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In this Lecture

• Motivation: task allocation in nature 

• Assignment algorithms: 

‣ Hungarian method 

‣ Swarm distribution mechanisms 

‣ Market-based 

‣ Threshold-based 

• Credit: 

‣ Threshold-based example from A. Martinoli’s course at EPFL
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Task Allocation vs. Division of Labor
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In nature: physical castesPhysical Castes (Wilson, E. O., 1976)

In Pheidole 
guilelmimuelleri the 
minors show ten times 
as many different 
basic behaviors as the 
majors
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Minor worker
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Feed inside nest
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Feed on larva or pupa
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*image credit: Alcherio Martinoli

Behavioral repertoire of majors 
and minors: In Pheidole 
guilelmimuelleri the minors show 
ten times as many different basic 
behaviors as the majors.  

average fraction of time spent in a behavior



Task Allocation vs. Division of Labor
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Temporal Polyethism

Cleaning cells

Tending brood

Tending Queen

Eating pollen

Feeding & grooming nestmates

Ventilating nest
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Storing nectar

Packing pollen
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Age of bee (days)

Behavioral changes in worker bees 
as a function of age

Young individuals work on 
internal tasks (brood care 
and nest maintenance). 
Older individuals forage for 
food and defend the nest.

6

In nature: temporal polyethism

Behavioral change in worker bees as a 
function of age; young individuals work on 
internal tasks (brood care and nest 
maintenance), older workers forage for 
food and defend the nest.

*image credit: Alcherio Martinoli
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Mobility on DemandMonitoring

Situational AwarenessWarehousing and Product Delivery

Task Allocation vs Division of Labor
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In robotics:
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Assignment Problems
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Assignment Problems

Mobile Robot Systems — Lecture 8: Multi-Robot Systems - Task Allocation



!8

?

Assignment Problems

Mobile Robot Systems — Lecture 8: Multi-Robot Systems - Task Allocation



!9

?

Assignment Problems
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Assignment Problems
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[Kumar et al.; UPenn]



The Assignment Problem
• What is a task? 

‣ Discrete: e.g., pickup parcel X from location Y, … 

‣ Continuous: e.g., monitor building X, search area Y… 

‣ Key assumption: task independence  
(dependent tasks ⟶ scheduling) 

• Assignment methods are drawn from multiple fields: operations 
research, economics, scheduling, network flows, combinatorial 
optimization. 

• Classical problem formulation: bipartite graph matching
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The Assignment Problem
• What is to be optimized? Utility: an individual robot knows the 

value of executing a certain action. 

• Utility, depending on context: value, cost, fitness. Knowing the true 
(exact) utility is key to finding an optimal assignment. 

• Various formulations exist. For example:
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U(R, T ) = {QRT − CRT

0
if R is capable of executing T and QRT > CRT

otherwise

U(1,1)

U(2,1)

R1

R2

T1



The Linear Assignment Problem
• In an optimal assignment problem, maximize the system performance:
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𝒰 =
m

∑
i=1

n

∑
j=1

xij U(i, j) subject to

m

∑
i=1

xij = 1, 1 ≤ j ≤ n

m

∑
j=1

xij = 1, 1 ≤ i ≤ m

find xij that maximize:

i
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U(i, j)

bipartite perfect matching (complete graph)

robotstasks



The Hungarian Algorithm
• Published by Kuhn in 1955, based on the earlier works of two Hungarian 

mathematicians: Dénes Kőnig and Jenő Egerváry. 

‣ O(n3) running time is possible. 

• Steps (input is an n x n by matrix with non-negative elements): 

‣ Step 1: Subtract row minima; For each row, find the lowest element and 
subtract it from each element in that row. 

‣ Step 2: Subtract column minima; Similarly, for each column, find the lowest 
element and subtract it from each element in that column. 

‣ Step 3: Cover all zeros with a minimum number of lines; Cover all zeros in 
the resulting matrix using a minimum number of horizontal and vertical 
lines. If n lines are required, an optimal assignment exists among the zeros. 
The algorithm stops. If less than n lines are required, continue with Step 4. 

