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Weather prediction

m Two types of weather: rainy and cloudy
m The weather doesn’t change within the day

m Can we guess what the weather will be like tomorrow?

m We can use a history of weather observations:

P(w¢ = Rainy | wi—1 = Rainy, wi—2 = Cloudy, wi—3 = Cloudy, wi—4 =
Rainy)

m Markov Assumption (first order):

P(wt ‘wtflawtfbnwwl) ~ P(wt |wt71)

m The joint probability of a sequence of observations / events is
then:

n
P(wy,wa,...,w) = [] Pws | wi—1)

t=1
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Markov Chains

0.7 0.7
Tomorrow 03
Rainy  Cloudy .
Rainy 0.7 0.3
Today Cuoudy | 0.3 0.7 3
Figure: * Figure: *

Transition probability matrix Two states: rainy and cloudy

A Markov Chain is a stochastic process that embodies the
Markov Assumption.

Can be viewed as a probabilistic finite-state automaton.

States are fully observable, finite and discrete; transitions are
labelled with transition probabilities.

Models sequential problems — your current situation depends
on what happened in the past
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Markov Chains

m Useful for modeling the probability of a sequence of events
that can be unambiguously observed
m Valid phone sequences in speech recognition
m Sequences of speech acts in dialog systems (answering,
ordering, opposing)
m Predictive texting

m What if we are interested in events that are not
unambiguously observed?
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Hidden Markov Model: A Time-elapsed view

Hidden

177

Underlying Markov Chain over hidden states.
We only have access to the observations at each time step.

There is no 1:1 mapping between observations and hidden states.

A number of hidden states can be associated with a particular
observation, but the association of states and observations is governed by
statistical behaviour.

m We now have to infer the sequence of hidden states that correspond to a
sequence of observations.



Hidden Markov Model: A Time-elapsed view

Rainy  Cloudy

Rainy 0.7 0.3
Cloudy 0.3 0.7
Figure: *

Transition probabilities P (w¢|w¢—1)
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@ Observed

Umbrella  No umbrella

Rainy 0.9 0.1
Cloudy 0.2 0.8
Figure: *

Emission probabilities P(o¢|wt)
(Observation likelihoods)



Hidden Markov Model: A Time-elapsed view — start and
end states

: 177 ‘Sf' Hidden

@

Q @ Observed

Could use initial probability distribution over hidden states.

Instead, for simplicity, we will also model this probability as a transition,
and we will explicitly add a special start state.

Similarly, we will add a special end state to explicitly model the end of
the sequence.

Special start and end states not associated with “real” observations.



More formal definition of Hidden Markov Models; States
and Observations

Se ={s1,...,8n} aset of N emitting hidden states,
So a special start state,
sy a special end state.

K ={k1,...kp} an output alphabet of M observations
(“vocabulary”).
ko  a special start symbol,
ks a special end symbol.

O =0...07r a sequence of T observations, each one
drawn from K.

X =X;...X7r asequence of T states, each one drawn
from S,.



More formal definition of Hidden Markov Models;
First-order Hidden Markov Model

1 Markov Assumption (Limited Horizon): Transitions
depend only on current state:

P(Xt|X1...Xt,1) ~ P(Xt|Xt,1)

2 Output Independence: Probability of an output observation
depends only on the current state and not on any other states
or any other observations:

P(Ot|X1...Xt,...,XT,Ol,...,Ot,...,OT) ~ P(Ot‘Xt)



More formal definition of Hidden Markov Models; State
Transition Probabilities

A:  a state transition probability matrix of size (N +2) x (N +2).
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- a1i1 G2 a13 . . . aiN  aif

— @21 G2 Q23 . . . 2N af
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— ani1 anN2 ansz - . - AaNN anNf

a;; is the probability of moving from state s; to state s;:

Q5 = P(Xt = Sj|Xt,1 = Si)
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V,» Z Q5 = 1
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Transition Probabilities

A:  a state transition probability matrix of size (N +2) x (N +2).

— Gp1 Go2  Gp3 . . . agN -

- a1i1 G2 a13 . . . aiN  aif

— @21 G2 Q23 . . . 2N af
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N+1

V,» Z Q5 = 1
j=0



More formal definition of Hidden Markov Models; Start
state 59 and end state sy

m Not associated with “real” observations.

m ag; describe transition probabilities out of the start state into
state s;.

m a;; describe transition probabilities into the end state.

m Transitions into start state (a;0) and out of end state (ay;)
undefined.



More formal definition of Hidden Markov Models; Emission
Probabilities

B:  an emission probability matrix of size (M + 2) x (N + 2).

M bo(ko) — — — - - - —

— bl(k‘l) bz(kl) bg(lﬁ) . . . bN(k,‘l) —

— bi(k2)  ba(k2) bs(ka) . . . bn(ke) —

B=| _ _
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- o T T L] by (ky)

bi(k;) is the probability of emitting vocabulary item k; from state s;:

bi(k;) = P(Or = k;| Xy = si)

Our HMM is defined by its parameters p = (A, B).
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Examples where states are hidden

m Speech recognition
m Observations: audio signal
m States: phonemes

m Part-of-speech tagging (assigning tags like Noun and Verb to
words)

m Observations: words
m States: part-of-speech tags

m Machine translation

m Observations: target words
m States: source words



Today's task: the dice HMM

Imagine a fraudulous croupier in a casino where customers bet
on dice outcomes.

She has two dice — a fair one and a loaded one.

m The fair one has the normal distribution of outcomes —
P(O) = % for each number 1 to 6.
The loaded one has a different distribution.

She secretly switches between the two dice.

m You don't know which dice is currently in use. You can only
observe the numbers that are thrown.
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Today's task: the dice HMM

ail

ba(5) = 1/6 bo(6) = 1/6

~
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m There are two states (fair and loaded), and two special states (start s and end s ).

m Distribution of observations differs between the states.
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Today's task: the dice HMM

ail

N
<
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m There are two states (fair and loaded), and two special states (start s and end s ).

m Distribution of observations differs between the states.
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Fundamental tasks with HMMs

Problem 1 (Labelled Learning)

m Given a parallel observation and state sequence O and X,
learn the HMM parameters A and B. — today

Problem 2 (Unlabelled Learning)

m Given an observation sequence O (and only the set of emitting
states S.), learn the HMM parameters A and B.

Problem 3 (Likelihood)

m Given an HMM p = (A, B) and an observation sequence O,
determine the likelihood P(O|p).

Problem 4 (Decoding)

m Given an observation sequence O and an HMM p = (A, B),
discover the best hidden state sequence X. — Task 8



Your Task today

Task 7:

m Your implementation performs labelled HMM learning, i.e. it
has

m Input: dual tape of state and observation (dice outcome)
sequences X and O.

[Go) TFTFTFTFILTILTILIFTFTIFTIFILILILILIFTFT (s5p) ]
[ (ko) [T [ 3]4]5]6][6]5 1 2 [3 1 4 [ 3541 2

m Output: HMM parameters A, B.

m Note: you will in a later task use your code for an HMM with

more than two states. Either plan ahead now or modify your
code later.



Parameter estimation of HMM parameters A, B

m Transition matrix A consists of transition probabilities a;;

ai]’ = P(Xt+1 — Sj|Xt — Si) ~ coun tmms( t SrL, t+1 S,])

countirans( Xy = 8;)

m Emission matrix B consists of emission probabilities b;(k;)

countemission(Ot = kju Xt = Si)

bz(kj) = P(Ot = kj|Xt = Si) ~

Countemission(Xt = Si)

m (Add-one smoothed versions of these)
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