
Mobile Robot Systems
Lecture 3: Robot Motion & Control

Dr. Amanda Prorok
asp45@cam.ac.uk

www.proroklab.org

mailto:asp45@cam.ac.uk

In this Lecture

• How can we control mobile robots?

• Motion models

• Forward kinematics; inverse kinematics

• Trajectory tracking

• Open-loop versus closed-loop control

• Introduction to PID control  

Mobile Robot Systems — Lecture 3: Robot Motion & Control �2

Control Architectures

Mobile Robot Systems — Lecture 3: Robot Motion & Control !3

control architectures

perception action decision-making

localization motion control now
(react)

later
(plan)

navigation

ba
si

cs
 o

f
au

to
no

m
y

m
ob

ile

au
to

no
m

y

• Different purposes

‣ Locomotion: e.g., wheeled, legged, slip stick

‣ Other motion: e.g., manipulation

‣ Other types of actuation: e.g, heating, sound emission

• Examples of electrical-to-mechanical actuators:

‣ DC motors, stepper motors, servos, loudspeakers.

‣ Control input example: 
A driver can steer and accelerate  
(or decelerate), so there are 2 control inputs. 

• Uncertainty /disturbances /noise:

‣ Examples: wheel slip, slack in mechanism, cheap circuitry
with imperfections, environmental factors (wind, friction, etc).

Actuators

Mobile Robot Systems — Lecture 3: Robot Motion & Control !4

ᵠ
steering angle

forwards acceleration

Nagpal et al.: Kilobot

Degrees of Freedom
• Most actuators control a single degree of freedom (DOF)

‣ a motor shaft controls one rotational DOF

‣ a sliding part on a plotter controls one translational DOF

• Every robot has a specific number of DOF

• If there is an actuator for every DOF, then all DOF are controllable

!5Mobile Robot Systems — Lecture 3: Robot Motion & Control

x

y

θ

u
ω

fixed rotating joint

movable rotating joint

end effector
(x, y)

differential-drive robot

DOF = ? DOF = ?

Holonomic Motion
• Degree of mobility: DOM (differentiable DOF)

‣ Number of DOF that can be directly accessed by the actuators

‣ A robot in the plane has at most 3 DOMs (position and heading)

• Holonomic motion:

‣ Holonomic robot: When the number of DOF is equal to robot’s
DOM

‣ Non-holonomic robot: When the number of DOF is greater
than robot’s DOM

‣ When a robot’s DOM it is larger than is DOF, the robot has
‘redundant’ actuation

!6Mobile Robot Systems — Lecture 3: Robot Motion & Control

Differential-Drive Robot
• Differential-drive robots can actuate left and right wheels (independently).

!7Mobile Robot Systems — Lecture 3: Robot Motion & Control

x

y

u
ω

B

B

accessible DOF

accessible DOF

inaccessible DOF

• DOF = 3, but DOM = 2: differential-drive robots are non-holonomic.

• Are these robots holonomic: Trains? Cars? Quadrotors?

• Impact of non-holonomicity: motion constraints affect motion planning.

Wheeled Robots
• 5 basic types of 3-wheel configurations:

Mobile Robot Systems — Lecture 3: Robot Motion & Control !8

Omnidirectional Differential Omni-steer Tricycle Two-steer

DOM = 3 DOM = 2 DOM = 3 DOM = 2 DOM = 3

omni-wheel castor wheel

Mobile Robot Systems — Lecture 3: Robot Motion & Control

Distance, Velocity, Time

• Continuous motion: For infinitesimally small segments, we get
acceleration and speed at a single point in time (instantaneous),
expressed as a derivative.

Mobile Robot Systems — Lecture 3: Robot Motion & Control !10

• Segments:

• Instantaneous speed and acceleration:

66 5 Robotic Motion and Odometry

time (t)

di
st

an
ce

(s
)

Fig. 5.1 An accelerating robot: distance increase as the square of time

To get a true picture of the motion of a robot, we need to divide its motion into
small segments s1 , s2 , . . .:

s1 s2 s3 s4 s5
x0 x1 x2 x3 x4 x5

and measure the distance and time for each segment individually. Then, we can
compute the velocities for each segment. In symbols, if we denote the length of the
segment si by ∆si = xi+1 − xi and the time it takes the robot to cross segment si by
∆ti = ti+1 − ti , then vi , the velocity in segment si is given by:

vi =
∆si
∆ti

.

