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In this Lecture

e Motivation: task allocation in nature

e Assignment algorithms:
» Hungarian method

» Swarm distribution mechanisms
» Market-based
» Threshold-based

e Credit:

» Threshold-based example from A. Martinoli’s course at EPFL

I(inlg&l%(ls{lllg((})]l; lti-Robot Systems - Task Allocation 2



Task Allocation vs. Division of Labor

In nature: physical castes

M Min

or

Self-grooming
Minor worker
Dealate queen
Male -
Carry orroll egg
Carry or roll larva
Feed larva solids
Carry or roll pupa
Assist eclosion of adult

Minor worker

Dealate queen
Male -

Forage -
Lay odor trail
Feed inside nest
\gression (drag or attack)
Carry dead larva or pupa
Feed onlarvaorpupa g
Lick wall of nest
Antennal tipping
Guard nest entrance

0 0,2

@8 UNIVERSITY OF

49 CAMBRIDGE

04

06 0
average fraction of time spent in a behavior

0,2

04

Behavioral repertoire of majors
and minors: In Pheidole
guilelmimuelleri the minors show
ten times as many different basic
behaviors as the majors.
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Task Allocation vs. Division of Labor

In nature: temporal polyethism
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Behavioral change in worker bees as a
function of age; young individuals work on
internal tasks (brood care and nest
maintenance), older workers forage for
food and defend the nest.
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Task Allocation vs Division of Labor

In robotics:
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Assignment Problems
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Assignment Problems

[Kumar et al.; UPenn]
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The Assignment Problem

e \What is a task?
» Discrete: e.g., pickup parcel X from location 'y, ...
» Continuous: e.g., monitor building X, search area Y...

» Key assumption: task independence
(dependent tasks — scheduling)

e Assignment methods are drawn from multiple fields: operations
research, economics, scheduling, network flows, combinatorial
optimization.

e Classical problem formulation: bipartite graph matching
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The Assignment Problem

 What is to be optimized? Utility: an individual robot knows the
value of executing a certain action.

e Utility, depending on context: value, cost, fitness. Knowing the true
(exact) utility is key to finding an optimal assignment.

e Various formulations exist. For example:

—C if R is capable of executing T and Qrr > Crr
U(R, T) — {QRT RT

otherwise

N =Y I {]_(_1_,_1_) ______ A
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The Linear Assignment Problem

* In an optimal assignment problem, maximize the system performance:

find x;; that maximize: -
0 lejzl, 1 <j<n

m n =1

U = Z lej Ui, j) subject to m
i=1 j=1 inj:l, 1<i<m

i=1

tasks robots

bipartite perfect matching (complete graph)
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The Hungarian Algorithm

e Published by Kuhn in 1955, based on the earlier works of two Hungarian
mathematicians: Dénes K&nig and Jend Egervary.

» O(n3) running time is possible.
e Steps (input is an n x n by matrix with non-negative elements):

» Step 1: Subtract row minima; For each row, find the lowest element and
subtract it from each element in that row.

» Step 2: Subtract column minima; Similarly, for each column, find the lowest

element and subtract it from each element in that column.

» Step 3: Cover all zeros with a minimum number of lines; Cover all zeros in

the resulting matrix using a minimum number of horizontal and vertical
lines. If n lines are required, an optimal assignment exists among the zeros.
The algorithm stops. If less than n lines are required, continue with Step 4.

» Step 4: Create additional zeros; Find the smallest element (call it k) that is

not covered by a line in Step 3. Subtract k from all uncovered elements,
and add k to all elements that are covered twice. Go to Step 3.
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The Hungarian Algorithm - Example

Step O: robot-task Step 1: subtract row Step 2: subtract Step 3: cover all zeros
assignment costs minima column minima with a minimum of lines
T T2 T8 T T1iT2 T3 T4 T1iT2 T3 T4 T1iT2 73 T4
Ri 82183 69 92 R1 13 14 0 23| 69 RI 1314 0 8 RI 13140 8
R 77 37 4992 R2 40 0 12 55| 37 Re 40 0 12 20 Eé""éié """ o 12 w0
BB 11.69 5 86 R 6 64 0 81 S R3 6 64 0 66 - S
R4 8 9 98 28 Re 0 1 90 15| -8 R4 0 1 90 0 R4 0 190 0
-0 -0 -0 -15 3 lines found
Step 4: create Step 3: cover all zeros Stop: An optimal
additional zeros with a minimum of lines assignment exists.
T1iT273 T4 T1iT2 T3 T4 T1iT2 73 T4 T1iT2 73 T4
RI 1314 0 8 R 7 8 0 2 R 7.8 0 2 R 7.8 0 2
- '15""'46" R2 40 0 18 40 R2 40 0 18 40 R2 40 0 18 40
E&@é& """ 066 R 0 5 0 60 R 0 5 0 60 R0 58 0 60
-6: unmarked elements 4 lines found unique, optimal
+6: twice marked elements assignment found

