics, it will be important to consider the 
biodegradability issues or as part of the cir-
cular economy paradigm to ensure their eco- 
sustainability. This is particularly relevant given 
the ubiquitous nature of robotic platforms in 
future (19, 20).

Fabrication and assembly is typically a se-
rial process that is slow and difficult to scale 
to very large or very small scales. The 2016 
Nobel Prize in Chemistry was awarded to three 
pioneers in the field of mechanochemistry 
who created the first synthetic molecular ma-
chines. A major remaining challenge that has 
thus far not been realized, despite Feynman’s 
prophecy (21), is to develop materials by inte-
grating these molecular machines, or other 
force-generating molecules or biological motor 
proteins, into hierarchical materials. Substantial 
opportunity exists in the convergence of ad-
ditive and subtractive methods, with emerg-
ing technologies involving two-dimensional 
(2D) to 3D transformations to generate new 
architectures that can simplify the need for 
specialized hardware and enhance the robot’s 
function. For example, 3D printing (or simi-
lar techniques such as multiphoton lithography 
or selective laser sintering) can create features 
and structures over nine orders of magnitude 
in size. However, there is no single technique 

Fig. 1. Ten grand challenges of Science Robotics.
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[Yang et al; The grand challenges of Science Robotics; 2018]



Robot Swarms
• Technology drivers 

‣ Falling prices of sensors, processors, storage, communication 

‣ Convergence of consumer electronics with myriad types of 
intelligent autonomous systems (drones, robots, self-driving 
cars, etc.) 

‣ Mainstream availability of AI and predictive analytics 

• Hyper-convergence: Software-centric architecture that tightly 
couples computation, storage, networking, and virtualization 
resources 
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Whether we think of smaller 
robot groups, in which the com-
binatorics do not pose formida-
ble challenges, or larger swarms, 
much of the literature address-
ing the problem of coordination 
makes use of simpler mathematical 
models; algorithms for perception, 
estimation, planning, and control; 
and robot deployments (54). The 
dynamics and control of cooperation 
have been addressed in coopera-
tive manipulation, multi- fingered 
grasping, and legged locomotion, 
but systematic approaches to ques-
tions of synthesis do not exist. 
Similarly, although there is in-
teresting work on collaboration 
between humans and robots (55) 
and between aerial and ground 
robots (56), a general framework 
for modeling heterogeneity and the design 
of heterogeneous groups and desired behav-
iors does not exist.

As we develop robot swarms, one must also 
develop the tools to create teams that can be 
responsive to human commands, can adapt 
to changing conditions, are robust to distur-
bances (to the extent that is possible given 
the constraints on resources), and are resilient 
to adversarial, disruptive changes caused by 
large-scale failures or damage to the swarm 
infrastructure. Responsiveness is generally 
characterized by the time a system takes to 
respond to input or meet input-output (task) 
specifications. Robustness is the property of 
the system to be responsive even in the pres-
ence of disturbances and modeling errors 
(and failures), although the majority of the 
literature addresses robustness with carefully 
constructed bounds on those disturbances 
and modeling errors. As pointed out by Rodin 
(57) in the context of similar challenges that 
confront urban societies today, resilience is 
a fundamentally different property that is 
about systems that can bend without break-
ing. Resilient systems are self-aware and self- 
 regulating and can recover from large-scale 
disruptions to the network. Thus, a science 
of resilient robot swarms must focus beyond 
robust individual agents to resilient integra-
tion across diverse elements of the group that 
leverage new mechanisms (e.g., mobility, re-
configuration, sensing, communication, plat-
form diversity, and involvement of human 
peers) for achieving macroscale resilience.

Robot networks integrated with our in-
frastructure have tremendous potential for 
solving the most pressing problems facing 

human civilization. They can provide solu-
tions to feed an ever-increasing population 
with limited resources by increasing the ef-
ficiency of food production and decreasing 
water consumption by an order of magni-
tude (58). They can respond to natural di-
sasters and adversarial attacks by enabling 
resilience in our infrastructure (59). They 
are a part of any practical solution to space 
colonization. We are poised to see great ad-
vances and impacts in this area in the next 5 
to 10 years.

