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Last session: Zipf’s Law and Heaps’ Law

Zipf’s Law: small number of very high-frequency words;
large number of low-frequency words (“long tail”).
Heaps’ Law: as more text is gathered, there will be
diminishing returns in terms of discovery of new word
types in the tail.

We will systematically always encounter new unseen words
in new texts.

Smoothing works by
lowering the MLE estimate for seen types
redistributing this probability to unseen types (e.g. for words
in long tail we might encounter during our experiment).



Observed system improvement

This produced a better system.
Or at least, you observed higher accuracies.
Today: we use a statistical test to gather evidence that one
system is really better than another system.



Variation in the data

Documents are different (writing style, length, type of
words used, . . . )
Some documents will make it easier for your system to
score well, some will make it easier for the other system.
Maybe you were just lucky and all documents in the test
set are in your favour?

This could be the case if you don’t have enough data.
This could be the case if the difference in accuracy is small.

Maybe both systems perform equally well in reality?



Statistical Significance Testing

Null Hypothesis: two result sets come from the same
distribution

System 1 is (really) equally good as System 2.

First, choose a significance level (α), e.g., α = 0.01 or 0.05.
We then try to reject the null hypothesis with confidence
1− α (99% or 95% in this case)
Rejecting the null hypothesis means showing that the
observed result is very unlikely to have occurred by
chance.



Reporting significance

If we successfully pass the significance test, and only then,
we can report:

“The difference between System 1 and System 2 is sta-
tistically significant at α = 0.01.”

Any other statements based on raw accuracy differences
alone are strictly speaking meaningless.



Sign Test (non-parametric, paired)

The sign test uses a binary event model.
Here, events correspond to documents.
Events have binary outcomes:

Positive: System 1 beats System 2 on this document.
Negative: System 2 beats System 1 on this document.
(Tie: System 1 and System 2 do equally well on this
document / have identical results – more on this later).

Binary distribution allows us to calculate the probability
that, say, (at least) 1,247 out of 2,000 such binary events
are positive.
Or otherwise the probability that (at most) 753 out of 2,000
are negative.



Binomial Distribution B(N, q)

Call the probability of a negative outcome q (here q = 0.5)

Probability of observing X = k negative events out of N :

Pq(X = k|N) =

(
N

k

)
qk(1− q)N−k

At most k negative events:

Pq(X ≤ k|N) =
k∑

i=0

(
N

i

)
qi(1− q)N−i
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Binary Event Model and Statistical Tests

If the probability of observing our events under the Null
Hypothesis is very small (smaller than our pre-selected
significance level α, e.g., 0.01), we can safely reject the
Null hypothesis.
The P (X ≤ k) we just calculated directly gives us the
probability we are interested in.
If P (X ≤ k) ≤ 0.01, this means there is less than a 1%
chance that System 1 does not actually beat System 2.



Two-Tailed vs. One-Tailed Tests

A more conservative, rigorous test would be a non-directional
one (though some debate on this!)

Testing for statistically significant difference regardless of
direction: a two-tailed test
We are now interested in the value of k at which 0.01 of the
probability exists in the two tails.

B(N, 0.5) is symmetric so we are
now interested in 2P (X ≤ k)
For the two-tailed test, if
2P (X ≤ k) ≤ 0.01, then there is
less than a 1% chance that
System 1 does not actually beat
System 2.
We’ll be using the two-tailed test
for this practical.



Treatment of Ties

When comparing two systems in classification tasks, it is
common for a large number of ties to occur.
Disregarding ties will tend to affect a study’s statistical
power.
Here, we will treat ties by adding 0.5 events to the positive
and 0.5 events to the negative side (and round up at the
end).



Today’s Tasks

Implement the above-introduced test for statistical
significance, so that you can compare two systems.
Implementation details on moodle (including helper code
as before)



Today’s Tasks

Create more (potentially better) systems to use the
significance test on.
Modify the simple lexicon-based classifier by weighting
terms with stronger sentiment more.
The pretester will accept a system where strong indicators
have weight 2.

You can also empirically find out the optimal weight.
We call this process parameter tuning.
Use the training corpus to set your parameters, then test on
the 200 documents as before.



Starred Tick — Parameter tuning for NB Smoothing

Formula for smoothing with a constant ω:

P̂ (wi|c) =
count(wi, c) + ω

(
∑

w∈V count(w, c)) + ω|V |

We used add-one smoothing in Task 2 (ω = 1).
Using the training corpus, we can optimise the smoothing
parameter ω.
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