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In this Lecture

• Introduction to sensing and perception for autonomous robots 

• Introduction to a few popular sensors 

‣ Basic HW concept 

‣ Sensor model 

‣ Application 

• Odometry 

• Credits: 

‣ Odometry example for Thrun’s book (Probabilistic Robotics) 

‣ MLE example from Zisserman’s course (Oxford)
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Perception-Action Loop

• Basic building block of autonomy
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perception

action
decision-making and control interaction with the world
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Perceiving the Environment
• A sensor is a component that measure some aspects about the 

state of the world or the state of the robot. 

• Recall open-loop vs. closed-loop: 

‣ Example: a robot is to move towards a wall and stop 20cm away 
from it. Floor unevenness, friction, and other environmental 
factors mean that the robot cannot execute open-loop control 
to arrive at the target pose.
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goal? startdistance = 20cm



Classification of Sensors
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exteroceptive proprioceptive

active passive

• infrared (distance) 
• sonar range finder 
• laser scanners (distance) 
• …

• ambient light 
• sound (microphone) 
• camera (vision) 
• …

• odometry 
• speedometer 
• energy level 
• accelerometer 
• …

measure something 
external to the robot

measure something 
internal to the robot

affect environment 
by emitting energy

do not affect 
environment



Distance Sensors
• Most distance sensors are active: emit a signal and receive its 

reflection from an object (if any). 

• Two principles: 

‣ (round-trip) time-of-flight (TOF); the signal travel speed is known 
 

‣ received signal intensity; the signal attenuation is known
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Example signal modalities: 
1. Infrared 
2. Ultrasound 
3. Coherent light (laser)



Infrared Proximity Sensors
• Infrared light has long wavelengths (700-1000nm); invisible to 

human eye 

• Reflectance sensing hardware: The emitter is usually made with a 
light-emitting diode (LED), and the detector is usually a 
photodiode/phototransistor.  

• Measurement principle: Detect the presence of an object by 
measuring the intensity of the reflected light  

• When ambient light must be subtracted, sensor takes a 
measurement without emission. 

• Common usage: cheap robots (e.g., for education) 

• Main disadvantage: depends on object characteristics  
(shape, color, surface)
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Sensor Calibration
• How to relate a sensor measurement to a perceptive feature? 

• Example: calibrate an infrared proximity sensor 

• Aim: determine mapping between sensor reading and desired feature 

‣ Step 1: use ground-truth telemetry system to set up sensor 

‣ Step 2: measure and tabulate values 

‣ Step 3: Fit the curve.
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Representing Uncertainty
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• Sensors are imperfect devices 

‣ Random errors as well as systematic errors. 

‣ What is the uncertainty in a given sensor measurement? 
• We need a representation for random errors associated to a given 

sensor. 

• Repeat measurements and describe the sensor’s distribution 

• Options: 

1. store original measurements (xi, zi) 

2. store histogram of measurements pi 

3. compute a compact representation of  
distribution

Lecture 2:  Describing and manipulating pdfs

• Expectations of moments in 1D
• Mean, variance, skew, kurtosis

• Expectations of moments in 2D
• Covariance and correlation

• Transforming variables

• Combining pdfs

• Introduction to Maximum Likelihood estimation

Describing distributions
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Representing Uncertainty
• Compact representation that describes z: fit a model through 

moment matching.  

• Assumption: values are normally distributed. A Gaussian 
distribution can be described through 1st and 2nd moments.

!11Mobile Robot Systems — Lecture 4: Perception

𝔼[z] =
n

∑
i=1

pizi = μmean: Var(z) =
n

∑
i=1

pi(zi − μ)2

Example – Gaussian pdf
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a Normal distribution is defined by its first and second moments

mean E[x] =
Z ∞

−∞
xp(x) dx= µ

var(x) = E[(x− µ)2]

=

Z ∞

−∞
(x − µ)2p(x) dx = σ2

p(x) = N(µ,σ2) =
1

√
2πσ

exp

(

−
(x− µ)2

2σ2

)

Fitting models by moment matching

Example: fit a Normal distribution to measured samples 

Sketch algorithm:

1. Compute mean µ of samples

2. Compute variance σ2 of samples

3. Represent by a Normal distribution  N(µ,σ2)
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IR Sensor Model
• What is the uncertainty around a given sensor measurement? 