Navigation and exploration
Path planning, obstacle avoidance, localiza-
tion, and environment mapping are ubiqui-
tous requirements of robot navigation and 
exploration. Advances in sensing, machine 
vision, and embedded computation have 
underpinned the remarkable progress of 
autonomous vehicles roaming complex ter-
rains at speed, drones forming swarms for 
completing collaborative tasks, and surgical 
robots delivering targeted therapy while ne-
gotiating complex, delicate anatomical struc-
tures. Many robots we deploy are intrinsic 
explorers that we send to the far reaches of 
the planet—the deep oceans, under the Arctic 
ice pack, into volcanoes—and go where no hu-
man has yet tread, often under unknown and 
extreme conditions. The associated challeng-
es are therefore much greater than those en-
countered today.

Foremost, the robots must operate in en-
vironments that are not only unmapped, but, 
at times, their very nature is not understood. 
Adding to this are challenges associated with 
communications and navigation. Robots 

in tunnels or mines must cope 
with rough terrain, narrow pas-
sageways, and degraded percep-
tion. Robots undertaking nuclear 
decommissioning must withstand 
radiation and restricted access, 
and those used to construct and 
assemble infrastructure must be 
able to resist chemicals and ma-
terials used in the construction 
process as well as being resistant to 
dirt, dust, and large impact forces. 
Undersea robots operate in an en-
vironment where radio does not 
penetrate and our usual forms of 
communication and navigation 
disappear; untethered undersea 
vehicles must be autonomous. As 
robotic spacecraft take on tasks 
like roaming distant planetary sur-
faces and, in the not-so-distant 

future, possibly landing on the icy moons of 
the outer planets, they enter a regime where 
long latency and low bandwidths of commu-
nications not only greatly reduce productiv-
ity but also put the survival of the robot itself 
at risk.

Undoubtedly, current mapping and nav-
igation techniques will continue to evolve. 
For example, techniques such as SLAM (simul-
taneous localization and mapping) will go be-
yond the current rigid and static assumptions 
of the world and will effectively deal with time- 
varying, dynamic environments with deform-
able objects (60). With resource constraints, 
specific challenges include how to learn, for-
get, and associate memories of scene content 
both qualitatively and semantically, similar 
to how human perception works; how to 
surpass purely geometric maps to have se-
mantic understanding of the scenes; how to 
reason about new concepts and their seman-
tic representations and discover new objects 
or classes in the environment through learn-
ing and active interactions; and how to evolve 
through online, prospective, and lifelong con-
tinuous learning.

For navigation, the grand challenge is to 
handle failures and being able to adapt, learn, 
and recover (Fig. 6). For exploration, it is 
developing the innate abilities to make and 
recognize new discoveries. From a system per-
spective, this requires the physical robustness 
to withstand harsh, changeable environments, 
rough handl ing, and complex manipulation. 
The robots need to have significant levels of 
autonomy leading to complex self-monitoring, 
self- reconfiguration, and repair such that there 
is no single point of complete failure but rather 

Fig. 5. Robot swarms. New opportunities and research challenges.
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Robot Swarms - The Kilobot
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[Rubenstein et al; 2014]
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Robot Swarms - Challenges

• Challenges: 

‣ Control models: in large collections of intelligent devices, where 
the behavioral state-space is a Cartesian product of the individual 
state spaces: number of interaction modes grows combinatorially 

‣ Communication models: principled models for perception-
action-communication loops; current models do not optimize wrt. 
communication. 

‣ Resilience to faults, non-cooperation, malicious action, intrusion; 
current paradigms assume perfect cooperation. 

‣ Heterogeneity: re-focusing of coordination methods on systems 
composed of heterogeneous, complementary robots; current 
methods model homogeneous systems.
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2x

What if some robots are  
non-cooperative?

Whitzer, Kennedy, Prorok, Kumar; 2016
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Coordinate robots to create a redundant 
communication topology.

Resilient Swarms
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[Saulnier et al; Resilient Flocking for Mobile Robot Teams; 2017]

Resilient Swarms
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Perception-Action-Communication Loop

!33

perception

action

communication

interaction with the world

• Communication ability must be embedded in control loop 

• Perception-action-communication loop: currently no systematic 
approaches for multi-dimensional control loops.
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Resilient, Heterogeneous Systems
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perception

action

communication

interaction with the world

• Robots with complementary capabilities can truly collaborate to achieve 
difficult, complex tasks 

• Coordination in heterogeneous systems is poorly addressed: new inter-
robot dependencies and combinatorial state-space.
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Navigation and Exploration - Challenges

• New terrains: deep sea, tunnels, mines, nuclear sites, outer space:  

‣ unknown and unmapped areas  

‣ perception and communication is degraded 

• SLAM in non-static, dynamic, deformable environments 

• Resource constraints (computational / comms): robots have to learn 
what is important → semantics

!35
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graceful system degradation. When possible, 
solutions need to involve control of multiple 
heterogeneous robots; adaptively coordinate, 
interface, and use multiple assets; and share 
information from multiple data sources of vari-
able reliability and accuracy.