‣ Step 4: Create additional zeros; Find the smallest element (call it k) that is 
not covered by a line in Step 3. Subtract k from all uncovered elements, 
and add k to all elements that are covered twice. Go to Step 3.
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The Hungarian Algorithm - Example
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*Example from www.hungarianalgorithm.com

Step 0: robot-task 
assignment costs

T1 T2 T3 T4

R1 82 83 69 92

R2 77 37 49 92

R3 11 69 5 86

R4 8 9 98 23

T1 T2 T3 T4

R1 13 14 0 23

R2 40 0 12 55

R3 6 64 0 81

R4 0 1 90 15

Step 1: subtract row 
minima

-69

-37

-5

-8

T1 T2 T3 T4

R1 13 14 0 8

R2 40 0 12 40

R3 6 64 0 66

R4 0 1 90 0

Step 2: subtract 
column minima

-15-0-0-0

Step 3: cover all zeros 
with a minimum of lines

T1 T2 T3 T4

R1 13 14 0 8

R2 40 0 12 40

R3 6 64 0 66

R4 0 1 90 0

Step 4: create 
additional zeros

T1 T2 T3 T4

R1 7 8 0 2

R2 40 0 18 40

R3 0 58 0 60

R4 0 1 96 0

-6:  unmarked elements 
+6: twice marked elements

T1 T2 T3 T4

R1 13 14 0 8

R2 40 0 12 40

R3 6 64 0 66

R4 0 1 90 0

Step 3: cover all zeros 
with a minimum of lines

T1 T2 T3 T4

R1 7 8 0 2

R2 40 0 18 40

R3 0 58 0 60

R4 0 1 96 0

T1 T2 T3 T4

R1 7 8 0 2

R2 40 0 18 40

R3 0 58 0 60

R4 0 1 96 0

Stop: An optimal 
assignment exists.

4 lines found

3 lines found

unique, optimal  
assignment found



Application: Vehicle-to-Passenger Assignment
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Fig. 2. Analysis of Manhattan taxicab dataset for data collected on Friday
June 1st, 2016. From all rides recorded in that 24 h time-interval, we only
select rides that start and end on the island of Manhattan. We show the
number of passenger pick-ups made per 20 s intervals (green curve). We
also show the total number of occupied taxis at any given moment (blue
curve). The data is smoothed over 30 min rolling windows, and the shaded
areas show the corresponding standard deviations.

(side information) is known, and are explicitly modeled on
this assumption [13]. Such approaches have the downside
that any inconsistency or change in the attacker’s side
information leads to an immediate threat (and privacy is
no longer guaranteed). Indeed, a much stronger definition
of privacy is one that is independent of any current or
future attacker model. Consequently, there has been much
interest in differentially private formalisms that abstract from
adversary’s side information [6].

A. Differential Privacy

Stemming from the domain of statistical databases, the
goal of differential privacy is to protect individual entries in
a given database (in our case, passenger drop-off locations),
while simultaneously allowing aggregate information about
the database to be released through a query (in our case,
a query that outputs the vehicles’ origin locations). The
key requirement is that changing an individual’s entry in
the database (i.e., a vehicle origin location that corresponds
to a specific passenger drop-off location) should not have
a significant affect on the outcome of the query. More
formally, if the probability that a query returns a value from
a database lies within an eϵ multiplicative bound of the
probability that the same query returns the same value from
an adjacent 6 database, then the query is said to produce
ϵ-indistinguishable outcomes [7]. Notably, this definition is
void of any threat model, and hence, is independent of any
side information that the attacker might own. In order to
preserve ϵ-indistinguishability, privacy mechanisms consist
of adding random noise (commonly drawn from a Laplace
distribution) to the query output.

B. Geo-Indistinguishability

The location privacy formalism put forward by Andres et
al. [3], termed geo-indistinguishability, is a generalization of
differential privacy to the metric domain. In the following, we
introduce the main concepts with an adapted notation. Geo-
indistinguishability considers a query that exposes a position

6Two databases are adjacent if they differ by one entry.

x from a database. The privacy leakage can be formulated
as

L = sup
x,x′,x̃

∣∣∣∣ln
P(x̃|x)

P(x̃|x′)

∣∣∣∣ (1)

where x is a true position stored in the original database, x′

is the corresponding altered position stored in an adjacent
database, and x̃ is an obfuscated position. The idea of geo-
indistinguishability is to ensure that two positions x and x′

are indistinguishable when they are close to each other. In
other words, a user enjoys ϵr-privacy within a radius r, if
any two locations that are at most r apart produce query
results with similar distributions.

Definition 1 (Adapted from Def. 3.1 [3]: Geo-indistinguisha-
bility). A mechanism that returns x̃, for a given x or a given
x′, satisfies ϵ-geo-indistinguishability iff for all x and x′:

L = sup
x,x′,x̃

∣∣∣∣ln
P(x̃|x)

P(x̃|x′)

∣∣∣∣ ≤ ϵ sup
x,x′

||x− x′||2 (2)

Building on prior results [5], the authors argue that the
obfuscated position x̃ is to be drawn from a two-dimensional
Laplace distribution inversely scaled by ϵ, and centered at
x. Formally, we have that x̃ ∼ L(x, ϵ), and we define the
corresponding probability density function as PL(x̃|x, ϵ). In
order to satisfy ϵ-geo-indistinguishability, we implement this
proposed privacy mechanism. 7

Fig. 3 demonstrates the effect of this mechanism, applied
to the coordinates of the Flatiron building in Manhattan. We
observe how, as the scale of the Laplacian increases (i.e., ϵ
decreases), the noise (and hence privacy) increases. In the
context of vehicle routing, it becomes clear that increased
privacy comes at the cost of performance deterioration due to
an obfuscation of vehicle positions that leads to suboptimal
vehicle routing. In the following sections, we discuss this
effect and propose a method that enables a minimization of
this loss of performance.

