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Where have we got to?

You have now encountered two applications of ML and
real-world data:

Sentiment Detection
Sequence learning for biological applications

We will now move to the third topic: Social Networks.
You will be given a network consisting of users and links
between them.
You will visualise this network and then write code to
determine some simple statistics of the network.
In subsequent sessions, we will use network properties in
a classic ML task: clustering.



Overview of tasks

Task 10: simple statistics including the degree of each
node and the diameter of the network.
Task 11: finding gatekeeper nodes via betweenness
centrality.
Task 12: using betweenness centrality of edges to split
graph into cliques (example of clustering).
Reading for social networks (all sessions):

Easley and Kleinberg for background: Chapters 1, 2, 3 and
first part of Chapter 20.
Brandes algorithm: two papers by Brandes (links in
practical notes).



Social networks

Examples:
Facebook-style networks:

Nodes: people;
Links: “friend”, messages

Twitter-style networks:
Nodes: Entities/people
Links: “follows”, “retweets”
Also: research citations

Operations on such networks
Which role does a node play in this network?
Is there a substructure in the network?
neighbourhood areas/cliques



Some reasons to analyse social networks

Academic investigation of human behaviour (sociology,
economics etc)
Disease transmission in epidemics.
Modelling information flow: e.g., who sees a picture, reads
a piece of news (or fake news).
Identifying links between subcommunities, well-connected
individuals:

recommending research papers to beginning PhD students
targeted advertising . . .

Lots of applications in conjunction with other approaches:
e.g., sentiment analysis of tweets plus network analysis.



Erdös Number

Steps in a path between a researcher and the mathematician,
Paul Erdös, counting co-authorship of papers as links.

http://oakland.edu/enp/



Network concepts illustrated by co-authorship

Networks are modelled as graphs: undirected and
unweighted here. (weight and direction for co-authorship?)
The degree of a node is the number of neighbours a node
has in the graph (here co-authors).
Erdös is represented as a node of degree 509.
The distribution of node degrees may be very skewed:
American Mathematical Society data from 2004:
http://oakland.edu/enp/

mean degree is 3.36
about 20% have degree 0 (i.e., no co-authored papers)
only five mathematicians had more than 200 collaborators,
none beside Erdös had more than 270

Most scientific fields can be linked to Erdös, mostly via
small number of interdisciplinary authors.

http://oakland.edu/enp/


Diameter and average distance of a network

distance is the length of shortest path between two nodes.
diameter of a graph: maximum distance between any pair
of nodes.
small world phenomenon, six degrees of separation

’Chain-links’: short story by Karinthy (1929): any two
individuals in the world could be connected via at most 5
personal acquaintances.
Milgram attempted to verify experimentally (partial
success).

Natural networks tend to have closely clustered regions,
connected only by a few links between them. Often these
are weak ties.



Some important concepts for social networks

See Easley and Kleinberg (2010, Chapter 3) for full discussion:
giant component: a connected component containing
most of the nodes in a graph.
weak and strong ties: the closeness of the link. e.g., two
researchers co-author lots of papers together, or
co-authors on one paper (with other people)? Large
components often only connected by weak ties.



Bridge

bridge: an edge that connects two components which would
otherwise be unconnected.

Figure 3.3 from Easley and Kleinberg (2010)



Local bridge

local bridge: an edge joining two nodes that have no other
neighbours in common.

Cutting a local bridge increases the length of the shortest path
between the nodes.
Figure 3.4 from Easley and Kleinberg (2010)



Triadic closure and clustering coefficient

Easley and Kleinberg (2010, p48–50)
triadic closure: triangle of nodes. Thought of as a
dynamic property: if A knows B and A knows C, relatively
likely B and C will (get to) know each other.
The clustering coefficient is a measure of the amount of
triadic closure in a network.
Clustering coefficient of a node A is the probability that two
randomly selected neighbours of A are also neighbours of
each other.



Small worlds (Easley and Kleinberg, Ch 20)

Is the small world phenomenon surprising?
Short paths not surprising if links fan out enough at each
step — we quickly reach everyone in the world.
But, for small world, links must be found (to an extent) by
humans: decentralized search.
And fan out isn’t what really happens: triadic closure.
In fact, long weak ties are crucial.



Random graph generation for experimental
investigation

Figure 20.3 from Easley and Kleinberg (2010)

Watts and Strogatz: randomly generated graph with
triangles at close range, plus a few long random links.
Random links generated according to inverse square of
distance between nodes.
These allow the reduction of distance to target.



Today’s data

Facebook data: combined friends list data from 10 users
(ego-networks).
Originally used for experiments in discovering social
circles: e.g., family, school friends, university friends, CS
department friends (contained completely in university
friends).
http://snap.stanford.edu/data/
egonets-Facebook.html

Also available today for the starred tick: two collaboration
networks (also from SNAP).

http://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/data/egonets-Facebook.html


Your task today

Task 10:

Investigate the network using Gephi
Visualize the network with Gephi
Find network diameter
Visualize node degrees
Visualize betweenness centrality (discussed in a later
lecture)

Coding:
Find the degree of each node.
Determine the diameter of the network using a breadth-first
all-pairs shortest path (APSP) algorithm.
(More complex approaches in Algorithms course, but note
there are no weights or negative edges here.)


