8: Hidden Markov Models
Machine Learning and Real-world Data

Simone Teufel

Computer Laboratory
University of Cambridge

Lent 2019
So far we’ve looked at (statistical) classification.
Experimented with different ideas for sentiment detection.
Let us now talk about . . .
So far we’ve looked at (statistical) classification. Experimented with different ideas for sentiment detection. Let us now talk about . . . the weather!
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:

\[P(w_t = \text{Rainy} \mid w_{t-1} = \text{Rainy}, w_{t-2} = \text{Cloudy}, w_{t-3} = \text{Cloudy}, w_{t-4} = \text{Rainy}) \]
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:
 \[P(w_t = \text{Rainy} \mid w_{t-1} = \text{Rainy}, w_{t-2} = \text{Cloudy}, w_{t-3} = \text{Cloudy}, w_{t-4} = \text{Rainy}) \]
- **Markov Assumption (first order):**
 \[P(w_t \mid w_{t-1}, w_{t-2}, \ldots, w_1) \approx P(w_t \mid w_{t-1}) \]
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:

\[P(w_t = \text{Rainy} \mid w_{t-1} = \text{Rainy}, w_{t-2} = \text{Cloudy}, w_{t-3} = \text{Cloudy}, w_{t-4} = \text{Rainy}) \]

- **Markov Assumption** (first order):

\[P(w_t \mid w_{t-1}, w_{t-2}, \ldots, w_1) \approx P(w_t \mid w_{t-1}) \]

- The joint probability of a sequence of observations / events is then:

\[P(w_1, w_2, \ldots, w_t) = \prod_{t=1}^{n} P(w_t \mid w_{t-1}) \]
Markov Chains

A Markov Chain is a stochastic process that embodies the Markov Assumption. Can be viewed as a probabilistic finite-state automaton. States are fully observable, finite and discrete; transitions are labelled with transition probabilities. Models sequential problems – your current situation depends on what happened in the past.

Today

Tomorrow

\[
\begin{bmatrix}
 \text{Rainy} & \text{Cloudy} \\
 0.7 & 0.3 \\
 0.3 & 0.7 \\
\end{bmatrix}
\]

Figure: *

Transition probability matrix
Markov Chains

Today

\[
\begin{array}{c|cc}
& \text{Rainy} & \text{Cloudy} \\
\hline
\text{Rainy} & 0.7 & 0.3 \\
\text{Cloudy} & 0.3 & 0.7 \\
\end{array}
\]

Transition probability matrix

Figure: *

Two states: rainy and cloudy

Figure: *
A Markov Chain is a stochastic process that embodies the Markov Assumption.

Can be viewed as a probabilistic finite-state automaton.

States are fully observable, finite and discrete; transitions are labelled with transition probabilities.

Models **sequential** problems – your current situation depends on what happened in the past.
Markov Chains

- Useful for modeling the probability of a sequence of events
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)
 - Predictive texting
Markov Chains

- Useful for modeling the probability of a sequence of events that can be unambiguously observed
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)
 - Predictive texting
Markov Chains

- Useful for modeling the probability of a sequence of events *that can be unambiguously observed*
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)
 - Predictive texting

- What if we are interested in events that are not unambiguously observed?
Markov Model
Markov Model: A Time-elapsed view
Hidden Markov Model: A Time-elapsed view

- Underlying Markov Chain over hidden states.
- We only have access to the observations at each time step.
- There is no 1:1 mapping between observations and hidden states.
- A number of hidden states can be associated with a particular observation, but the association of states and observations is governed by statistical behaviour.
- We now have to *infer* the sequence of hidden states that correspond to a sequence of observations.
Hidden Markov Model: A Time-elapsed view

Transition probabilities $P(w_t|w_{t-1})$

Emission probabilities $P(o_t|w_t)$ (Observation likelihoods)