Figure5.1 is a graph of distance versus time for an accelerating robot. The time

axis has been divided into segments and the slopes
∆si
∆ti

show the average velocity

in each segment which increases with time.
Acceleration is defined as the change in velocity over a period of time:

ai =
∆vi
∆ti

.

When the power setting of the robot is set to a fixed value, the force applied to the
robot is constant and we expect that the acceleration remains constant, increasing
the velocity. However, at a certain point the acceleration is reduced to zero, meaning
that the velocity no longer increases, because the power applied to the wheels is just
sufficient to overcome the friction of the road and the wind resistance.

Let us see what happens if the power setting is increased with time.

vi =
Δsi

Δti

ai =
Δvi

Δti

a =
dv
dt

= ·v

v =
ds
dt

= ·s

* image credit: Elements of Robotics

Kinematics
• Forward kinematics:

‣ Given the control parameters (e.g., wheel velocities), and the
time of movement t, find the pose (x, y, θ) reached by the
robots.

• Inverse kinematics:

‣ Given the final desired pose (x, y, θ), find the control
parameters to move the robot there at a given time t.

!11Mobile Robot Systems — Lecture 3: Robot Motion & Control

Forward Kinematics
• Differential equations describe robot motion

• How does robot state change over time as a function of control
inputs?

!12

differential-drive model
3 DOF (2 controllable)

bicycle model
3 DOF (2 controllable)

x

y

θ

u
ω

⎧

⎨

⎩

ẋ = u · cos θ
ẏ = u · sin θ

θ̇ = ω

x

y
φ

v

L

⎧

⎨

⎩

ẋ = v · cos θ
ẏ = v · sin θ

θ̇ = v · tanφ
L

Mobile Robot Systems — Lecture 3: Robot Motion & Control

θ

A Second-Order Model
• When a first-order model (kinematics) is not enough…

• Differential equations for modeling the dynamics of a quadrotor

!13

quadrotor model
6 DOF (4 controllable)

xW

y W

zW

xB

y B

zB

ψ
θ

φ

yaw

pitch

roll

u1

u2

u3u4

(body force)

(body moment)

(moment)

(moment)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r̈ = −gzW +
u1

m
zB

ω̇ = I−1

⎛

⎝−ω × Iω +

⎡

⎣

u2

u3

u4

⎤

⎦

⎞

⎠

inertia matrix

Mobile Robot Systems — Lecture 3: Robot Motion & Control

Forward Kinematics (body frame)

!14

Actuators of differential-drive:
• Left wheel speed
• Right wheel speed

axle length

x

y

u
ω

B

B

d
r wheel radius

φ̇r

φ̇l

Forward velocity:

Rotational velocity:

u =
rφ̇r

2
+

rφ̇l

2

ω =
rφ̇r

d
−

rφ̇l

d

Motion: ẋB = u
ẏB = 0

θ̇B = ω

Mobile Robot Systems — Lecture 3: Robot Motion & Control

Forward Kinematics (world frame)

x

y

θ

u
ω

• Given known control inputs,
how does the robot move w.r.t.
a global coordinate system?

• Use a rotation matrix:
‣ From body to world frames,

the axes rotate by θ

!15

⎡

⎣

ẋ
ẏ

θ̇

⎤

⎦ =

⎡

⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣

u
0

ω

⎤

⎦ =

⎡

⎣

u cos θ
u sin θ
ω

⎤

⎦

⎡

⎣

ẋ
ẏ

θ̇

⎤

⎦ =

⎡

⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤

⎦

︸ ︷︷ ︸

T (θ)

⎡

⎣

ẋB

ẏB
θ̇B

⎤

⎦

Mobile Robot Systems — Lecture 3: Robot Motion & Control

Inverse Kinematics
• We would like to control the robot motion in the world frame:

• We invert the previous equations to find control inputs:

!16

⎡

⎣

ẋ
ẏ

θ̇

⎤

⎦

⎡

⎣

u
0
ω

⎤

⎦ = T−1(θ)