V. BATCH VEHICLE ROUTING UNDER PRIVACY

The goal is to assign and route vehicles to passengers such
that each passenger is picked up, while minimizing the total
assignment cost. We formalize this vehicle routing problem
as finding the optimal assignment solution A⋆:

A⋆ = argmin
A

N∑

i=1

M∑

j=1

cijaij (3)

with constraints
∑N

i aij ≤ 1 and
∑M

j aij ≤ 1 and
∑N

i

∑M
j aij = min(N,M). The element a⋆ij of matrix

A⋆ specifies whether the final solution routes vehicle i to
passenger j.

The system above is a linear sum assignment problem,
also known as the problem of minimum weight matching
in bipartite graphs. We use the Hungarian algorithm (or
Kuhn-Munkres algorithm), to solve the system and find an
optimal assignment A⋆. This assignment is deterministic,

7We note that Th. 4.1 of [3] proves that under double precision with 16
significant digits, the discretization of noisy data points onto a grid does
not incur a loss of privacy.

Publicly available data: 
• OpenStreetMap for whole area 
• Convert to graph (4302 vertices, 9414 edges) 
• Cost of an assignment ~ distance (time) 
• NYC public taxicab dataset

Goal: find optimal assignment matrix A*

Privacy-Preserving Vehicle Assignment for Mobility-on-Demand Systems

Amanda Prorok and Vijay Kumar

Abstract— Urban transportation is being transformed by
mobility-on-demand (MoD) systems. One of the goals of MoD
systems is to provide personalized transportation services to
passengers. This process is facilitated by a centralized operator
that coordinates the assignment of vehicles to individual pas-
sengers, based on location data. However, current approaches
assume that accurate positioning information for passengers
and vehicles is readily available. This assumption raises privacy
concerns. In this work, we address this issue by proposing a
method that protects passengers’ drop-off locations (i.e., their
travel destinations). Formally, we solve a batch assignment
problem that routes vehicles at obfuscated origin locations
to passenger locations (since origin locations correspond to
previous drop-off locations), such that the mean waiting time
is minimized. Our main contributions are two-fold. First,
we formalize the notion of privacy for continuous vehicle-to-
passenger assignment in MoD systems, and integrate a privacy
mechanism that provides formal guarantees. Second, we present
a polynomial-time iterative version of the Hungarian algorithm
to allocate a redundant number of vehicles to a single passenger.
This algorithm builds on the insight that even during peak
rush hour there are unoccupied (redundant) traveling vehicles.
This strategy allows us to reduce the performance deterioration
induced by the privacy mechanism. In particular, it enables
the exploration of the trade-off between privacy levels, waiting
time, and deployed fleet size. We evaluate our methods on
a real, large-scale data set consisting of over 11 million taxi
rides (specifying vehicle availability and passenger requests),
recorded over a month’s duration, in the area of Manhattan,
New York. Based on current traffic statistics, our evaluations
indicate that privacy can be achieved without incurring a
significant loss of performance, and that this loss can be further
controlled by varying operator or user preferences.

I. INTRODUCTION

The availability of location-based services is transforming
a wide variety of applications. This development is being fu-
eled by the increasing use of personal mobile communication
devices (smart phones) that are endowed with positioning
sensors, such as GPS. Importantly, the availability of precise
positioning information in dense urban settings, and the
joint decrease in communication costs, has paved the way
for mobility-on-demand systems (MoD), such as Lyft 1 and
Uber 2. The potential of improved urban mobility systems
has been largely acknowledged due to the possibility of
reducing congestion, vehicle service cost and emissions [12].
Importantly, such services also respond to the needs of indi-
viduals, for example by reducing travel cost (through vehicle-

We acknowledge the support of NSF grants IIS-1426840 and CNS-
1521617, ARO grant W911NF-13-1-0350, and TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA. All authors are with the GRASP Labo-
ratory at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
{prorok|kumar}@seas.upenn.edu

1http://www.lyft.com/
2http://www.uber.com/

29 km/h

8 km/h

Fig. 1. Topological representation of Manhattan as computed by our
framework described in Sec. III. The edges of the graph are colored to
represent the expected traversal speed. We zoom into the area around the
Flatiron building, located at 40°44’ 27.8196” N 73°59’ 22.9164” W.

sharing) and reducing waiting times (through centralized
vehicle coordination) [2].