*Example from www.hungarianalgorithm.com
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Publicly available data:
OpenStreetMap for whole area

Goal: find optimal assignment matrix A*
« Convert to graph (4302 vertices, 9414 edges)
e Cost of an assignment ~ distance (time)
* NYC public taxicab dataset
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A”™ = argmin >4 >4 Ci
A i=1 j=1
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The Hungarian Algorithm

e Assumptions when using an assignment algorithm such as the Hungarian methoad:
» Costs (utilities) are known at a centralized computation unit.

» Costs (utilities) are deterministic (no noise).

» Costs (utilities) do not change (constant).

» 1-to-1 assignment (one robot per task, one task per robot).

e Complications:

. . all of these issues are ver
» Uncertainty around true utility U(i) - roboticsl] Y
common in robotics!!

» Dynamic environment (changes in utility / agents)
» Robot / task dependencies (robot heterogeneity / redundancy).
e Consequences:
»  Sub-optimality
» Problems can become NP-hard (for combinatorial matching problems)

» Practically infeasible (centralized solutions may not be possible)
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Assignment of Robot Coalitions

Some tasks require more than 1 robot.

How many ways to partition n robots into k non-empty subsets?

Given by the Stirling number of the second kind.
E.g.: Ten robots, 5 tasks: S$(10,5) = 42'525
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Assignment of Robot Coalitions

The problem of forming robot coalitions:
E is the ground set (all robots) and X is a family of subsets.

yﬂ 72=0 Vy,z€X,y#z2 robot subsets are mutually disjoint

U = E the union of subsets is equivalent to the ground set.

xeX

Set Partitioning Problem: Given a finite set E, a family F of acceptable
subsets of £, and a utility functionu : F' = R , find a maximum-utility
family X of elements in F' such that X'is a partition of E.

The set-partitioning problem is strongly NP-hard. [Garey and Johnson; 1978]

... One potential solution: relaxation of the problem to the continuous domain.
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Countable vs Uncountable Systems

e Difference between a multi-robot system and a robot swarm?

e Swarms are larger, but how large...?

e The method is the key!
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* robot-to-task allocation e redistribution of robots among tasks
e method: combinatorial approach e method: mean-field approach
* exact, but computationally demanding * approximative, but fast
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Redistribution of a Swarm ot Robots

Example: monitor geographical sites
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Redistribution of a Swarm ot Robots

Model: connected tasks

task 1

task 5

task 2

task 4

task 3
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Redistribution of a Swarm ot Robots

Model: connected tasks What proportion of robots

task 1 / of each kind?

task 5

task 2

task 4

*note: for the purpose of this lecture, assume non-overlapping robot traits task 3
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Redistribution of a Swarm ot Robots

Insight: we can model the distribution dynamics of the robot
swarm as a linear dynamical system!

System state, e.g.:  x = [0.3,0.2,0.1,0.1,0.3]"

/

proportion of swarm at task 1

transition rate matrix distribution of robots over tasks

|/ -

: (s)
Distribution dynamics: X(S) — K(S)X(S) kij
change in distribution of rates  robots

robots of type (s) over tasks MxM Mx 1

(s): robot species

Note: it matrix K has certain properties, this system is stable.

oW -
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Redistribution of a Swarm ot Robots

Robot distribution dynamics: X(S) — K(S)X(S)
rates robots
MxM Mx1
(s)
Solution: x(3) (1) = K7 X(()s)

Given a desired robot distribution x'*)*
Find transition rates K(*)* that are fastest to satisfy x(8)*

Methods: 1. Explicit optimization; [Prorok 2016]
2. Approximation of K; semi-definite programming [Berman 2009]
3. Stochastic optimization [Matthey 2009, Hsieh 2008]
2.3 UNIVERSITY OF :
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Controller Synthesis
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: gl probability.

e Probabilistic controller is immediate
e Deterministic controller can also be derived
* Architecture: both open-loop and closed-loop possible
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Redistribution of a Heterogeneous Swarm

Time elapsed: 2.40 Species 0:

Species 2

4.1%

[Prorok et al.; 2016]
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Redistribution of a Heterogeneous Swarm

[Prorok et al.; 2016]
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Market-Based Coordination

* Robots: “self-interested agents that operate in a virtual economy’

I

e Tasks: “commodities of measurable worth that can be traded”

Example scenario: three robots exploring Mars. The
robots need to gather data around the craters; they
need to visit the 7 highlighted sites. Which robot visits

each site?