⎡

⎣

ẋ
ẏ

θ̇

⎤

⎦ =

⎡

⎣

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣

ẋ
ẏ

θ̇

⎤

⎦

• yielding

• under the constraint (remember than our robot is non-holonomic):

u = ẋ cos θ + ẏ sin θ

ω = θ̇

ẋ sin θ = ẏ cos θ

• and finally φ̇l = u−

ωd

2r

φ̇r = u+ ωd

2r

=⇒
φ̇l = ẋ cos θ + ẏ sin θ − θ̇d

2r

φ̇r = ẋ cos θ + ẏ sin θ + θ̇d

2r

Mobile Robot Systems — Lecture 3: Robot Motion & Control

we can now control the wheel speeds!

• We would like to control the robot to reach a goal pose:

x

y

θ

u
ω

Inverse Kinematics

!17

⎡

⎣

xG

yG
θG

⎤

⎦

goal

• Ideally (if the robot would be
holonomic), we would set:

⎡

⎣

ẋ
ẏ

θ̇

⎤

⎦ = K

⎡

⎣

xG − x
yG − y
θG − θ

⎤

⎦

• However, we need to satisfy the non-holonomicity constraint:

Mobile Robot Systems — Lecture 3: Robot Motion & Control

control gain

ẋ sin θ = ẏ cos θ

Example of Trajectory Generation

!18

• To satisfy our constraint, we need to be creative. There are
various ways of solving this (e.g., differential flatness).

• Cubic Bézier curves, for example, would satisfy our differential
drive constraint

• Ensure that robot waypoints lie on a  
feasible trajectory.

• We set:

p1 =

[

x

y

]

p4 =

[

xG

yG

]

p2 =

[

x+K1 cos θ
y +K1 sin θ

]

p3 =

[

xG +K2 cos θG
yG +K2 sin θG

]

with curvature: θ̇ =
ẋÿ − ẍẏ

ẋ2 + ẏ2


x
y

�
= B(t|p1,p2,p3,p4)