Figure: *
Hidden Markov Model: A Time-elapsed view – start and end states

- Could use initial probability distribution over hidden states.
- Instead, for simplicity, we will also model this probability as a transition, and we will explicitly add a special start state.
- Similarly, we will add a special end state to explicitly model the end of the sequence.
- Special start and end states not associated with “real” observations.
More formal definition of Hidden Markov Models; States and Observations

\[S_e = \{ s_1, \ldots, s_N \} \]
\(S_e \) a set of \(N \) emitting hidden states,
\(s_0 \) a special start state,
\(s_f \) a special end state.

\[K = \{ k_1, \ldots k_M \} \]
\(K \) an output alphabet of \(M \) observations ("vocabulary").
\(k_0 \) a special start symbol,
\(k_f \) a special end symbol.

\[O = O_1 \ldots O_T \]
\(O \) a sequence of \(T \) observations, each one drawn from \(K \).

\[X = X_1 \ldots X_T \]
\(X \) a sequence of \(T \) states, each one drawn from \(S_e \).
More formal definition of Hidden Markov Models; First-order Hidden Markov Model

1. **Markov Assumption (Limited Horizon):** Transitions depend only on current state:

 \[P(X_t|X_1...X_{t-1}) \approx P(X_t|X_{t-1}) \]

2. **Output Independence:** Probability of an output observation depends only on the current state and not on any other states or any other observations:

 \[P(O_t|X_1...X_t,...,X_T,O_1,...,O_t,...,O_T) \approx P(O_t|X_t) \]
More formal definition of Hidden Markov Models; State Transition Probabilities

\[A: \text{ a state transition probability matrix of size } (N+2) \times (N+2). \]

\[A = \begin{bmatrix}
- & a_{01} & a_{02} & a_{03} & \cdots & a_{0N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdots & a_{1N} & a_{1f} \\
- & a_{21} & a_{22} & a_{23} & \cdots & a_{2N} & a_{2f} \\
- & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
- & a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} & a_{Nf} \\
- & - & - & - & - & - & - \\
\end{bmatrix} \]

\(a_{ij} \) is the probability of moving from state \(s_i \) to state \(s_j \):

\[a_{ij} = P(X_t = s_j | X_{t-1} = s_i) \]

\[\forall i \sum_{j=0}^{N+1} a_{ij} = 1 \]
More formal definition of Hidden Markov Models; State Transition Probabilities

A: a state transition probability matrix of size \((N + 2) \times (N + 2)\).

\[
A = \begin{bmatrix}
- & a_{01} & a_{02} & a_{03} & \cdots & a_{0N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdots & a_{1N} & a_{1f} \\
- & a_{21} & a_{22} & a_{23} & \cdots & a_{2N} & a_{2f} \\
- & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
- & a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} & a_{Nf} \\
- & - & - & - & - & - & - \\
\end{bmatrix}
\]

\(a_{ij}\) is the probability of moving from state \(s_i\) to state \(s_j\):

\[
a_{ij} = P(X_t = s_j | X_{t-1} = s_i)
\]

\[
\forall_i \sum_{j=0}^{N+1} a_{ij} = 1
\]
More formal definition of Hidden Markov Models; Start state s_0 and end state s_f

- Not associated with “real” observations.
- a_{0i} describe transition probabilities out of the start state into state s_i.
- a_{if} describe transition probabilities into the end state.
- Transitions into start state (a_{i0}) and out of end state (a_{fi}) undefined.
More formal definition of Hidden Markov Models; Emission Probabilities

\(B: \) an emission probability matrix of size \((M + 2) \times (N + 2)\).

\[
B = \begin{bmatrix}
 b_0(k_0) & - & - & - & - & - & - & - & - & - \\
 - & b_1(k_1) & b_2(k_1) & b_3(k_1) & \cdots & b_N(k_1) & - \\
 - & b_1(k_2) & b_2(k_2) & b_3(k_2) & \cdots & b_N(k_2) & - \\
 - & - & - & - & \cdots & - & - \\
 - & - & - & - & \cdots & - & - \\
 - & - & - & - & \cdots & - & - \\
 - & b_1(k_M) & b_2(k_M) & b_3(k_M) & \cdots & b_N(k_M) & - \\
 - & - & - & - & \cdots & - & - \\
 - & - & - & - & \cdots & - & - \\
 - & - & - & - & \cdots & - & - \\
 - & - & - & - & \cdots & - & - \\
\end{bmatrix}
\]