However, the use of location-based services to facilitate
MoD systems poses a privacy threat to the individual par-
ticipants. Indeed, vehicles reporting the exact coordinates
of a user’s drop-off location (travel destination) may reveal
sensitive information about the user’s habits, and hence,
may deter users from using such systems. Consequently,
we ask ourselves what were to happen if vehicle locations
were not reported precisely, but rather imprecisely. Indeed,
by perturbing the vehicle locations, it is expected that the
user will enjoy greater privacy — at the cost of a loss of
service quality. Hence, our goal is to propose a solution that
protects user travel destinations, thus ensuring privacy, while
simultaneously minimizing the loss of MoD service quality.

In this work, we consider a fleet of vehicles and passengers
demanding to be picked up at specific locations. We pose this
problem as a batch assignment of vehicles to passengers,
similar to the approach taken in [2]. This assignment is
facilitated by a centralized operator that collects all customer
requests, i.e. the locations at which a vehicle is requested.
Once a passenger is assigned a vehicle, she communicates
her travel destination to her vehicle (by-passing the central
operator). Upon completion of the passenger transport, the
vehicle immediately communicates its availability to the
central operator and specifies its current location. Since doing
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The Hungarian Algorithm
• Assumptions when using an assignment algorithm such as the Hungarian method: 

‣ Costs (utilities) are known at a centralized computation unit. 

‣ Costs (utilities) are deterministic (no noise). 

‣ Costs (utilities) do not change (constant). 
‣ 1-to-1 assignment (one robot per task, one task per robot). 

• Complications: 

‣ Uncertainty around true utility U(i,j) 

‣ Dynamic environment (changes in utility / agents) 

‣ Robot / task dependencies (robot heterogeneity / redundancy). 

• Consequences: 

‣ Sub-optimality 

‣ Problems can become NP-hard (for combinatorial matching problems) 

‣ Practically infeasible (centralized solutions may not be possible)
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all of these issues are very 
common in robotics!!



Assignment of Robot Coalitions
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Some tasks require more than 1 robot.

How many ways to partition n robots into k non-empty subsets?

Given by the Stirling number of the second kind.

E.g.: Ten robots, 5 tasks:  S(10,5)  = 42’525



Assignment of Robot Coalitions
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Set Partitioning Problem: Given a finite set E, a family F of acceptable 
subsets of E, and a utility function                      , find a maximum-utility 
family X of elements in F such that X is a partition of E.  

u : F ↦ ℝ+

⋃
x∈X

= E

y⋂z = ∅ ∀y, z ∈ X, y ≠ z

The problem of forming robot coalitions:

robot subsets are mutually disjoint

the union of subsets is equivalent to the ground set.

The set-partitioning problem is strongly NP-hard. [Garey and Johnson; 1978]

E is the ground set (all robots) and X is a family of subsets.

… One potential solution: relaxation of the problem to the continuous domain.



Countable vs Uncountable Systems
• Difference between a multi-robot system and a robot swarm? 

• Swarms are larger, but how large…? 

• The method is the key!

!20

• redistribution of robots among tasks 
• method: mean-field approach 
• approximative, but fast

• robot-to-task allocation 
• method: combinatorial approach 
• exact, but computationally demanding
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Redistribution of a Swarm of Robots
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Example: monitor geographical sites

task 1

task 2

task 3

task 4

task 5

transitioning 
frequency



Redistribution of a Swarm of Robots
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Model: connected tasks
task 1

task 2

task 3

task 4

task 5



Redistribution of a Swarm of Robots
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What proportion of robots 
 of each kind?

*note: for the purpose of this lecture, assume non-overlapping robot traits
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Model: connected tasks
task 1

task 2

task 3

task 4

task 5



Redistribution of a Swarm of Robots
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Distribution dynamics:

robots 
M x 1

rates 
M x M

ẋ(s) = K(s)x(s)
⎬ ⎬

k(s)?ij

change in distribution of  
robots of type (s) over tasks

⎬

Insight: we can model the distribution dynamics of the robot 
swarm as a linear dynamical system!

(s): robot species 

distribution of robots over taskstransition rate matrix

Mobile Robot Systems — Lecture 8: Multi-Robot Systems - Task Allocation

System state, e.g.: x = [0.3, 0.2, 0.1, 0.1, 0.3]⊤

proportion of swarm at task 1

Note: if matrix K has certain properties, this system is stable.



Redistribution of a Swarm of Robots
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Robot distribution dynamics:

Methods:  

Solution: x(s)(t) = eK
(s)t x(s)

0

Given a desired robot distribution 
Find transition rates                  that are fastest to satisfy    

Since the total number of robots and the number of robots
per species is conserved, the system in Eq. 3 is subject to the
constraints

X
⊤ · 1 = [N (1), N (2), . . . , N (S)]⊤ (6)

with X ≽ 0, (7)

where ≽ is an element-wise greater-than-or-equal-to operator.