• Collect data for all distances in operational range.
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Estimated range model
Raw sensor measurements
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Fig. 5. Estimated range models and the raw sensor measurements on which they are based for (a) infrared sensors, with a window-size of w = 40 and (b)
ultrasound sensors, with a window-size of w = 0.04. The errorbars show the standard deviation.

plotted on the XY plane; the maximal angles range from 70◦

to 150◦.

4) Maximum Update Rate: The performance of a localiza-
tion method depends on the rate at which new observations
of the environment are made. In other words, the faster a
mobile robot moves, the more often it will need to update
its observations in order to preserve the same localization
accuracy. Assuming that the time a CPU spends processing the
localization algorithm is negligible, this performance becomes
inherently dependent on the maximal sensor update rates. The
Khepera III tech-report [12] cites an update time of 33ms for
the infrared sensors. We perform a simple experiment which
validates these numbers, and thus the maximum frequency at
which all 11 infrared sensors read new values is 30.3 Hz.
As no documentation was found regarding the update rate of
the ultrasound sensors, we performed a series of experiments
to report these values. We found that the ultrasound sensors
can be used in two different schemes: concurrent or sequential
readings. Although sequential readings are bound to be slower
than concurrent ones, crosstalk among the sensors is limited,
which can be beneficial for localization [15]. Table IV reports
the maximal frequencies found for the ultrasound sensors.
The frequency is defined by the time it takes in between two
updates (in the case of multiple sensors, an update occurs when
all sensors have refreshed their values). Highest frequencies
are obtained when using a single sensor, whereas lowest when
using several sensors sequentially. The obtained frequencies
could potentially be improved if we were to decrease the
sensor timeout time (thus also decreasing the range), but this
flexibility is not offered by the current firmware.

C. Validation: A Basic Navigation Scenario

Finally, we design a simple navigation scenario which
employs our models described in Section III-B. In our setup,
we require the robot to drive a 20m long path along a 1m
large square, at an average speed of 5cm/s. The robot localizes
itself while moving along an outer wall, where in a first sub-
scenario, it does this by utilizing its infrared sensors, and in

µ± σ

Single sensor [Hz] 4.23±0.08

5 sensors, concurr. [Hz] 3.8±0.19

5 sensors, sequential. [Hz] 0.74±0

TABLE IV
MAX. ULTRASOUND SENSOR UPDATE FREQUENCIES

a second sub-scenario, it utilizes its ultrasound sensors. The
wall is placed in such a way that its visibility with respect
to the sensors is preserved throughout the run. For the runs
performed with the ultrasound sensors, we tried three different
schemes: 5 sensors concurrently, 3 sensors concurrently, 5
sensors sequentially. The infrared sensors were used in a single
scheme where all 9 body sensors are activated concurrently.
The sensor update frequencies correspond to the ones reported
in Section III-B4. We perform two runs per robot (CW and
CCW directions), for each sensor configuration. Throughout
the experiment, we employ real-time tracking as explained in
Section II-B. Odometry measurements are taken at a frequency
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Kalman Filter

Odometry

Fig. 7. A qualitative overview of localization performance. Localization was
performed (i) with an extended Kalman filter (using 9 concurrently activated
infrared sensors), and (ii) with dead-reckoning (odometry).

A. Prorok et al., Indoor Navigation Research with the KIII Mobile Robot: An Experimental Baseline with a Case-Study on UWB Positioning, 2010

Example – Gaussian pdf
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a Normal distribution is defined by its first and second moments

mean E[x] =
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Fitting models by moment matching

Example: fit a Normal distribution to measured samples 

Sketch algorithm:

1. Compute mean µ of samples

2. Compute variance σ2 of samples

3. Represent by a Normal distribution  N(µ,σ2)
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a Normal distribution is defined by its first and second moments
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Fitting models by moment matching

Example: fit a Normal distribution to measured samples 

Sketch algorithm:

1. Compute mean µ of samples

2. Compute variance σ2 of samples

3. Represent by a Normal distribution  N(µ,σ2)
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Ultrasonic (Sonar) Sensors
• Emitter produces a chirp or ping (of ultrasound frequency > 20kHz; 

inaudible to human ears) 

• A timer is started when the chirp is emitted. If the wave encounters a 
barrier, it is reflected and measured upon return. 