AI for robotics
As the underpinning technology for robotics, 
AI is undergoing a renaissance after more 
than 60 years of ongoing development. There 
is a widespread myth that AI did not work 
for the first 50 years, but the truth is that for 
certain classes of domain- and task-specific 
problems, given enough development time 
as well as computing and data resources, the 
applications could be made to work. The ad-
vent of deep learning methods resulted in 
remarkable levels of object recognition ac-
curacy (61) using hierarchical pattern recog-
nition that retained information coherence at 
each level of the hierarchy. The new machine- 
learning algorithms were combined with un-
precedented access to data, as well as inexpensive 
and powerful computing hardware. The re-
sulting progress in solving narrow classes of 
AI problems has led many to think that we 
are on the verge of solving intelligence—in all 
its multifaceted and (still) poorly understood 
dimensions.

However, we still have a long way to go 
to replicate and exceed all the facets of intel-
ligence that we see in humans. Combining 
advanced pattern recognition and model- 
based reasoning is critical for building systems 
that can go beyond statistical correlation and 

begin to reason about underlying interdisci-
plinary mechanisms and systems dynamics. 
Meta-learning, or learning how to learn new 
things, is a critical new AI capability not only 
with large training data sets but also with lim-
ited data. The challenge is to be able to learn 
on the fly, adapting to dynamic and uncertain 
environments. One promising approach in this 
area has been developed based on neurosci-
ence insights about the human hippocampus 
as a predictive map of novel situations (62).

AI systems that know their own limita-
tions and know how to seek help could go 
beyond the current methods of training and 
knowledge acquisition. These systems will know 
how to interact, how to seek help, how to re-
cover from failure, and how to become smarter. 
AI systems and robots that can model their 
own components and operations are critical for 
adaptation and evolution. We need AIs that are 
able to detect their own subcomponents, model 
their operations, and modify those models if 
their structure changes. Work by Bongard et al. 
(63) provides an early example of this type of 
robotic system, which can discover its own 
components and learn to use them dynamically 
in locomotion.

AI that can learn complex tasks on its own 
and with a minimum of initial training data 
will prove critical for next- generation systems. 
Most machine- learning systems are data- 
intensive and require massive data in order 
to learn complex tasks. DeepMind’s Alpha-
Go Zero system that taught itself to play Go 
significantly better than the world champion 
in Go (64) was an impressive example of this. 

However, we do not yet have systems that 
can do this easily across heterogeneous 
tasks and domains. AI systems that can 
comprehend deeply and synthesize across 
complex texts and narratives will prove 
useful in a variety of applications. We 
have already seen some initial examples, 
but the real world is both interdisciplin-
ary and complex, and building robust 
systems of this class will prove extremely 
challenging.

One of the enduring grand challenges 
in AI is to provide a coherent and com-
prehensive mapping of the key mecha-
nisms of human intelligence in a software 
system. The first key step in doing this is 
to produce a thorough account of how 
the neocortex actually works, including 
learning to learn and learning from lim-
ited examples. A recent paper on this pro-
vides some detailed and testable predictions 
concerning how columns in the neocor-
tex provide location signals that enable 

learning the structure of the world (65). We 
need to test theories of this type rigorously, 
both in terms of neuroscience data and in 
the operation of AI software (66). In addition, 
much progress has been made recently in 
building AI systems that understand natu-
ral language. A key set of targets is to build 
systems that maintain coherent conversa-
tions and deal with unknown environments 
and contexts.

Ambient intelligence and ubiquitous and 
networked AI and robotics (cloud robotics) 
will be critical in the development of integrated 
heterogeneous AI and robotic services. There 
are many initial examples of cloud AIs that up-
date situation assessments and share knowledge 
but few working examples of heterogeneous 
AI or robotic services that integrate smoothly 
and reliably over time. DeepMind’s PathNet 
architecture points to systems that allow for 
new contexts to be learned at the same time, 
leveraging knowledge of training in other con-
texts to learn much faster.