C. Problem Statement

Our aim is to redeploy the robots of each species, distributed
according to X(0) initially, so that a desired trait distribution
Y⋆ is reached. As described in the introduction, we will
consider two goals. A goal consists of a set of admissible trait
distributions, and is described by a function G : N+ M×U →
Ω, where Ω is the set of sets of matrices of size M ×U . The
goal function G takes as input a target trait distribution Y⋆

and returns a set of admissible trait distributions G(Y⋆).
We study the following two goal functions in detail.

• G1(Y⋆) = {Y | Y⋆ = Y}: This goal is achieved by
a trait distribution that is exactly equal to the target trait
distribution. Thus, the robots must organize themselves
among tasks such that the exact number of traits is met
for each task.

• G2(Y⋆) = {Y | Y⋆ ≼ Y}: This goal is achieved by
trait distributions that are equal or greater than the target
trait distribution. Thus, robots can organize themselves
such that there is an excess of traits for any task.

Finally, the problem consists of finding an optimal rate matrix
K(s)⋆ for each species s so that the goal is reached as fast as
possible:

K(s)⋆, τ⋆ = argmin
K(s),τ

τ (8)

such that X(τ⋆) ·Q ∈ G(Y⋆) (9)

The solution leads to a robot configuration X(τ⋆) that satisfies
Eq. 9, subject to Eq. 6 and Eq. 7. In other words, by computing
optimal rates, we are centrally synthesizing the feedback
policy based on the abstract state information X(0). We will
initially assume that this information can be gathered centrally,
and that the control input K(s)⋆ can be broadcast to the
swarm. Later, in Section V, we see how to infer the abstract
state information using local estimators, enabling the robots
to synthesize the feedback policy in a decentralized manner.

III. DIVERSITY METRIC

Since the desired state of our system is solely de-
scribed through Y⋆, the corresponding final robot distribution
X(τ⋆) = X⋆ that achieves the goal G(Y⋆) is not known
a priori. In particular, there may be several X⋆ that satisfy
Eq. 9 – this is true for both goals G1 and G2. Hence, we
pose the question: Can we infer properties of the species-

trait matrix Q that quantify how easy it is to find a solution
X⋆ that reaches G(Y⋆)? In the following, we show how Q

embodies the diversity of the robot community, and how we
can quantitatively evaluate the diversity to make conclusions
about the system’s performance.

A. Definitions

Given an unlimited number of robots per species, it may be
possible to reach any given goal G(Y⋆) with a subset of the
original robot species (independent of the target trait distribu-
tion Y⋆). We call the species belonging to an inclusion-wise
minimal subset the minspecies, and we refer to the size of
this subset as the minspecies cardinality of the system. More
formally, we introduce the following terminology:

Definition 1 (Minspecies): In a robot community described
by a species-trait matrix Q, a minspecies set is a subset of
rows of Q with minimal cardinality, such that the system can
still reach the goal G(Y⋆). We represent minspecies by a
matrix Q̂ containing a subset of the original rows of Q such
that for any Y⋆ there exists at least one robot distribution X̂
for which X̂Q̂ ∈ G(Y⋆).

Definition 2 (Minspecies cardinality): The minspecies car-
dinality of a robot community is given by the cardinality of
the minspecies set. It is a function DG : {0, 1}S×U → N+

that takes a species-trait matrix Q as input, and returns the
minimum number of rows of Q that are needed to reach
G(Y⋆) for any Y⋆.

B. Implementation

In this section, we develop the minspecies cardinality of
our two goals G1 and G2. In particular, we demonstrate that
for both goals, the minspecies cardinality is a meaningful
quantitative measure of the constraint in Eq. 9.

Proposition 1: The minspecies cardinality with respect to
goal G1 is

DG1(Q) = rank(Q) (10)

This implementation of the minspecies cardinality is directly
related to the concept of algebraic independence, and hence,
we use the specialized term eigenspecies (as previously intro-
duced in [22]).

Proof: The admissible trait distribution set contains a sin-
gle target trait distribution, Y⋆, and thus, Eq. 9 is equivalent
to Y⋆ = X⋆Q. The matrix Q⊤ can be rank-factorized into
the product of two matrices A and Q̂ such that Q⊤ = Q̂⊤A⊤

with Q̂ containing a subset of the rows of Q [25]. Since
Y⋆ = X⋆Q = X⋆AQ̂, there exists a robot distribution
X̂ = X⋆A for which X̂Q̂ = Y⋆. Hence, as Q̂ has minimal
size (due to the rank-factorization), Q̂ is a minspecies matrix.