• Hardware: a transducer (transforms one form of energy to another), 
where mechanical energy is transformed to sound as the membrane 
of the sensor flexes; a microphone (detector) 

• Measurement principle: RTOF, with speed of sound: at room 
temperature it is 343m/s 

• Common usage: underwater applications (sound travels well in water) 

• Main disadvantage: specular reflections (e.g., try 
measuring distance to object at steep angle);  
sensor cross-talk (interference)
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US Sensor Model
• Collect data for all distances in operational range for reflection off 

of a planar surface.
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Fig. 5. Estimated range models and the raw sensor measurements on which they are based for (a) infrared sensors, with a window-size of w = 40 and (b)
ultrasound sensors, with a window-size of w = 0.04. The errorbars show the standard deviation.

plotted on the XY plane; the maximal angles range from 70◦

to 150◦.

4) Maximum Update Rate: The performance of a localiza-
tion method depends on the rate at which new observations
of the environment are made. In other words, the faster a
mobile robot moves, the more often it will need to update
its observations in order to preserve the same localization
accuracy. Assuming that the time a CPU spends processing the
localization algorithm is negligible, this performance becomes
inherently dependent on the maximal sensor update rates. The
Khepera III tech-report [12] cites an update time of 33ms for
the infrared sensors. We perform a simple experiment which
validates these numbers, and thus the maximum frequency at
which all 11 infrared sensors read new values is 30.3 Hz.
As no documentation was found regarding the update rate of
the ultrasound sensors, we performed a series of experiments
to report these values. We found that the ultrasound sensors
can be used in two different schemes: concurrent or sequential
readings. Although sequential readings are bound to be slower
than concurrent ones, crosstalk among the sensors is limited,
which can be beneficial for localization [15]. Table IV reports
the maximal frequencies found for the ultrasound sensors.
The frequency is defined by the time it takes in between two
updates (in the case of multiple sensors, an update occurs when
all sensors have refreshed their values). Highest frequencies
are obtained when using a single sensor, whereas lowest when
using several sensors sequentially. The obtained frequencies
could potentially be improved if we were to decrease the
sensor timeout time (thus also decreasing the range), but this
flexibility is not offered by the current firmware.

C. Validation: A Basic Navigation Scenario

Finally, we design a simple navigation scenario which
employs our models described in Section III-B. In our setup,
we require the robot to drive a 20m long path along a 1m
large square, at an average speed of 5cm/s. The robot localizes
itself while moving along an outer wall, where in a first sub-
scenario, it does this by utilizing its infrared sensors, and in

µ± σ

Single sensor [Hz] 4.23±0.08

5 sensors, concurr. [Hz] 3.8±0.19

5 sensors, sequential. [Hz] 0.74±0

TABLE IV
MAX. ULTRASOUND SENSOR UPDATE FREQUENCIES

a second sub-scenario, it utilizes its ultrasound sensors. The
wall is placed in such a way that its visibility with respect
to the sensors is preserved throughout the run. For the runs
performed with the ultrasound sensors, we tried three different
schemes: 5 sensors concurrently, 3 sensors concurrently, 5
sensors sequentially. The infrared sensors were used in a single
scheme where all 9 body sensors are activated concurrently.
The sensor update frequencies correspond to the ones reported
in Section III-B4. We perform two runs per robot (CW and
CCW directions), for each sensor configuration. Throughout
the experiment, we employ real-time tracking as explained in
Section II-B. Odometry measurements are taken at a frequency
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Fig. 7. A qualitative overview of localization performance. Localization was
performed (i) with an extended Kalman filter (using 9 concurrently activated
infrared sensors), and (ii) with dead-reckoning (odometry).

A. Prorok et al., Indoor Navigation Research with the KIII Mobile Robot: An Experimental Baseline with a Case-Study on UWB Positioning, 2010



Laser Scanner (LIDAR)
• LIDAR: light detection and ranging 

• Measure the TOF of a pulse of light. 

• Coherent light (usually infrared). All the energy is 
concentrated in a narrow beam.  

• Distance can be computed by measuring the time 
of flight; e.g., for 30cm round-trip TOF is 0.002µs 

• Hardware: receiver/emitter pairs (channels); 
combined with rotating mirrors for sweeping. 

