4: Significance Testing Machine Learning and Real-world Data

Paula Buttery (Based on slides created by Simone Teufel)

Computer Laboratory University of Cambridge

Lent 2019

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

Last session: Zipf's Law and Heaps' Law

- Zipf's Law: small number of very high-frequency words; large number of low-frequency words ("long tail").
- Heaps' Law: as more text is gathered, there will be diminishing returns in terms of discovery of new word types in the tail.
 - We will systematically always encounter new unseen words in new texts.
- Smoothing works by
 - Iowering the MLE estimate for seen types
 - redistributing this probability to unseen types (e.g. for words in long tail we might encounter during our experiment).

Observed system improvement

- This produced a better system.
- Or at least, you observed higher accuracies.
- Today: we use a statistical test to gather evidence that one system is really better than another system.

Variation in the data

- Documents are different (writing style, length, type of words used, ...)
- Some documents will make it easier for your system to score well, some will make it easier for the other system.
- Maybe you were just lucky and *all* documents in the test set are in your favour?
 - This could be the case if you don't have enough data.
 - This could be the case if the difference in accuracy is small.
- Maybe both systems perform equally well in reality?

Statistical Significance Testing

Null Hypothesis: two result sets come from the same distribution

■ System 1 is (really) equally good as System 2.

First, choose a significance level (α), e.g., $\alpha = 0.01$ or 0.05.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- We then try to reject the null hypothesis with confidence 1α (99% or 95% in this case)
- Rejecting the null hypothesis means showing that the observed result is very unlikely to have occurred by chance.

Reporting significance

If we successfully pass the significance test, and only then, we can report:

> "The difference between System 1 and System 2 is statistically significant at $\alpha = 0.01$."

> > < ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Any other statements based on raw accuracy differences alone are strictly speaking meaningless.

Sign Test (non-parametric, paired)

- The sign test uses a binary event model.
- Here, events correspond to documents.
- Events have binary outcomes:
 - Positive: System 1 beats System 2 on this document.
 - Negative: System 2 beats System 1 on this document.
 - (Tie: System 1 and System 2 do equally well on this document / have identical results – more on this later).
- Binary distribution allows us to calculate the probability that, say, (at least) 1,247 out of 2,000 such binary events are positive.
- Or otherwise the probability that (at most) 753 out of 2,000 are negative.

Binomial Distribution B(N,q)

- Call the probability of a negative outcome q (here q = 0.5)
- Probability of observing X = k negative events out of N:

$$P_q(X = k|N) = \binom{N}{k} q^k (1-q)^{N-k}$$

Binomial Distribution B(N,q)

- Call the probability of a negative outcome q (here q = 0.5)
- Probability of observing X = k negative events out of N:

$$P_q(X=k|N) = \binom{N}{k} q^k (1-q)^{N-k}$$

■ At most *k* negative events:

$$P_q(X \le k|N) = \sum_{i=0}^k \binom{N}{i} q^i (1-q)^{N-i}$$

Binary Event Model and Statistical Tests

- If the probability of observing our events under the Null Hypothesis is very small (smaller than our pre-selected significance level α, e.g., 0.01), we can safely reject the Null hypothesis.
- The P(X ≤ k) we just calculated directly gives us the probability we are interested in.
- If P(X ≤ k) ≤ 0.01, this means there is less than a 1% chance that System 1 does not actually beat System 2.

Two-Tailed vs. One-Tailed Tests

A more conservative, rigorous test would be a non-directional one (though some debate on this!)

- Testing for statistically significant difference regardless of direction: a two-tailed test
- We are now interested in the value of *k* at which 0.01 of the probability exists in the two tails.
- *B*(*N*, 0.5) is symmetric so we are now interested in 2*P*(*X* ≤ *k*)
- For the two-tailed test, if 2P(X ≤ k) ≤ 0.01, then there is less than a 1% chance that System 1 does not actually beat System 2.
- We'll be using the two-tailed test for this practical.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Treatment of Ties

- When comparing two systems in classification tasks, it is common for a large number of ties to occur.
- Disregarding ties will tend to affect a study's statistical power.
- Here, we will treat ties by adding 0.5 events to the positive and 0.5 events to the negative side (and round up at the end).

Today's Tasks

- Implement the above-introduced test for statistical significance, so that you can compare two systems.
- Implementation details on moodle (including helper code as before)

Today's Tasks

- Create more (potentially better) systems to use the significance test on.
- Modify the simple lexicon-based classifier by weighting terms with stronger sentiment more.
- The pretester will accept a system where strong indicators have weight 2.
 - You can also empirically find out the optimal weight.
 - We call this process parameter tuning.
 - Use the training corpus to set your parameters, then test on the 200 documents as before.

Starred Tick — Parameter tuning for NB Smoothing

Formula for smoothing with a constant ω :

$$\hat{P}(w_i|c) = \frac{count(w_i, c) + \omega}{\left(\sum_{w \in V} count(w, c)\right) + \omega|V|}$$

- We used add-one smoothing in Task 2 ($\omega = 1$).
- Using the training corpus, we can optimise the smoothing parameter ω .

Literature

Siegel and Castellan (1988). Non-parametric statistics for the behavioral sciences, McGraw-Hill, 2nd. Edition.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Chapter 2: The use of statistical tests in research
- Sign test: p. 80–87