One of the big questions for AI is its ability 
to perform deep moral and social reasoning 
about real-world problems. As AI and robotic 
systems undergo accelerating growth in power 
and capabilities, there will be an increasing 
premium on systems that can demonstrate 
moral and social reasoning. Although human- 
in-the-loop may be a preferred design con-
straint for systems that touch life-or-death 
situations, in autonomous driving and aero-
space applications, the relevant decision loops 
may well be too fast for the human brain, 
hence the need for embedded moral and 

Fig. 6. Intelligent explorers. Handling failures and being able to adapt, learn, and recover are major challenges for 
navigation and exploration, especially for robots operating in extreme environments. [Reproduced from (106) with 
permission].
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Navigation and Exploration - Approaches

• Current trends: 

‣ SLAM: beyond rigid and static world assumptions 1 

‣ Active interaction with the environment to discover key traits 2 

‣ End-to-end learning of navigation strategies 3

!36

1 [C. Cadena et al.; Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age; 2016]

2 [J. Bohg et al.; Interactive Perception: Leveraging Action in Perception and Perception in Action; 2017]

Experiment: One active and one passive kitten explore 
their world. Only the active kitten developed 
meaningful visually guided behavior.

3 [Gupta et al.; Cognitive Mapping and Planning for Visual Navigation; 2017]
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Learning and AI
• The great hope:  

‣ AI that can learn complex tasks on its own and with a minimum of initial 
training data  

‣ Artificial General Intelligence (beyond robotics) 

• Opportunities: 

‣ Domain- and task-specific problems: given enough resources (i.e., 
computing and data), applications can be made to work. General 
intelligence, however, is far from being solved. 

‣ Meta-learning: learning how to learn (beyond statistical correlation) 

‣ Cloud robotics (robotic IoT)
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Perception-Action Loop in RL
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perception

action:

decision-making and control interaction with the world

state:

policy:

reward:

Markov decision process:at ∼ π(st) = ℙ(at |st)

st
rt

at

st+1 ∼ ℙ(st+1 |st, at)

Note: The agent does not necessarily see the full world state. For simplicity, 
this slide assumes full world observability.

rt+1 ∼ ℙ(rt+1 |st, at)
learning: a⋆

t ∼ π⋆(st)

such that 𝔼 [
∞

∑
k=0

γkrt+k+1] is maximized
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Successes of RL
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DeepMind DQN (Atari) - 2015

DeepMind AlphaGo (Go) - 2016

DeepMind AlphaZero (Chess, Shogi, Go) - 2017

DeepMind AlphaStar (StarCraft II) - 2019

OpenAI (Dota 2) - 2018

Mobile Robot Systems — Lecture 10-II: State-of-the-Art and Outlook



Challenges for Using RL in Robotics
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• Remains extremely challenging: 

‣ Goal specification (not limited to robotics): The agent will maximize its sum of 
rewards. The reward needs to encode what we want the robot to do. 

‣ Be careful what you wish for! (e.g., paperclip maximizer from Bostrom, 2003).* 

‣ Reward-shaping is hard 

‣ Safety: There is limited exploration. The robots have to operate under some 
safety constraints. 

‣ Real-world: The real-world is messy and more noisy than typical games. Also, 
experiences in the real-world are not repeatable. 

‣ Real-time: We cannot learn faster than real-time. Data efficiency is really 
important.

We need more samples to train the robots (due to noisy 
worlds) - but we are hindered by robots being limited by 
safety requirements and time.

* https://wiki.lesswrong.com/wiki/Paperclip_maximizer
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Solution #1: Robot Farms
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*image credit: Google
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Solution #2: Sim2Real
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*Credits to OpenAI

• In simulation: 

‣ Create a faithful simulation environment (e.g., 
using Gazebo or Mujoco). 

‣ Add randomization to observed state (e.g., 
different color schemes for cameras, sensor 
noise), and to physics (e.g., actuation noise). 

‣ Learn a policy (or ensemble of policies) in 
simulation. 

• In the real-world: 

‣ Normalize observations (e.g., preprocess real-
world images to make them look like the 
simulation environment). 