• Common usage: high-end research robots; 
autonomous vehicles 

• Advantages: very high sampling rates possible; no 
interference between emitted beams; precision 

• Disadvantages: moving parts (high energy usage); 
expensive, large, heavy; affected by weather
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* By Mike1024, via Wikimedia Commons



• The likelihood of data Z with associated positions X  for a given map 
(environment) M is given by:                          which can be determined 
through Maximum Likelihood estimators. 

LIDAR Sensor Model

!16

*image: Probabilistic Robotics; Thrun et al.

• Range finders have may have multiple components to their uncertainty 
models. The model depends on the environment, this is an example:

128 Chapter 6

zk∗
t zmax

Figure 6.3 “Pseudo-density”of a typical mixture distribution p(z k
t | xt, m).

4. Random measurements. Finally, range finders occasionally produce entirely
unexplained measurements. For example, sonars often generate phantom read-
ings when they bounce off walls, or when they are subject to cross-talk between
different sensors. To keep things simple, such measurements will be modeled
using a uniform distribution spread over the entire sensor measurement range
[0; zmax]:

prand(zk
t | xt,m) =

{ 1
zmax

if 0 ≤ zk
t < zmax

0 otherwise (6.12)

Figure 6.2d shows the density of the distribution prand.

These four different distributions are now mixed by a weighted average, defined by
the parameters zhit, zshort, zmax, and zrand with zhit + zshort + zmax + zrand = 1.

p(zk
t | xt,m) =

⎛

⎜⎜⎝

zhit

zshort

zmax

zrand

⎞

⎟⎟⎠

T

·

⎛

⎜⎜⎝

phit(zk
t | xt,m)

pshort(zk
t | xt,m)

pmax(zk
t | xt,m)

prand(zk
t | xt,m)

⎞

⎟⎟⎠ (6.13)

A typical density resulting from this linear combination of the individual densities is
shown in Figure 6.3 (with our visualization of the point-mass distribution pmax as a
small uniform density). As the reader may notice, the basic characteristics of all four
basic models are still present in this combined density.

p(
z i

| x
i)

zi

correct range  
with measurement noise

random measurements
unexpected dynamic 

objects

failures

p(Z |X, M, Θ)
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Laser Scanner (LIDAR)
• Turtlebot III Range Finder: 

‣ scanning area: 360° 

‣ resolution: 1° 

‣ detection range: 0.12 - 3.5m 

‣ price: < USD 500 
• Hokuyo UTM-30LX 

‣ scanning area: 240° 

‣ resolution: 0.25° 

‣ detection range: 0.002 - 30m 

‣ price: >  USD 5000 

• Velodyne VLS-128 

‣ scanning area: 360°  

‣ resolution: 0.11°; up to 9.6 mio. points per second 

‣ detection range: up to 300m 

‣ price: > USD 24’000
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Laser Scanner (LIDAR)

• Point clouds are collected (e.g., 1 mio. data points per second) 
• Disadvantages: price; energy consumption; size; does not work 

well in bad weather (e.g., rain)
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Vision
• Vision for robotics is concerned with different problems than classical 

computer vision: 

‣ must guarantee real-time, fast operation 

‣ perception is task-driven (less general) 

‣ vision in motion: streams (rather than still images) 

‣ applications: object tracking, visual-odometry, information gathering

!19Mobile Robot Systems — Lecture 4: Perception

RGB image raw depth segmentation

* image credit: N. Silberman NYU

optical flow



Fiducials
• Fiducial markers (AprilTag, U. Michigan, E. Olson et al.) 

‣ Place easy to recognize landmarks in your environment 

‣ AprilTags are conceptually similar to QR Codes (bar code) and use 
quad detection and a smart coding scheme. 

‣ A tag encodes between 4 and 12 bits 

‣ Detection of identity 

‣ Designed for high localization accuracy (3D pose w.r.t. camera): 6 
DOF localization of features from a single image. 

‣ Reference paper: AprilTag: A robust  
and flexible visual fiducial system;  
Edwin Olson; ICRA, 2011
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Mobile Robot & IoT
• Using fiducial markers to create a robotic-IoT setup.
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Leader-Follower Setup
• Using fiducial markers to find distance and bearing to leader robot.
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Whitzer, Kennedy, Prorok, Kumar; 2016

2x



Considerations
• Sensor response rating: 

‣ Dynamic range: spread between lower and upper limits of input values; 
often measured as a ratio of max/min input. 