<latexit sha1_base64="HzNIN04CMHHmLjqtESxkdeyAB+0=">AAACYXicbVFdS+QwFE3r+lVXrfroS9hhQWEZWldYfVgQffFRwVmFSRnSzO1MME1LciuWbv+kb/u0L/tDNjMWcdQLgXPOvZecnKSlkhaj6I/nL31aXlldWw82Pm9ubYc7u79sURkBA1Gowtyl3IKSGgYoUcFdaYDnqYLb9P5i1r99AGNloW+wLiHJ+UTLTAqOThqFNVOQ4ZClMJG64cbwum1EGzxSxoI6YKDHncqMnEwxoT8pyzlO06w5bw+Q/n6hZTuKv71mRwvs+wI7PhyFvagfzYu+B3EHeqSrq1H4xMaFqHLQKBS3dhhHJSbOHUqhoA1YZaHk4p5PYOig5jnYpJlH1NKvThnTrDDuaKRz9fVGw3Nr6zx1kzOT9m1vJn7UG1aYnSSN1GWFoMXzRVmlKBZ0ljcdSwMCVe0AF0Y6r1RMueEC3a8ELoT47ZPfg8FR/7QfXx/3zs67NNbIPvlCDkhMfpAzckmuyIAI8tdb9ra8be+fH/ihv/s86nvdzh5ZKH//P96jtuU=</latexit><latexit sha1_base64="HzNIN04CMHHmLjqtESxkdeyAB+0=">AAACYXicbVFdS+QwFE3r+lVXrfroS9hhQWEZWldYfVgQffFRwVmFSRnSzO1MME1LciuWbv+kb/u0L/tDNjMWcdQLgXPOvZecnKSlkhaj6I/nL31aXlldWw82Pm9ubYc7u79sURkBA1Gowtyl3IKSGgYoUcFdaYDnqYLb9P5i1r99AGNloW+wLiHJ+UTLTAqOThqFNVOQ4ZClMJG64cbwum1EGzxSxoI6YKDHncqMnEwxoT8pyzlO06w5bw+Q/n6hZTuKv71mRwvs+wI7PhyFvagfzYu+B3EHeqSrq1H4xMaFqHLQKBS3dhhHJSbOHUqhoA1YZaHk4p5PYOig5jnYpJlH1NKvThnTrDDuaKRz9fVGw3Nr6zx1kzOT9m1vJn7UG1aYnSSN1GWFoMXzRVmlKBZ0ljcdSwMCVe0AF0Y6r1RMueEC3a8ELoT47ZPfg8FR/7QfXx/3zs67NNbIPvlCDkhMfpAzckmuyIAI8tdb9ra8be+fH/ihv/s86nvdzh5ZKH//P96jtuU=</latexit><latexit sha1_base64="HzNIN04CMHHmLjqtESxkdeyAB+0=">AAACYXicbVFdS+QwFE3r+lVXrfroS9hhQWEZWldYfVgQffFRwVmFSRnSzO1MME1LciuWbv+kb/u0L/tDNjMWcdQLgXPOvZecnKSlkhaj6I/nL31aXlldWw82Pm9ubYc7u79sURkBA1Gowtyl3IKSGgYoUcFdaYDnqYLb9P5i1r99AGNloW+wLiHJ+UTLTAqOThqFNVOQ4ZClMJG64cbwum1EGzxSxoI6YKDHncqMnEwxoT8pyzlO06w5bw+Q/n6hZTuKv71mRwvs+wI7PhyFvagfzYu+B3EHeqSrq1H4xMaFqHLQKBS3dhhHJSbOHUqhoA1YZaHk4p5PYOig5jnYpJlH1NKvThnTrDDuaKRz9fVGw3Nr6zx1kzOT9m1vJn7UG1aYnSSN1GWFoMXzRVmlKBZ0ljcdSwMCVe0AF0Y6r1RMueEC3a8ELoT47ZPfg8FR/7QfXx/3zs67NNbIPvlCDkhMfpAzckmuyIAI8tdb9ra8be+fH/ihv/s86nvdzh5ZKH//P96jtuU=</latexit><latexit sha1_base64="HzNIN04CMHHmLjqtESxkdeyAB+0=">AAACYXicbVFdS+QwFE3r+lVXrfroS9hhQWEZWldYfVgQffFRwVmFSRnSzO1MME1LciuWbv+kb/u0L/tDNjMWcdQLgXPOvZecnKSlkhaj6I/nL31aXlldWw82Pm9ubYc7u79sURkBA1Gowtyl3IKSGgYoUcFdaYDnqYLb9P5i1r99AGNloW+wLiHJ+UTLTAqOThqFNVOQ4ZClMJG64cbwum1EGzxSxoI6YKDHncqMnEwxoT8pyzlO06w5bw+Q/n6hZTuKv71mRwvs+wI7PhyFvagfzYu+B3EHeqSrq1H4xMaFqHLQKBS3dhhHJSbOHUqhoA1YZaHk4p5PYOig5jnYpJlH1NKvThnTrDDuaKRz9fVGw3Nr6zx1kzOT9m1vJn7UG1aYnSSN1GWFoMXzRVmlKBZ0ljcdSwMCVe0AF0Y6r1RMueEC3a8ELoT47ZPfg8FR/7QfXx/3zs67NNbIPvlCDkhMfpAzckmuyIAI8tdb9ra8be+fH/ihv/s86nvdzh5ZKH//P96jtuU=</latexit>

Mobile Robot Systems — Lecture 3: Robot Motion & Control

p1
p2 p3

p4

Feedback Linearization

!19Mobile Robot Systems — Lecture 3: Robot Motion & Control

xp

P

x

y

yp

θ
ϵ

Idea: tie robot to a rod of length ϵ
that you hold at point P. Point P
can move holonomically; robot is
pulled by rod.

• Leverage linear control of a holonomic point P to control a non-
holonomic robot.

