4: Significance Testing

Machine Learning and Real-world Data

Paula Buttery
 (Based on slides created by Simone Teufel)

Computer Laboratory
University of Cambridge

Lent 2019

Last session: Zipf's Law and Heaps' Law

■ Zipf's Law: small number of very high-frequency words; large number of low-frequency words ("long tail").
■ Heaps' Law: as more text is gathered, there will be diminishing returns in terms of discovery of new word types in the tail.

■ We will systematically always encounter new unseen words in new texts.

- Smoothing works by
- lowering the MLE estimate for seen types
- redistributing this probability to unseen types (e.g. for words in long tail we might encounter during our experiment).

Observed system improvement

■ This produced a better system.
■ Or at least, you observed higher accuracies.

- Today: we use a statistical test to gather evidence that one system is really better than another system.

Variation in the data

■ Documents are different (writing style, length, type of words used, ...)
■ Some documents will make it easier for your system to score well, some will make it easier for the other system.

- Maybe you were just lucky and all documents in the test set are in your favour?
- This could be the case if you don't have enough data.
- This could be the case if the difference in accuracy is small.

■ Maybe both systems perform equally well in reality?

Statistical Significance Testing

■ Null Hypothesis: two result sets come from the same distribution

- System 1 is (really) equally good as System 2.

■ First, choose a significance level (α), e.g., $\alpha=0.01$ or 0.05 .
■ We then try to reject the null hypothesis with confidence $1-\alpha$ (99\% or 95% in this case)
■ Rejecting the null hypothesis means showing that the observed result is very unlikely to have occurred by chance.

Reporting significance

■ If we successfully pass the significance test, and only then, we can report:
"The difference between System 1 and System 2 is statistically significant at $\alpha=0.01$."

- Any other statements based on raw accuracy differences alone are strictly speaking meaningless.

Sign Test (non-parametric, paired)

■ The sign test uses a binary event model.
■ Here, events correspond to documents.
■ Events have binary outcomes:
■ Positive: System 1 beats System 2 on this document.

- Negative: System 2 beats System 1 on this document.
- (Tie: System 1 and System 2 do equally well on this document / have identical results - more on this later).
■ Binary distribution allows us to calculate the probability that, say, (at least) 1,247 out of 2,000 such binary events are positive.
■ Or otherwise the probability that (at most) 753 out of 2,000 are negative.

Binomial Distribution $B(N, q)$

■ Call the probability of a negative outcome q (here $q=0.5$)

- Probability of observing $X=k$ negative events out of N :

$$
P_{q}(X=k \mid N)=\binom{N}{k} q^{k}(1-q)^{N-k}
$$

Binomial Distribution $B(N, q)$

■ Call the probability of a negative outcome q (here $q=0.5$)

- Probability of observing $X=k$ negative events out of N :

$$
P_{q}(X=k \mid N)=\binom{N}{k} q^{k}(1-q)^{N-k}
$$

- At most k negative events:

$$
P_{q}(X \leq k \mid N)=\sum_{i=0}^{k}\binom{N}{i} q^{i}(1-q)^{N-i}
$$

Binary Event Model and Statistical Tests

■ If the probability of observing our events under the Null Hypothesis is very small (smaller than our pre-selected significance level α, e.g., 0.01), we can safely reject the Null hypothesis.
■ The $P(X \leq k)$ we just calculated directly gives us the probability we are interested in.
■ If $P(X \leq k) \leq 0.01$, this means there is less than a 1% chance that System 1 does not actually beat System 2.

Two-Tailed vs. One-Tailed Tests

A more conservative, rigorous test would be a non-directional one (though some debate on this!)

- Testing for statistically significant difference regardless of direction: a two-tailed test
■ We are now interested in the value of k at which 0.01 of the probability exists in the two tails.
- $B(N, 0.5)$ is symmetric so we are now interested in $2 P(X \leq k)$
■ For the two-tailed test, if
$2 P(X \leq k) \leq 0.01$, then there is less than a 1% chance that System 1 does not actually beat System 2.
■ We'll be using the two-tailed test for this practical.

Treatment of Ties

■ When comparing two systems in classification tasks, it is common for a large number of ties to occur.
■ Disregarding ties will tend to affect a study's statistical power.

- Here, we will treat ties by adding 0.5 events to the positive and 0.5 events to the negative side (and round up at the end).

Today's Tasks

■ Implement the above-introduced test for statistical significance, so that you can compare two systems.
■ Implementation details on moodle (including helper code as before)

Today's Tasks

■ Create more (potentially better) systems to use the significance test on.

- Modify the simple lexicon-based classifier by weighting terms with stronger sentiment more.
- The pretester will accept a system where strong indicators have weight 2.
- You can also empirically find out the optimal weight.
- We call this process parameter tuning.
- Use the training corpus to set your parameters, then test on the 200 documents as before.

Starred Tick — Parameter tuning for NB Smoothing

■ Formula for smoothing with a constant ω :

$$
\hat{P}\left(w_{i} \mid c\right)=\frac{\operatorname{count}\left(w_{i}, c\right)+\omega}{\left(\sum_{w \in V} \operatorname{count}(w, c)\right)+\omega|V|}
$$

- We used add-one smoothing in Task $2(\omega=1)$.

■ Using the training corpus, we can optimise the smoothing parameter ω.

Literature

■ Siegel and Castellan (1988). Non-parametric statistics for the behavioral sciences, McGraw-Hill, 2nd. Edition.

- Chapter 2: The use of statistical tests in research

■ Sign test: p. 80-87