‣ Resolution: min. distance between two values that can be detected by a 
sensor. 

‣ Linearity: behavior of output as input varies. 

‣ Frequency: speed at which sensor can provide readings. 

• Sensor performance: 

‣ Sensitivity (and cross-sensitivity): degree to which incremental change in 
target input signal changes output signal; cross-sensitivity is undesirable 

‣ Errors: accuracy and precision; random vs systematic error;  
 

• Other factors: price, energy consumption, size, weight…

!23

1 −
|error |

true
range

σ
accuracy: precision:
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Perceptual Pipeline
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scene 
 interpretationfeature extractionsignal processingsensing

• How to control robot behavior? 

‣ Proximal architecture: robot behavior is close to sensor readings 
(with actions being triggered by some low-level model). 

‣ Distal architecture: sensor readings are processed to generate a 
higher-level model that informs a robot’s scene interpretation. 

• Feature extraction is the process of generating higher-level 
perception. This is useful for long-term, more sophisticated tasks. 

‣ E.g., map building and route planning (see next lectures)



Odometry
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8.3 Light Sensors 91

Figure 8.4 Break beam shaft encoder mechanism.

Where have you seen break beam sensors? Images from movies might
come to mind, with crisscrossed laser beams and clever burglars making
their way through them. More realistically, one of the most common uses
of break beam sensing is not in plain sight, because it is packed inside motor
mechanisms and used to keep track of shaft rotation. Here is how it works.

8.3.7 Shaft Encoders

Shaft encoders measure the angular rotation of a shaft or an axle. They provideSHAFT ENCODER

position and/or velocity information about the shaft they are attached to. For
example, the speedometer measures how fast the wheels of the car are turn-
ing, and the odometer measures the number of rotations of the wheels. Both
speedometers and odometers use shaft encoding as the underlying sensing
mechanism.

In order to detect a turn, or a part of a turn, we have to somehow mark the
thing that is turning. This is usually done by attaching a round notched disk
to the shaft. If the shaft encoder uses a switch, the switch clicks every time
the shaft completes a full rotation. More commonly, a light sensor is used:
a light emitter is placed on one side of the disk, and a detector on the other,
in a break beam configuration. As the disk spins, the light from the emitter

92 8 Switch on the Light Simple Sensors

Figure 8.5 Reflectance-based shaft encoder mechanism.

reaches the detector only when the notched part of the disk passes in front of
it.

If there is only one notch in the disk, then every time the notch passes
between the emitter and the detector, this means the disk has completed one
full rotation. This is useful, but it allows for measuring with only a low level
of precision. If any noise or error is present, one or more turns might be
missed, and the encoder will thus be quite inaccurate.

To make the encoder more accurate as well as more precise, many notches
are cut into the disk. The break beam principle is still the same: whenever
the light gets through, it is sensed by the detector and counted. Figure 8.4
shows what the mechanism looks like. You can see that it is important to
have a fast sensor if the shaft turns very quickly. That is why a resistive sen-
sor would not be appropriate; it is comparatively slow, while an optosensor
works well for this propose, as we discussed earlier in this chapter. (If you
forgot, just remember that optosensors use light, which travels faster than
anything else.)

An alternative to cutting notches in the disk is to paint the disk with wedges
of alternating, contrasting colors. The best color choices are black (absorbing,
nonreflecting) and white (highly reflecting), as they provide the highest con-
trast and the best reflective properties. But in this case, since there are no

reflectance-based shaft encoderbreak-beam shaft encoder

• Application of  light sensors for speedometers / odometers 

• Shaft encoding is the underlying sensing mechanism.

* image credit: The Robotics Primer (Mataric)



Odometry
• How can we detect the direction of motion? 

• Quadrature encoder detects direction of motion. A 2nd detector is 
shifted by a phase of 90° that allows for determining the sense of 
rotation.
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Odometry

!27

axle length d

x

y

θ

u
ω

xt = [
x
y
θ]

Δy = Δs sin(θ + Δθ/2)

Δθ =
Δsr − Δsl

d
xt+1 = [

x
y
θ] +

Δs cos(θ + Δθ/2)
Δs sin(θ + Δθ/2)

Δθ

• Compute updated position based on left and right wheel readings.