‣ Run a few episodes to 
fine-tune the policy.
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Robot Ethics and Security - Challenges
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bionic systems are being proposed as re-
placement organs, e.g., for the pancreas (91); 
as assist devices for damaged organs, e.g., for 
the heart (90); and to induce organ growth, 
e.g., of the esophagus and bowel (93). There 
are a number of challenges that must be ad-
dressed to advance this field. These include 
biocompatibility, reliability, adaptability, se-
curity, and providing power. Full biocom-
patibility is important in order to maintain 
long-term functionality. Furthermore, for 
those implants that provide temporary phys-
iological support, designing the implant to be 
resorbable could eliminate the need for sur-
gery to remove the device. Implants must 
also be designed to react to changing condi-
tions, such as exercise, and extreme reliabil-
ity is a necessity because malfunction could 
quickly lead to death. Although remote pro-
gramming to provide software updates is ad-
vantageous, security is critically important to 
prevent one’s organ from being hacked. Last, 
because the power requirements of a robotic 
device are high in comparison to, e.g., a pace-
maker, the capability for wireless power trans-
fer will be crucial.

An other emerging area of medical ro-
botics is micro- and nanorobotics, with in-
creasing numbers of groups maintaining 
high- profile research efforts. The field has 
made impressive strides over the past decade 
as researchers have created a variety of small 
devices capable of locomotion within liquid 
environments (94). Robust fabrication tech-
niques have been developed, some devices 
have been functionalized for potential ap-
plications (95), and therapies are being ac-
tively considered (96). Although excitement 
remains high for this field, it faces a number 
of significant challenges that must be addressed 
head-on to make continued progress toward 
clinical relevance. The primary roadblocks 
to overcome include the development of bio-
degradable and noncytotoxic microrobots, 
development of autonomous devices capable 
of self-directed targeting, catheter-based de-
livery of microrobots near the target, track-
ing and control of swarms of devices in vivo, 
and the pursuit of clinically relevant therapies.

Robot ethics and security
With increasing levels of autonomy and human- 
robot interaction, there needs to be careful con-
sideration of potential regulatory, ethical, and 
legal barriers and the context of how robots are 
deployed. Because robotics and AI are fueled 
by data, some challenges are rooted in human- 
environment interactions and data governance 
(97), especially consent, discrimination, fair-

ness, ownership, privacy, surveillance, and trust 
(98). In terms of ethics, robotics and AI pose 
five increasingly pressing topics (Fig. 10).

First, excessive reliance on robotics and AI 
may lead to the delegation of sensitive tasks 
to autonomous systems that should remain 
at least partly subject to human supervision, 
either “in the loop” for monitoring purposes or 
“post-loop” for redressing. Thus, it is problem-
atic that the European Union (EU) General 
Data Protection Regulation does not include 
an explicit right to an explanation when deci-
sions affecting people are reached “solely” al-
gorithmically (99).

Second, robotics and AI may de-responsibilize 
people whenever an autonomous system could 
be blamed for a failure. A recent EU proposal 
to treat forms of AI as “electronic persons” 
would only exacerbate this problem. Instead, 
new forms of distributed responsibility need 
to be developed, learning from the legal anal-
ysis of strict liability (100).

Third, unemployment is an ethical prob-
lem, not just an economic one. Robotics and 
AI could change the workforce structure, cause 
a shift in the skills base, and potentially facil-
itate a complete de-skilling of the work force 
even in safety-critical contexts; however, this 
would be imprudent. Radiologists need to keep 
studying images for the same reason pilots 
need to keep landing airplanes so that they 
still can even if the AI cannot, or if the AI gets 
it wrong. According to a recent report, AI could 
displace between 400 and 800 million jobs. 
Fairness dictates sharing the economic ben-
efits of this huge and rapid transformation, 

thus lowering inequality, whereas social 
solidarity should ensure that AI’s costs 
are shouldered by future generations, 
too, because they will profit enormously 
from it.

Fourth, AI may erode human free-
dom, because it may lead to unplanned 
and unwelcome changes in human be-
haviors to accommodate the routines 
that make automation work and peo-
ple’s lives easier. AI’s predictive power 
and relentless nudging, even if uninten-
tional, should foster and not undermine 
human dignity and self-determination.

Finally, there is straightforward mis-
use. Strictly speaking, this is not a prob-
lem with AI’s smart agency, but with the 
unethical application of AI by those who 
control it. The issues under this head-
ing refer to “the human use of human 
beings,” to cite the title of Wiener’s far-
sighted book (101). Examples range from 
scanning citizens’ faces in illiberal re-

gimes to discriminating among applicants 
for a job or punishing law offenders unfairly. 
In this case, Kant provides the right antidote: 
AI should be designed and used to treat every 
human being always as an end and never only 
as a means.