• Key idea: formulate control inputs u, w as a function of and·xp
·yp

Feedback Linearization

!20

• Feedback linearization:

Mobile Robot Systems — Lecture 3: Robot Motion & Control

xp

P

x

y

yp

θ
ϵ

xp = x + ϵ cos θ
yp = y + ϵ sin θ

·xp = ·x + ϵ(− ·θ sin θ)
·yp = ·y + ϵ(·θ cos θ)

[
·xp
·yp] = u [cos θ

sin θ] + ϵω [−sin θ
cos θ]

u = ·xp cos θ + ·yp sin θ
ω = ϵ−1(− ·xp sin θ + ·yp cos θ)

⟶

• Isolate control inputs:

Feedback Linearization

!21

• Trajectory tracking:

Mobile Robot Systems — Lecture 3: Robot Motion & Control

ϵ

xd

·xp = (xd − xp)κ + ·xd

if desired point xd is not stationary

desired trajectory

error to desired point

xp

Trajectory Tracking
• Trajectory tracking:

1. Pre-compute a smooth trajectory

2. Follow trajectory (in open-loop or closed-loop)

• Challenges:

‣ Feasibility of trajectory given motion constraints

‣ Adaptation of trajectory in dynamical  
environments

‣ Must guarantee smoothness of resulting  
trajectories (kinematic / dynamic feasibility):  
E.g., continuity of 1st derivative for 1st order 
control!

!22

Motion Control: Open Loop Control

•  Trajectory (path) divided in motion segments of
clearly defined shape:
–  straight lines and segments of a circle.

•  Control problem:
–  pre-compute a smooth trajectory

based on line and circle segments
•  Disadvantages:

–  It is not at all an easy task to pre-compute
a feasible trajectory

–  limitations and constraints of the robots
velocities and accelerations

–  does not adapt or correct the trajectory if
dynamical changes of the environment occur.

–  The resulting trajectories are usually not
smooth

3.6.1

© R. Siegwart, I. Nourbakhsh

Mobile Robot Systems — Lecture 3: Robot Motion & Control

* image: Siegwart et al.

Open-Loop vs Closed-Loop

• Once we have a trajectory that enables the robot to reach its goal,
we need to follow that trajectory.

• There are two ways of doing this:

‣ Open-loop control: Robot follows path blindly by applying the
pre-computed control inputs

‣ Closed-loop control: Robot can follow path for a small
duration, then observe if anything changed in the world,
recompute a new adapted path (repeatedly)

!23Mobile Robot Systems — Lecture 3: Robot Motion & Control

Perception-Action Loop

• Basic building block of autonomy

!24

perception

action
decision-making and control interaction with the world

Mobile Robot Systems — Lecture 3: Robot Motion & Control

open-loop
vs

closed-loop

Open-Loop
• Example: trajectory tracking

• In open-loop, the robot executes predefined control inputs.

!25Mobile Robot Systems — Lecture 3: Robot Motion & Control

desired

actual

Under imperfect conditions, the robot deviates from desired behavior.

A Simple Closed-Loop Controller
• Example: trajectory tracking

• The robot uses feedback to maintain a desired set-point.

• Assumption: robot receives feedback on distance to desired trajectory.

!26Mobile Robot Systems — Lecture 3: Robot Motion & Control

‘on-off’ or ‘bang-bang’ controller

A Simple Closed-Loop Controller

!27

Algorithm: Bang-Bang Controller

forever do:
error ← reference − measured // Distance
if error < 0 // Too far left
left-motor-power ← 100
right-motor-power ← -100

if error > 0 // Too far right
left-motor-power ← −100
right-motor-power ← 100

if error = 0 // Just right
left-motor-power ← 100
right-motor-power ← 100

Mobile Robot Systems — Lecture 3: Robot Motion & Control

Example pseudo-code for a line-following robot.

A Simple Closed-Loop Controller
• Example: trajectory tracking

• The robot uses feedback to maintain a desired set-point.

• Assumption: robot receives feedback on distance to desired trajectory.

!28Mobile Robot Systems — Lecture 3: Robot Motion & Control

‘on-off’ or ‘bang-bang’ controller

100 6 Control

which is negative if the robot is too far away from the object and positive if it is too
close to the object. The motor powers are turned to full forwards or full backwards
depending on the sign of the error. For example, if the reference distance is 10cm
and the measured distance is 20cm, the robot is too far away and the error is−10cm.
Therefore, the motors must be set to move forwards.

The robot approaches the object at full speed.When the robot reaches the reference
distance from the object, it takes time for the sensor to be read and the error to be
computed. Even if the robot measures a distance exactly equal to the reference
distance (which is unlikely), the robot will not be able to stop immediately and will
overrun the reference distance. The algorithm will then cause the robot to back up at
full speed, again passing the reference distance. When the timer causes the control
algorithm to be run again, the robot will reverse direction and go forwards at full
speed. The resulting behavior of the robot is shown in Fig. 6.2: the robot will oscillate
around the reference distance to the object. It is highly unlikely that the robot will
actually stop at or near the reference distance.