Indeed, the rank of Q quantifies the number of non-collinear
species in Q that span the solution space of the equation
X⋆Q = Y⋆ (with X⋆ unknown):

• If rank(Q) < S, the system is underdetermined, and
an infinite number of solutions X⋆ will satisfy Eq. 9.
In other words, at least one species in the system can
be replaced by a combination of the other species. As
the rank decreases, the redundancy of the community
increases.

• If rank(Q) = S, there is only one solution X⋆ that
satisfies Eq. 9. In other words, no species in the system
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x(s)?
x(s)?

1. Explicit optimization; [Prorok 2016] 
2. Approximation of K; semi-definite programming [Berman 2009] 
3. Stochastic optimization [Matthey 2009, Hsieh 2008]

robots 
M x 1

rates 
M x M

ẋ(s) = K(s)x(s)

⎬ ⎬
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Controller Synthesis
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• Probabilistic controller is immediate 
• Deterministic controller can also be derived 
• Architecture: both open-loop and closed-loop possible

k(s)?ij
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We extract rates for task-to-
task transitions      , and 
directly infer the switching 
probability.



Redistribution of a Heterogeneous Swarm
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[Prorok et al.; 2016]



Redistribution of a Heterogeneous Swarm
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[Prorok et al.; 2016]



Market-Based Coordination
• Robots: “self-interested agents that operate in a virtual economy” 

• Tasks: “commodities of measurable worth that can be traded”

!29Mobile Robot Systems — Lecture 8: Multi-Robot Systems - Task Allocationapproach in which robots compete in auctions for each
task of visiting a site. After estimating their resource usage
for an offered task and submitting bids based on those
expected costs, the robot with the best bid is awarded a
contract for that site.

Suppose that we offer a maximum reward of $50 for
each task and that robots incur a cost of $2 for each meter
of travel (since the resource of concern is energy con-
sumed). This $50 is a reserve price that essentially says that
the task should only be attempted if the site can be reached
by increasing one’s path length by less than 25 m. Further
suppose that a robot A is only 5 m from a site S. Since A
would have to spend $10 to complete the task, it bids $10.
Meanwhile, a robot B that is 10 m from the site bids $20. A
is awarded the contract because it can perform the task
more efficiently and for less than the reserve price.

This simple example illustrates the basic mechanism of
a market-based approach to coordination. As the problem
increases in complexity with the addition of more robots,
more resources (e.g., time, network bandwidth, computing
power, sensors, etc.), added constraints between the tasks,
dynamically changing tasks, and so forth, the coordination
approach requires added functionality to produce efficient
solutions. We use this distributed sensing scenario
throughout the remainder of the paper to illustrate the
complexities of coordination and the diversity of market-
based approaches.

The earliest examples of market-based multiagent
coordination appeared in the literature over 30 years ago
[1], [2] and have been modified and adopted for multirobot
coordination in more recent years. This paper is motivated
by the growing popularity of market-based approaches and
the lack of a comprehensive review of these approaches.
This paper makes three contributions to the robotics
literature. First, it provides a tutorial on market-based
approaches by discussing the motivating philosophy,
defining the requirements and tradeoffs inherent in such
approaches, analyzing their strengths and weaknesses, and
placing them appropriately in the context of the larger set

of approaches to multirobot coordination. Second, this
paper surveys and analyzes the relevant literature. Finally,
it inspires and directs future research on this topic through
a discussion of remaining challenges.

The scope of this paper is limited to market-based
approaches for coordinating teams that include robots.
Moreover, this review principally considers approaches
that actively reason about the existence of other agents
when coordinating the team, in contrast to approaches in
which agents coexist. Nevertheless, related publications
outside the stated scope of this paper are included as
necessary to augment the discussion.

The following section provides an introduction to
market-based mechanisms for readers less familiar with
the field. This overview is followed by a extensive review of
market-based multirobot coordination approaches to date,
categorized and analyzed across several relevant dimen-
sions: planning, solution quality, scalability, dynamic
events and environments, and heterogeneity. The paper
concludes with a summary of the survey and future
challenges in this research area.

II . OVERVIEW

In this section, we discuss key concepts that will provide a
foundation for the remainder of the paper, including a
definition of market-based approaches and an introduction
to auctions. We then place market-based approaches in the
larger spectrum of coordination approaches.

A. Definition of a Market-Based Approach
Most market-based multirobot and multiagent coordi-

nation approaches share a set of underlying elements.
Market theory provides precise definitions for several of
these elements. Borrowing from both bodies of literature,
we define a market-based multirobot coordination ap-
proach based on the following requirements.

• The team is given an objective that can be
decomposed into subcomponents achievable by
individuals or subteams. The team has access to a
limited set of resources with which to meet this
objective.

• A global objective function quantifies the system
designer’s preferences over all possible solutions.