In terms of security, AI can improve se-
curity by increasing systems’ resilience (endur-
ing attacks) and robustness (averting attacks) 
and combining both with counterthreat strat-
egies. Thanks to its autonomy, fast-paced threat 
analysis, and decision-making capabilities, 
AI can enable systems verification and patch-
ing and counter incoming threats by exploit-
ing the vulnerabilities of antagonist systems. 
However, two challenges may hamper AI’s 
potential for security. One is escalation: Ro-
botics and AI can refine strategies and launch 
more aggressive counteroperations. This may 
snowball into an intensification of attacks and 
responses, which, in turn, may threaten key 
infrastructures of our societies (102). The 
solution may be to use AI to strengthen de-
terring strategies and discourage opponents 
before they attack, rather than mitigating the 
consequences of successful attacks afterward. 
The other challenge is lack of control. Perva-
sive distribution, multiple interactions, and 
fast-paced execution will make control of AI 
systems progressively less effective while in-
creasing the risks for unforeseen consequences 
and errors. Regulations may mitigate the 
lack of control by ensuring proportionality 
of responses, the legitimacy of targets, and 
a higher degree of responsible behavior, but 
it is crucial to start shaping and enforcing 
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Fig. 10. Ethical and security risks of robotics and AI 
developments. 
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“Excessive reliance on robotics 
leads to the delegation of tasks 
that should remain subject to 
human supervision.”

“Robotics and AI may de-responsibilize 
people whenever an autonomous 
system could be blamed for a failure.“

“Robotics could change the workforce 
structure and facilitate de-skilling of 
the work force (even in safety-critical 
contexts). “ What if the AI gets it 
wrong?

“Unwelcome changes in human 
behaviors to accommodate the 
routines that make automation 
work.”“Unethical application of 

robotics/AI by those who 
control it.” 

[Yang et al; The grand challenges if Science Robotics; 2018]
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Robot Ethics and Security - Solutions
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bionic systems are being proposed as re-
placement organs, e.g., for the pancreas (91); 
as assist devices for damaged organs, e.g., for 
the heart (90); and to induce organ growth, 
e.g., of the esophagus and bowel (93). There 
are a number of challenges that must be ad-
dressed to advance this field. These include 
biocompatibility, reliability, adaptability, se-
curity, and providing power. Full biocom-
patibility is important in order to maintain 
long-term functionality. Furthermore, for 
those implants that provide temporary phys-
iological support, designing the implant to be 
resorbable could eliminate the need for sur-
gery to remove the device. Implants must 
also be designed to react to changing condi-
tions, such as exercise, and extreme reliabil-
ity is a necessity because malfunction could 
quickly lead to death. Although remote pro-
gramming to provide software updates is ad-
vantageous, security is critically important to 
prevent one’s organ from being hacked. Last, 
because the power requirements of a robotic 
device are high in comparison to, e.g., a pace-
maker, the capability for wireless power trans-
fer will be crucial.

An other emerging area of medical ro-
botics is micro- and nanorobotics, with in-
creasing numbers of groups maintaining 
high- profile research efforts. The field has 
made impressive strides over the past decade 
as researchers have created a variety of small 
devices capable of locomotion within liquid 
environments (94). Robust fabrication tech-
niques have been developed, some devices 
have been functionalized for potential ap-
plications (95), and therapies are being ac-
tively considered (96). Although excitement 
remains high for this field, it faces a number 
of significant challenges that must be addressed 
head-on to make continued progress toward 
clinical relevance. The primary roadblocks 
to overcome include the development of bio-
degradable and noncytotoxic microrobots, 
development of autonomous devices capable 
of self-directed targeting, catheter-based de-
livery of microrobots near the target, track-
ing and control of swarms of devices in vivo, 
and the pursuit of clinically relevant therapies.

Robot ethics and security
With increasing levels of autonomy and human- 
robot interaction, there needs to be careful con-
sideration of potential regulatory, ethical, and 
legal barriers and the context of how robots are 
deployed. Because robotics and AI are fueled 
by data, some challenges are rooted in human- 
environment interactions and data governance 
(97), especially consent, discrimination, fair-

ness, ownership, privacy, surveillance, and trust 
(98). In terms of ethics, robotics and AI pose 
five increasingly pressing topics (Fig. 10).