Δx = Δs cos(θ + Δθ/2)
path traveled in last sampling interval:

current pose:

updated pose:

Δs =
Δsr + Δsl

2

traveled distance:
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Odometry Motion Model
• Integrate wheel encoder information over time to obtain odometry. 

• Challenge: drift and slippage. 

• Key question: How to model motion uncertainty?
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Robot Motion 107

δrot1

δtrans

δrot2

Figure 5.7 Odometry model: The robot motion in the time interval (t − 1, t] is approxi-
mated by a rotation δrot1, followed by a translation δtrans and a second rotation δrot2. The
turns and translation are noisy.

distributed; though technically the resulting values lie always in [−2b, 2b]. Finally,
sample triangular distribution in Table 5.4 implements a sampler for triangular dis-
tributions.

5.4 ODOMETRY MOTION MODEL

The velocity motion model discussed thus far uses the robot’s velocity to compute pos-
teriors over poses. Alternatively, one might want to use the odometry measurements
as the basis for calculating the robot’s motion over time. Odometry is commonly
obtained by integrating wheel encoders information; most commercial robots make
such integrated pose estimation available in periodic time intervals (e.g., every tenth
of a second). Practical experience suggests that odometry, while still erroneous, is
usually more accurate than velocity. Both suffer from drift and slippage, but veloc-
ity additionally suffers from the mismatch between the actual motion controllers and
its (crude) mathematical model. However, odometry is only available in retrospect,
after the robot moved. This poses no problem for filter algorithms, but makes this
information unusable for accurate motion planning and control.

* Probabilistic Robotics; Thrun et al.

x̄t position from odometry measurements

ut = (xt−1, x̄t) relative motion information

xt = [x, y, θ] robot pose at time t

• Odometry model for a differential drive robot: Given a time 
interval, approximate motion in that interval by two rotations 
and one translation, all of which are noisy: (δrot1, δtrans, δrot2)



Odometry Motion Model
• Idea: use error distributions defined over rotational and translational 

movement to evaluate likelihood of a given robot pose.
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* Probabilistic Robotics; Thrun et al.

α1, α2, α3, α4 are robot-specific parameters

108 Chapter 5

1: Algorithm motion model odometry(xt, ut, xt−1):

2: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄
3: δtrans =

√
(x̄− x̄′)2 + (ȳ − ȳ′)s

4: δrot2 = θ̄′ − θ̄ − δrot1

5: δ̂rot1 = atan2(y′ − y, x′ − x)− θ
6: δ̂trans =

√
(x− x′)2 + (y − y′)2

7: δ̂rot2 = θ′ − θ − δ̂rot1

8: p1 = prob(δrot1 − δ̂rot1,α1δ̂rot1 + α2δ̂trans)

9: p2 = prob(δtrans − δ̂trans,α3 δ̂trans + α4(δ̂rot1 + δ̂rot2))

10: p3 = prob(δrot2 − δ̂rot2,α1δ̂rot2 + α2δ̂trans)

11: return p1 · p2 · p3

Table 5.5 Algorithm for computing p(xt | ut, xt−1) based on odometry information.
Here the control ut is

5.4.1 Closed Form Calculation

This section defines an alternative motion model that uses odometry measurements
in lieu of controls. Technically, odometry are sensor measurements, not controls. To
model odometry as measurements, the resulting Bayes filter would have to include the
actual velocity as state variables—which increases the dimension of the state space.
To keep the state space small, it is therefore common to simply consider the odometry
as if it was a control signal. In this section, we will do exactly this, and treat odometry
measurements as controls. The resulting model is at the core of many of today’s best
probabilistic robot systems.

Let us define the format of our control information. At time t, the correct pose of
the robot is modeled by the random variable xt. The robot odometry estimates this
pose; however, due to drift and slippage there is no fixed coordinate transformation
between the coordinates used by the robot’s internal odometry and the physical world
coordinates. In fact, knowing this transformation would solve the robot localization
problem!

prob(a, b)
Error distribution over a with mean 0 and variance b:
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(a) (b) (c)

Figure 5.8 The odometry motion model, for different noise parameter settings.