A further disadvantage of the on-off algorithm is that the frequent and abrupt
reversal of direction results in high accelerations. If we are trying to control a gripper
arm, the objects that it is carrying may be damaged. The algorithm generates high
levels of wear and tear on the motors and on other mechanical moving parts.

Activity 6.2: On-off controller

• Implement the on-off algorithm on your robot for the task of stopping at a
reference distance from an object.

• Run it several times starting at differences distances from the object.

di
st
an

ce

time

r

Fig. 6.2 Behavior of the on-off algorithm

zig-zag behavior: we can do better!

* image credit: Elements of Robotics

Proportional Control (P-Control)
• Example: trajectory tracking

• The robot uses feedback to maintain a desired set-point.

• Robot computes error, and adjusts control as a function of error

!29Mobile Robot Systems — Lecture 3: Robot Motion & Control

previous slide: oscillatory behavior

error = distance-to-trajectory

turning-control = K * error

adjustment is proportional to error!

Proportional Control (P-Control)

!30

Algorithm: P-Controller

forever do:
error ← reference − measured // Distance  
power ← gain * error // Control value
left-motor-power ← power_left  
right-motor-power ← power_right

Mobile Robot Systems — Lecture 3: Robot Motion & Control

Example pseudo-code for a line-following robot.

Proportional Control (P-Control)

!31

102 6 Control

Example Suppose that the reference distance is 100cm and the gain is −0.8. When
the robot is 150cm away from the object, the error is 100−150 = −50 and the
control algorithm will set the power to −0.8 · −50 = 40. Table6.1 shows the errors
and power settings for three distances. If the robot overruns the reference distance
of 100 cm and a distance of 60cm is measured, the power will be set to −32 causing
the robot to move backwards.

Figure6.3 plots the distance of the robot to the object as a function of time when
the robot is controlled by a P controller. The line labeled r is the reference distance.
The change in the motor power is smooth so the robot doesn’t experience rapid
accelerations and decelerations. The response is somewhat slow, but the robot does
approach the target distance.

Unfortunately, the robot does not actually reach the reference distance. To under-
stand why this happens, consider what happens when the robot is very close to the
reference distance. The error will be very small and consequently the power setting
will be very low. In theory, the low power setting should cause the robot to move
slowly, eventually reaching the reference distance. In practice, the motor power may
become so low that it is not able to overcome the internal friction in the motors and
their connection to the wheels, so the robot stops moving.

It might seem that increasing the gain of the P controller could overcome this
problem, but a high gain suffers from a serious disadvantage. Figure6.4 shows the
effect of the gain on the P controller. Higher gain (dashed red line) causes the robot to

Table 6.1 Proportional
controller for gain of −0.8

Distance Error Power

150 −50 40

125 −25 20

60 40 −32

di
st
an

ce

time

r

Fig. 6.3 Behavior of the P controller

6.3 Proportional (P) Controller 103

di
st
an

ce

time

r

Fig. 6.4 The effect of the gain on the P controller: lower gain (dotted blue line), higher gain (dashed
red line), excessive gain (oscillating green line)

approach the reference distance faster, while lower gain (dotted blue line) causes the
robot to approach the reference distance slower. However, if the gain is too high, the
P controller functions like an on-off controller with an oscillating response (green
line). We say that the controller is unstable.

There are situations where the P controller cannot reach the reference distance
even in a ideal system. Suppose that the object itself is moving at constant speed away
from the robot. The P controller will set maximum motor power to cause the robot
to move rapidly towards the object. Eventually, however, as the robot approaches
the object, the measured distance will become small and the P controller will set
the power so low that the speed of the robot is lower than the speed of the object.
The result is that the robot will never reach the reference distance. If the robot could
actually reach the reference distance, the error would be zero and therefore the speed
of the robot would also be zero. The object, however, is still moving away from the
robot, so somewhat later the robot will start moving again and the cycle repeats. This
start-and-stop motion is not the intended goal of maintaining the reference distance.