• An individual utility function (or cost function)
specified for each robot quantifies that robot’s
preferences for its individual resource usage and
contributions towards the team objective given its
current state. Evaluating this function cannot
require global or perfect information about the
state of the team or team objective. Subteam
preferences can also be quantified through a
combination of individual utilities (or costs).

• A mapping is defined between the team objective
function and individual and subteam utilities (or
costs). This mapping addresses how the individual

Fig. 1. An illustration of three robots exploring Mars. The robots’ task

is to gather data around the four craters, which can be achieved by

visiting the highlighted target sites.

1258 Proceedings of the IEEE | Vol. 94, No. 7, July 2006

Dias et al. : Market-Based Multirobot Coordination: A Survey and Analysis

Example scenario: three robots exploring Mars. The 
robots need to gather data around the craters; they 
need to visit the 7 highlighted sites. Which robot visits 
each site?

*image credit: Dias et al.



Market-Based Coordination
• Underlying mechanism: auctions 
• Auctioneer: offers items (tasks or resources) in announcement 

• Participants (robots) submit bids to negotiate allocation of items  

‣ sealed-bid vs. open-cry 

‣ first-price vs. Vickrey auction 

• Single-item auction: 

‣ highest bidder wins task 

‣ if no bid beats reserve-price, then auctioneer can retain item 

• Combinatorial auction: 

‣ multiple items, robots bid on bundles 

‣ a bid expresses synergies between items 

• Multi-item auction: 

‣ a robot can win at most one item apiece 

‣ special case of combinatorial auction for bundle of size 1
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Market-Based Coordination
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A B A B

Robot 1 50 100

Robot 2 - 70
50

100

130

70

allocation cost

Robot 1
profit: 70 = 120-50

profit: 80 = 150-70

reward: 120 reward: 150

reserve price not met

bids placed for tasks

system cost: 50+70 = 120

A simple example (multi-item auction)
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Running time: O(NRM) (greedy) or O(N2R) (optimal) [T. Sandholm; 2002]

Robot 2



Market-Based Allocation Frameworks
•  Murdoch [Gerkey, Mataric; 2002]  

‣  loosely coordinated tasks  

‣  demonstrated on box pushing  

‣  demonstrated robustness, fast auctioning  

•  TraderBots [Dias et al.; 2004]  

‣  loosely coordinated tasks  

‣  demonstrated on exploration tasks  

‣  demonstrated robustness, scalability, auction types, task trees  

•  Hoplites [Kalra, Stentz; 2005]  

‣  tightly coordinated spatial tasks  

‣  robots auction plans not tasks  

‣  demonstrated on perimeter sweeping, constrained exploration 
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Centralized vs Decentralized Assignment

!33

centralized decentralized

• Centralized assignment. Cost estimates are 
known at a central point (computational unit). 
The unit performs the assignment and 
communicates with all robots.

• Decentralized assignment. Robots do not 
have global knowledge of each other’s costs. 
They locally negotiate assignments.

Mobile Robot Systems — Lecture 8: Multi-Robot Systems - Task Allocation

Hybrid mechanisms: locally defined robot cliques can elect 
‘leader’ robots and perform centralized mechanisms.



Threshold-Based Assignment
• Fully decentralized mechanism. 

• Each robot has an activation threshold for each task that needs to be 
performed. 

• A stimulus reflects the urgency of a tasks; is continuously perceived by the 
robots; 

• Example: threshold-based control of aggregation [Agassounon, Martinoli; 2002] 

‣ Goal: aggregate all sticks into 1 cluster 

‣ End criterion: robots should stop working once task is achieved
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Threshold-Based Control of Aggregation 
(Agassounon and Martinoli, 2002)

Special type of aggregation: linear structure assembly; only seeds 
at the tips of a cluster can be manipulated

Initial situation Final situation
Parking lot
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Threshold-Based Control of Aggregation 
(Agassounon and Martinoli, 2002)

Special type of aggregation: linear structure assembly; only seeds 
at the tips of a cluster can be manipulated

Initial situation Final situation
Parking lot
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initial situation final situation



Threshold-Based Assignment
• Stimulus: time needed to find a stick to manipulate (the longer the 

time, the lower the stimulus associated with the task). 

• Threshold is self-calibrated (fully decentralized). 

• The number of manipulation sites (either end of  
line of sticks) decreases as global task nears  
completion. 

• If time to find next stick goes beyond threshold  
T, then agent switches to resting behavior.
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seeds introduced during the aggregation process 2 hours after the 
start). 

Table 2. Integrated cost  

Algorithm Arena1 Arena2 Arena3 
PrFT 138.9±7.0 324.9 ± 10.8 154.5 ± 7.9 
PrVT 155.1 ± 8.0 231.9 ± 10.7 152.2 ± 8.7 
PuFT 138.2 ± 6.9 337.6± 10.7 122.4± 6.4 

W/o WA 227.4 ± 4.8 310.8 ± 8.8 197.2 ± 5.9 
 
The PuFT and PrFT algorithms appear to be the most efficient in 
Arena1 (i.e. equivalent performances following the criterion), 
PrVT in arena2, and PuFT in Arena3.  