The odometry model uses the relative information of the robot’s internal odometry.
More specifically, In the time interval (t − 1, t], the robot advances from a pose xt−1

to pose xt. The odometry reports back to us a related advance from x̄t−1 = (x̄ ȳ θ̄)
to x̄t = (x̄′ ȳ′ θ̄′). Here the bar indicates that these are odometry measurements,
embedded in a robot-internal coordinate whose relation to the global world coordinates
is unknown. The key insight for utilizing this information in state estimation is that the
relative difference between x̄t−1 and x̄t, under an appropriate definition of the term
“difference,” is a good estimator for the difference of the true poses xt−1 and xt. The
motion information ut is, thus, given by the pair

ut =
(

x̄t−1

x̄t

)
(5.33)

To extract relative odometry, ut is transformed into a sequence of three steps: a rota-
tion, followed by a straight line motion (translation) and another rotation. Figure 5.7
illustrates this decomposition: the initial turn is called δrot1, the translation δtrans, and
the second rotation δrot2. As the reader easily verifies, each pair of positions (s̄ s̄′)
has a unique parameter vector (δrot1 δtrans δrot2)T , and these parameters are suffi-
cient to reconstruct the relative motion between s̄ and s̄′. Thus, δrot1, δtrans, δrot2 is a
sufficient statistics of the relative motion encoded by the odometry. Our motion model
assumes that these three parameters are corrupted by independent noise. The reader
may note that odometry motion uses one more parameter than the velocity vector de-
fined in the previous section, for which reason we will not face the same degeneracy
that led to the definition of a “final rotation.”

Before delving into mathematical detail, let us state the basic algorithm for calculating
this density in closed form. Table 5.5 depicts the algorithm for computing p(xt |
ut, xt−1) from odometry. This algorithm accepts as an input an initial pose xt−1, a
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δrot1

δtrans

δrot2

Figure 5.7 Odometry model: The robot motion in the time interval (t − 1, t] is approxi-
mated by a rotation δrot1, followed by a translation δtrans and a second rotation δrot2. The
turns and translation are noisy.

distributed; though technically the resulting values lie always in [−2b, 2b]. Finally,
sample triangular distribution in Table 5.4 implements a sampler for triangular dis-
tributions.

5.4 ODOMETRY MOTION MODEL

The velocity motion model discussed thus far uses the robot’s velocity to compute pos-
teriors over poses. Alternatively, one might want to use the odometry measurements
as the basis for calculating the robot’s motion over time. Odometry is commonly
obtained by integrating wheel encoders information; most commercial robots make
such integrated pose estimation available in periodic time intervals (e.g., every tenth
of a second). Practical experience suggests that odometry, while still erroneous, is
usually more accurate than velocity. Both suffer from drift and slippage, but veloc-
ity additionally suffers from the mismatch between the actual motion controllers and
its (crude) mathematical model. However, odometry is only available in retrospect,
after the robot moved. This poses no problem for filter algorithms, but makes this
information unusable for accurate motion planning and control.

We assume independent error sources:

xt = (x′�, y′ �, θ′�)

xt−1 = (x, y, θ)

δrot1 = arctan2(y′�− y, x′�− x)

δrot2 = θ′�− θ − δrot1

δtrans = (x′�− x)2 + (y′�− y)2

that characterize the noise in robot motion:



Odometry Motion Model
• Algorithm to compute likelihood of a pose for given odometry 

information:
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p(xt |ut, xt−1)

ut = (xt−1, x̄t)

̂δ

δ

xt−1

xt

x̄t pose inferred from odometry

pose to evaluate

1. Compute                            from odometry information 

2. Compute                             from   

3. Return:

ut = (xt−1, x̄t)
(xt−1, xt)

δrot1, δrot2, δtrans

̂δrot1, ̂δrot2, ̂δtrans

p1 ⋅ p2 ⋅ p3



How is a Sensor Model Useful?
• Likelihood of a position (equivalent to conditional probability of 

obtaining measurement z given that the true value is x):
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ℒ(x) = p(z |x)

• Now, let us find the ‘most likely’ pose:

̂x = arg max
x

ℒ(x)

The Likelihood function

More formally, the likelihood is defined as

L(θ) = p(z|θ)
• the likelihood is the conditional probability of obtaining measurements 
z = (z1, z2, …, zn) given that the true value is θ

p(z|θ)

θ
z

Note, in general
• The likelihood is a function of θ, but it is not a probability distribution over θ, 
and its integral with respect to θ does not (necessarily) equal one.
• It would be incorrect to refer to this as “the likelihood of the data”.