\(b_i(k_j) \) is the probability of emitting vocabulary item \(k_j \) from state \(s_i \):

\[
b_i(k_j) = P(O_t = k_j | X_t = s_i)
\]

Our HMM is defined by its parameters \(\mu = (A, B) \).
More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size $(M + 2) \times (N + 2)$.

$$B = \begin{bmatrix}
Examples where states are hidden

- Speech recognition
 - Observations: audio signal
 - States: phonemes
- Part-of-speech tagging (assigning tags like Noun and Verb to words)
 - Observations: words
 - States: part-of-speech tags
- Machine translation
 - Observations: target words
 - States: source words
Today’s task: the dice HMM

- Imagine a fraudulent croupier in a casino where customers bet on dice outcomes.
- She has two dice – a fair one and a loaded one.
- The fair one has the normal distribution of outcomes – $P(O) = \frac{1}{6}$ for each number 1 to 6.
- The loaded one has a different distribution.
- She secretly switches between the two dice.
- You don’t know which dice is currently in use. You can only observe the numbers that are thrown.
Today’s task: the dice HMM

There are two states (fair and loaded), and two special states (start s_0 and end s_f).
- Distribution of observations differs between the states.
Today’s task: the dice HMM

There are two states (fair and loaded), and two special states (start s_0 and end s_f).

- Distribution of observations differs between the states.
Today’s task: the dice HMM

There are two states (fair and loaded), and two special states (start s_0 and end s_f).

Distribution of observations differs between the states.
Today’s task: the dice HMM

- There are two states (fair and loaded), and two special states (start s_0 and end s_f).
- Distribution of observations differs between the states.
Today’s task: the dice HMM

- There are two states (fair and loaded), and two special states (start s_0 and end s_f).
- Distribution of observations differs between the states.
Fundamental tasks with HMMs

- **Problem 1** (Labelled Learning)
 - Given a parallel observation and state sequence O and X, learn the HMM parameters A and B. → today

- **Problem 2** (Unlabelled Learning)
 - Given an observation sequence O (and only the set of emitting states S_e), learn the HMM parameters A and B.

- **Problem 3** (Likelihood)
 - Given an HMM $\mu = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\mu)$.

- **Problem 4** (Decoding)
 - Given an observation sequence O and an HMM $\mu = (A, B)$, discover the best hidden state sequence X. → Task 8
Task 7:

- Your implementation performs labelled HMM learning, i.e. it has
 - Input: dual tape of state and observation (dice outcome) sequences X and O.

- Output: HMM parameters A, B.

- Note: you will in a later task use your code for an HMM with more than two states. Either plan ahead now or modify your code later.
Parameter estimation of HMM parameters A, B

- Transition matrix A consists of transition probabilities a_{ij}

$$a_{ij} = P(X_{t+1} = s_j|X_t = s_i) \sim \frac{\text{count}_{\text{trans}}(X_t = s_i, X_{t+1} = s_j)}{\text{count}_{\text{trans}}(X_t = s_i)}$$

- Emission matrix B consists of emission probabilities $b_i(k_j)$

$$b_i(k_j) = P(O_t = k_j|X_t = s_i) \sim \frac{\text{count}_{\text{emission}}(O_t = k_j, X_t = s_i)}{\text{count}_{\text{emission}}(X_t = s_i)}$$

- (Add-one smoothed versions of these)

- We use state-emission HMM instead of arc-emission HMM
- We avoid initial state probability vector π by using explicit start and end states (s_0 and s_f) and incorporating the corresponding probabilities into the transition matrix A.

(Jurafsky and Martin, 2nd Edition, Chapter 6.2 (but careful, notation!))