4.3.1. Private, Fixed-Threshold Worker Allocation 
Figure 4 shows the outcome of the aggregation experiment using 
the worker allocation algorithms with a team of 10 agents in an 
80X80 cm arena. Figure 4 shows that here, conversely to the case 
without worker allocation, during the last phase of the 
aggregation, the average cluster size remains an increasing 
function of time eventually reaching 20 seeds, the optimal largest 
value possible, while the number of active workers in the 
environment decreases. Intuitively, this can be explained by the 
fact that with only two manipulation sites remaining in the arena, 
and on average half of the active agents always carrying a seed 
and the other half not, reducing the number of active agents, 
consequently increases the size of the single cluster. 

However, due to the a priori fixed response threshold value the 
agents behave sub-optimally in a different environment. For 
instance, when performing the same aggregation task in a 
178X178 cm arena, the average size of the clusters they create are 
smaller on average than the average size of those created by the 

team using the PrVT algorithm (with similar standard deviations) 
because the agents withdraw too soon. This is illustrated in Figure 
5 where after 120 minutes, the size of the clusters created using 
the PrFT algorithm becomes (and remains for the rest of the 
experiment) distinctively smaller on average than that of the 
clusters created using the PrVT algorithm. As a consequence, the 
aggregation efficiency of the PrFT algorithm deteriorated 
considerably in Arena2 as shown in Table 2. 

4.3.2. Private, Variable-Threshold Worker 
Allocation 

The density of manipulation sites (seeds that can be manipulated) 
is higher in the smaller arena and the robots are more likely to 
encounter them than in the larger arena. In response to this 
difference in density of manipulation sites, variable-threshold 
workers autonomously set their response thresholds higher in 
Arena2. Therefore, they stay active longer in the larger arena than 
in the smaller and this in turn allows them to continue performing 
the task, as most seeds are not gathered yet into a single cluster. 
This is illustrated by Figure 5 where it clearly appears that PrFT 
and PuFT under-perform due to a relatively too low homogeneous 
threshold value and their inability to adapt to a new environment. 

However, the PrVT algorithm is not appropriate for an optimal 
response of the agents to a dynamic change in the number of 
objects to manipulate. For instance, results in Table 2 show that 
when additional seeds are dropped in the arena after 2 h into the 
aggregation process, the efficiency of the PrVT algorithm 
deteriorates. This results from the nonexistence of a continuous 
adaptive activity threshold mechanism that allows the agents to 
upgrade their activity thresholds when facing a sudden increase in 
the availability of work. 

Figure 4 b. Average number of active workers for 
aggregation experiment with worker allocation 

algorithms in an 80X80 cm arena 

Figure 4 a. Average cluster size for aggregation 
experiment with worker allocation algorithms in an 

80X80 cm arena 
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T = f ⋅
1
K

K

∑
k=1

tk

threshold number of sticks 
successfully 

collected so far

time taken to  
find kth  stick



Overview of Allocation Methods

!36Mobile Robot Systems — Lecture 8: Multi-Robot Systems - Task Allocation

centralized vs 
decentralized

optimality completeness

Hungarian method centralized optimal guaranteed

Mean-field approach
centralized or 
decentralized

approximative

The system converges. 
With high probability, 

completeness is 
guaranteed

Market-based 
approach

centralized or 
decentralized

greedy (sub-optimal) 
or optimal

depends on reserve 
price

Threshold-based 
approach

decentralized suboptimal not guaranteed



Further Reading
Nice overview of the classical problem: 

http://www.assignmentproblems.com/ 

Seminal papers: 
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• D.P. Bertsekas, “The Auction Algorithm: A Distributed Relaxation Method for the Assignment Problem”; 1988. 

• N. Kalra, A. Martinoli, “Comparative study of market-based and threshold-based task allocation”; 2006 

Some new approaches for those interested: 

• Redundant robot assignment under uncertainty: A. Prorok, Redundant Robot Assignment on Graphs with 
Uncertain Edge Costs, 14th International Symposium on Distributed Autonomous Robotic Systems (DARS), 
2018 

• Assignment in heterogeneous robot swarms: A. Prorok, M. A. Hsieh, and V. Kumar. The Impact of Diversity on 
Optimal Control Policies for Heterogeneous Robot Swarms. IEEE Transactions on Robotics (T-RO); 2017. 

• Assignment under privacy constraints: A. Prorok, V. Kumar, Privacy-Preserving Vehicle Assignment for Mobility-
on-Demand Systems, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017
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