Example: Gaussian Sensors

Likelihood is a Gaussian response in 2D for true value θ = x
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Z1

Z2

x

L(θ) = p(z|θ)

Given observations z and a likelihood function          , the Maximum Likelihood
estimate of θ is the value of θ which maximizes the likelihood function

L(θ)

θ̂ = argmax
θ
L(θ)

Now, look at several problems involving combining 
multiple measurements from Gaussian sensors

x

probability of z (given x), or, likelihood 
of x (given that z was observed)



Maximum Likelihood Estimation
• Suppose we have two independent measurements z1 and z2 of 

position x, from two sensors with same variance. The sensor error is 
modeled as a Normal:
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ℒ(x) = p(z1, z2 |x) = p(z1 |x)p(z2 |x)

MLE Example 1

Suppose we have two independent sonar measurements (z1, z2) of 
position x, and the sensor error may be modelled as p(zi|θ) = N(θ, σ2), 
determine the MLE of x.

Since the sensors are independent the likelihood is

and since the sensors are Gaussian

Solution

L(x) = p(z1, z2|x) = p(z1|x) p(z2|x)

L(x) ∼ e−
(z1−x)

2

2σ2 × e−
(z2−x)

2

2σ2 = e
−(z1−x)

2+(z2−x)
2

2σ2

ignore irrelevant normalization constants

z1 z2

p(z1|x) p(z2|x)

L(x) ∼ e−
(z1−x)

2+(z2−x)
2

2σ2

x

x̄=
z1 + z2

2L(x) ∼ e−
(x−x̄)2

σ2

− lnL(x) = ((z1− x)2+ (z2− x)2)/(2σ2)
= (2x2 − 2x(z1+ z2)+ z21 + z22)/(2σ

2)

= (x − x̄)2/(σ2)+ c(z1, z2)

with

p(z |x) = 𝒩(x, σ2)

• The likelihood is hence expressed as:



Maximum Likelihood Estimation
• We ignore normalization constants to compute:
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Note

• the likelihood is a Gaussian

• the variance is reduced (cf the original sensor variance)

Z1 Z2

p(z1|x) p(z2|x)
L(x) ∼ e−

(x−x̄)2

σ2

Maximum likelihood estimate of x

x̂ = argmax
x

L(x)

negative log likelihood

Compute min by differentiating wrt x

x̂= x̄=
z1 + z2

2

ML x̂= argmin
x
{− lnL(x)}

d{− lnL(x)}
dx

= 2(x − x̄)/(σ2) = 0

− lnL(x) = (x − x̄)2/(σ2)+ c(z1, z2)

ℒ(x) ∼ e− (x − x̄)2

σ2 x̄ =
z1 + z2

2

ℒ(x) ∼ e− (z1 − x)2

2σ2 × e− (z2 − x)2

2σ2

with

The likelihood is a Gaussian and 
the variance is reduced.

This is the foundation of sensor 
fusion.



Maximum Likelihood Estimation
• MLE trick: we minimize the negative log-likelihood, and then 

differentiate w.r.t. x:

!34Mobile Robot Systems — Lecture 4: Perception

̂x = arg max
x

ℒ(x) ̂x = arg min
x

{−lnℒ(x)}

̂x = x̄ =
z1 + z2

2

Note

• the likelihood is a Gaussian

• the variance is reduced (cf the original sensor variance)

Z1 Z2

p(z1|x) p(z2|x)
L(x) ∼ e−

(x−x̄)2

σ2

Maximum likelihood estimate of x

x̂ = argmax
x

L(x)

negative log likelihood

Compute min by differentiating wrt x

x̂= x̄=
z1 + z2

2

ML x̂= argmin
x
{− lnL(x)}

d{− lnL(x)}
dx

= 2(x − x̄)/(σ2) = 0

− lnL(x) = (x − x̄)2/(σ2)+ c(z1, z2)

̂x = x̄

⟶



Further Reading

Books that cover fundamental concepts: 

• Sensors for Mobile Robots, H. R. Everett, 1995 

• Probabilistic Robotics, S. Thrun et al., 2006 

• Elements of Robotics, F Mondada et al., 2018 

• Autonomous Mobile Robots, R Siegwart et al., 2004
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