Example We use the same data as in the previous example except that the object
moves at 20cm/s. Table6.2 shows the errors and power settings for three distances.
Initially, the robot is going faster then the object so it will catch up.At 125cm from the
object, however, the robot is moving at the same speed as the object. It maintains this
fixed distance and will not approach the reference distance of 100cm. If somehow
the robot gets closer to the object, say, 110cm, the power is reduced to 8 causing the
robot to back away from the object.

• Behavior of P-control:

‣ Adapt control proportionally to your
perceived error to set-point.

‣  

• Why is the target distance not reached?

‣ E.g., what if motors have friction?

• Behavior for varying gain values

• High gains not desirable! We call this
an unstable controller.

low gain high gain

* image credit: Elements of Robotics

Mobile Robot Systems — Lecture 3: Robot Motion & Control

u(t) = κpe(t)

PID Control (Advanced)
• PI-controller:

‣ takes into account accumulated error over time 
 
 

‣ E.g., in presence of friction, error will be integrated
causing higher motor setting to overcome
remaining delta.

!32Mobile Robot Systems — Lecture 3: Robot Motion & Control

6.4 Proportional-Integral (PI) Controller 105

Algorithm 6.4: Proportional-integral controller
integer reference ← · · · // Reference distance
integer measured // Measured distance
integer error // Error
integer error-sum ←0 // Cumulative error
float gain-p ← · · · // Proportional gain
float gain-i ← · · · // Integral gain
integer power // Motor power

1: error ← reference −measured // Distances
2: error-sum ←error-sum + error // Integral term
3: power ←gain-p * error + gain-i * error-sum // Control value
4: left-motor-power ←power
5: right-motor-power ←power

In the presence of friction or a moving object, the error will be integrated and
cause a higher motor power to be set; this will cause the robot to converge to the
reference distance. A problem with a PI controller is that the integration of the error
starts from the initial state when robot is far from the object. As the robot approaches
the reference distance, the integral term of the controller will have already a large
value; to decrease this value the robot must move past the reference distance so that
there are errors of opposite sign. This can generate oscillations (Fig. 6.5).

di
st
an

ce

time

r

Fig. 6.5 Behavior of the PI controller

• PID-controller:

‣ take into account future error by computing
rate of change of error.

‣ acts as a ‘dampener’ on control effort.

108 6 Control

di
st
an

ce
time

r

Fig. 6.6 Behavior of the PID controller

6.6 Summary

A good control algorithm should converge rapidly to the desired result while avoid-
ing abrupt motion. It must be computationally efficient, but not require constant
tuning. The control algorithm has to be adapted to the specific requirements of the
system and the task, and to function correctly in different environmental conditions.
We have described four algorithms, from the impractical on-off algorithm through
algorithms that combine proportional, integral and derivative terms. The proportional
term ensures that large errors cause rapid convergence to the reference, the integral
term ensures that the reference can actually be attained, while the derivative term
makes the algorithm more responsive.

6.7 Further Reading

A modern textbook on control algorithms is [1].

Reference

1. Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers.
Princeton University Press (2008). The draft of a second edition is available online at http://
www.cds.caltech.edu/~murray/amwiki/index.php/Second_Edition

* image credit: Elements of Robotics

u(t) = κpe(t) + κi ∫
t

0
e(τ) dτ

u(t) = κpe(t) + κi ∫
t

0
e(τ) dτ + κd

de(t)
dt

Open-Loop vs Closed-Loop
• Closed-loop is much more robust to external perturbation:

‣ Noisy sensors: wrong estimate of the goal position, wrong
estimate of the robot position.

‣ Noisy actuation: robot does not move precisely.

‣ Unforeseen events, dynamic obstacles

• Open-loop is only useful when feedback is not possible:

‣ Sensors cannot operate in certain circumstances

‣ Limited bandwidth

‣ Limited computational resources

!33Mobile Robot Systems — Lecture 3: Robot Motion & Control

Further Reading

Books that cover fundamental concepts:

• Elements of Robotics, F Mondada et al., 2018

• Autonomous Mobile Robots, R Siegwart et al., 2004

!34Mobile Robot Systems — Lecture 3: Robot Motion & Control