*image credit: Dias et al.
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Market-Based Coordination

e Underlying mechanism: auctions
e Auctioneer: offers items (tasks or resources) in announcement

* Participants (robots) submit bids to negotiate allocation of items
» sealed-bid vs. open-cry
» first-price vs. Vickrey auction
e Single-item auction:
» highest bidder wins task
» if no bid beats reserve-price, then auctioneer can retain item
¢ Combinatorial auction:
» multiple items, robots bid on bundles
» a bid expresses synergies between items
e Multi-item auction:
» a robot can win at most one item apiece
» special case of combinatorial auction for bundle of size 1

,. I(JZIXIR]/[%{IS{II%((})E bot Systems - Task Allocation 30
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Market-Based Coordination

A simple example (multi-item auction)

bids placed for tasks

reward: 120 reward: 150
A B A B
Robot 1 50 100
allocation cost 50 e
Robot 2 - i 70
100 a
70 W

130 \

reserve price not met

Robot 1
profit: 70 = 120-50

Robot 2 system cost: 50+70 = 120
profit: 80 = 150-70

Running time: O(NRM) (greedy) or O(N?R) (optimal) [T. Sandholm; 2002]

oW -
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Market-Based Allocation Frameworks

e Murdoch [Gerkey, Mataric; 2002]
» loosely coordinated tasks
» demonstrated on box pushing

» demonstrated robustness, fast auctioning
e TraderBots [Dias et al.; 2004]

» loosely coordinated tasks
» demonstrated on exploration tasks

» demonstrated robustness, scalability, auction types, task trees

 Hoplites [Kalra, Stentz; 2005]
» tightly coordinated spatial tasks
» robots auction plans not tasks
» demonstrated on perimeter sweeping, constrained exploration
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Centralized vs Decentralized Assignment

P Y9 e

centralized : decentralized
e Centralized assignment. Cost estimates are e Decentralized assignment. Robots do not
known at a central point (computational unit). have global knowledge of each other’s costs.
The unit performs the assignment and : They locally negotiate assignments.

communicates with all robots.

Hybrid mechanisms: locally defined robot cliques can elect
'leader’ robots and perform centralized mechanisms.
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Threshold-Based Assignment

e Fully decentralized mechanism.

e Fach robot has an activation threshold for each task that needs to be

performed.

* A stimulus reflects the urgency of a tasks; is continuously perceived by the
robots:

e Example: threshold-based control of aggregation [Agassounon, Martinoli; 2002]
» Goal: aggregate all sticks into 1 cluster

» End criterion: robots should stop working once task is achieved

initial situation final situation
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Threshold-Based Assignment

e Stimulus: time needed to find a stick to manipulate (the longer the
time, the lower the stimulus associated with the task).

 Threshold is self-calibrated (fully decentralized).

* The number of manipulation sites (either end of
line of sticks) decreases as global task nears
completion.
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e |ftime to find next stick goes beyond threshold
T, then agent switches to resting behavior. B = rmm———

-=== Private Variable-threshold
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il
[E—
Avg. number of active workers
wn
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successfully find kth stick
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*image credit: Agassounon et al.
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Overview ot Allocation Methods

centralized vs

. optimalit
decentralized P y

completeness

Hungarian method

Mean-tield approach

centralized

centralized or e
, approximative
decentralized PP

guaranteed

The system converges.
With high probability,
completeness is
guaranteed

Market-based
approach

centralized or greedy (sub-optimal)

decentralized or optimal

depends on reserve
price

Threshold-based
approach

decentralized suboptimal

not guaranteed
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Further Reading

Nice overview of the classical problem:

http://www.assignmentproblems.com/

Seminal papers:

e B. Gerkey and M. Mataric, “A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems”. Int.
Journal of Robotics Research, 2004.

e M. B. Dias et al; “Market-Based Multirobot Coordination: A Survey and Analysis”; 2006
e D.P. Bertsekas, “The Auction Algorithm: A Distributed Relaxation Method for the Assignment Problem”; 1988.
e N. Kalra, A. Martinoli, “Comparative study of market-based and threshold-based task allocation”; 2006

Some new approaches for those interested:

* Redundant robot assignment under uncertainty: A. Prorok, Redundant Robot Assignment on Graphs with
Uncertain Edge Costs, 14th International Symposium on Distributed Autonomous Robotic Systems (DARS),
2018

e Assignment in heterogeneous robot swarms: A. Prorok, M. A. Hsieh, and V. Kumar. The Impact of Diversity on
Optimal Control Policies for Heterogeneous Robot Swarms. IEEE Transactions on Robotics (T-RO); 2017.

e Assignment under privacy constraints: A. Prorok, V. Kumar, Privacy-Preserving Vehicle Assignment for Mobility-
on-Demand Systems, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017
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