First, excessive reliance on robotics and AI 
may lead to the delegation of sensitive tasks 
to autonomous systems that should remain 
at least partly subject to human supervision, 
either “in the loop” for monitoring purposes or 
“post-loop” for redressing. Thus, it is problem-
atic that the European Union (EU) General 
Data Protection Regulation does not include 
an explicit right to an explanation when deci-
sions affecting people are reached “solely” al-
gorithmically (99).

Second, robotics and AI may de-responsibilize 
people whenever an autonomous system could 
be blamed for a failure. A recent EU proposal 
to treat forms of AI as “electronic persons” 
would only exacerbate this problem. Instead, 
new forms of distributed responsibility need 
to be developed, learning from the legal anal-
ysis of strict liability (100).

Third, unemployment is an ethical prob-
lem, not just an economic one. Robotics and 
AI could change the workforce structure, cause 
a shift in the skills base, and potentially facil-
itate a complete de-skilling of the work force 
even in safety-critical contexts; however, this 
would be imprudent. Radiologists need to keep 
studying images for the same reason pilots 
need to keep landing airplanes so that they 
still can even if the AI cannot, or if the AI gets 
it wrong. According to a recent report, AI could 
displace between 400 and 800 million jobs. 
Fairness dictates sharing the economic ben-
efits of this huge and rapid transformation, 

thus lowering inequality, whereas social 
solidarity should ensure that AI’s costs 
are shouldered by future generations, 
too, because they will profit enormously 
from it.

Fourth, AI may erode human free-
dom, because it may lead to unplanned 
and unwelcome changes in human be-
haviors to accommodate the routines 
that make automation work and peo-
ple’s lives easier. AI’s predictive power 
and relentless nudging, even if uninten-
tional, should foster and not undermine 
human dignity and self-determination.

Finally, there is straightforward mis-
use. Strictly speaking, this is not a prob-
lem with AI’s smart agency, but with the 
unethical application of AI by those who 
control it. The issues under this head-
ing refer to “the human use of human 
beings,” to cite the title of Wiener’s far-
sighted book (101). Examples range from 
scanning citizens’ faces in illiberal re-

gimes to discriminating among applicants 
for a job or punishing law offenders unfairly. 
In this case, Kant provides the right antidote: 
AI should be designed and used to treat every 
human being always as an end and never only 
as a means.

In terms of security, AI can improve se-
curity by increasing systems’ resilience (endur-
ing attacks) and robustness (averting attacks) 
and combining both with counterthreat strat-
egies. Thanks to its autonomy, fast-paced threat 
analysis, and decision-making capabilities, 
AI can enable systems verification and patch-
ing and counter incoming threats by exploit-
ing the vulnerabilities of antagonist systems. 
However, two challenges may hamper AI’s 
potential for security. One is escalation: Ro-
botics and AI can refine strategies and launch 
more aggressive counteroperations. This may 
snowball into an intensification of attacks and 
responses, which, in turn, may threaten key 
infrastructures of our societies (102). The 
solution may be to use AI to strengthen de-
terring strategies and discourage opponents 
before they attack, rather than mitigating the 
consequences of successful attacks afterward. 
The other challenge is lack of control. Perva-
sive distribution, multiple interactions, and 
fast-paced execution will make control of AI 
systems progressively less effective while in-
creasing the risks for unforeseen consequences 
and errors. Regulations may mitigate the 
lack of control by ensuring proportionality 
of responses, the legitimacy of targets, and 
a higher degree of responsible behavior, but 
it is crucial to start shaping and enforcing 
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Fig. 10. Ethical and security risks of robotics and AI 
developments. 
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Gradual deployment of AI. 
Ultimately, only systems that are 
proven to be safe should be able 
to operate autonomously.

Laws need to be changed 
and adapted.

Education has a big role to play here. 
Why are we still teaching integrals and 
derivatives?

Develop systems that 
understand human behavior 
and adapt to it (rather than 
the opposite).Enforce clear ethical guidelines at 

the governmental, academic and 
company level (e.g., Principles of 
Google AI, DeepMind Ethics & 
Society) 

[Yang et al; The grand challenges if Science Robotics; 2018]
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Further Announcements

• Mini-project support:  

‣ Tuesdays (up to March 5), 14:00-15:00 in Intel lab 

‣ Teaching Assistant support 

• Thanks!  
• If you are interested in staying involved… let me know. 

‣ Research projects 

‣ PhD in the future? 

‣ Collaborations
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