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I Logic and Proof 101

‘ Introduction to Logic I

Logic concerns statements in some language.

The language can be natural (English, Latin, ...) or formal.

Some statements are true, others false or meaningless.

Logic concerns relationships between statements: consistency,

entailment, . ..

Logical proofs model human reasoning (supposedly).
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I Logic and Proof

\ Statements '

Statements are declarative assertions:

Black is the colour of my true love’s hair.

They are not greetings, questions or commands:

What is the colour of my true love’s hair?
| wish my true love had hair.

Get a haircut!

Lawrence C. Paulson
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I Logic and Proof 103

\ Schematic Statements '

Now let the variables X, Y, Z, ... range over ‘real’ objects

Black is the colour of X’s hair.
Black is the colour of Y.

/ is the colour of Y.
Schematic statements can even express questions:

What things are black?
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‘ Interpretations and Validity I

An interpretation maps variables to real objects:

The interpretation Y +— coal satisfies the statement

Black is the colour of Y.

but the interpretation Y — strawberries does not!

A statement A is valid if all interpretations satisfy A.
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‘ Consistency, or Satisfiability I

A set S of statements is consistent if some interpretation satisfies all

elements of S at the same time. Otherwise S is inconsistent.

Examples of inconsistent sets:

{X partof Y, Y part of Z, X NOT part of Z}

{nis a positive integer, n A1, n# 2, ...}

Satisfiable means the same as consistent.

Unsatisfiable means the same as inconsistent.
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Entailment, or Logical Consequence I

A set S of statements entails A if every interpretation that satisfies alll

elements of S, also satisfies A. We write S = A.

{X partof Y, Ypartof Z} = X part of Z

n#1, n#2, ...} EnisNOT a positive integer

S = Aifandonly if {—A} U S is inconsistent.
If S is inconsistent, then S = A for any A.

— A if and only if A is valid, if and only if {—A} is inconsistent.
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‘ Inference: Proving a Statement I

We want to show that A is valid. We can’t test infinitely many cases.

Let{A1,...,An} E B.IfAq, ..., A, are true then B must be true.

Write this as the inference rule

Aq oo Apn
B

We can use inference rules to construct finite proofs!
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Schematic Inference Rules .

XpartofY  Ypartof Z
X part of Z

A proof is correct if it has the right syntactic form, regardless of
Whether the conclusion is desirable
Whether the premises or conclusion are true

Who (or what) created the proof

Lawrence C. Paulson & University of Cambridge
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‘ Why Should we use a Formal Language? I

Consider this ‘definition’: (Berry’s paradox)

The smallest positive integer not definable using nine words

Greater than The number of atoms in the Milky Way galaxy

This number is so large, it is greater than itself!

e A formal language prevents ambiguity.

Lawrence C. Paulson University of Cambridge
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‘ Survey of Formal Logics I

propositional logic is traditional boolean algebra.

first-order logic can say for all and there exists.

higher-order logic reasons about sets and functions.

modal/temporal logics reason about what must, or may, happen.
type theories support constructive mathematics.

All have been used to prove correctness of computer systems.

Lawrence C. Paulson =T University of Cambridge
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‘ Syntax of Propositional Logic I

propositional letter

frue

false

not A

A and B
AorB

if A then B

A if and only if B
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‘ Semantics of Propositional Logic I

—, \, V, — and <« are truth-functional: functions of their operands.

—A AAB AVB A—B A<B
0

1 |
0 0
1 0
| |

1
|
1
0

|
0 0
1 0
| 0
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‘ Interpretations of Propositional Logic I

An interpretation is a function from the propositional letters to {1, O}.

Interpretation I satisfies a formula A if it evaluates to 1 (true).
Write =1 A

A is valid (a tautology) if every interpretation satisfies A.
Write = A

S is satisfiable if some interpretation satisfies every formula in S.
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‘ Implication, Entailment, Equivalence I

A — B means simply —A V B.

A E B meansif =1 A then =1 B for every interpretation 1.
A = Bifandonlyif = A — B.

Equivalence
A ~Bmeans A =BandB = A.
A ~ Bifandonly if = A « B.

Lawrence C. Paulson & University of Cambridge



I Logic and Proof 205

‘ Equivalences I

ANA~A
AANB~BAA
(AAB)AC~AA(BAC)

AV(BAC)~(AVB)A(AVC)
ANF A
ANt~ A
AN—A ~f

Dual versions: exchange A with \VV and t with f in any equivalence

Lawrence C. Paulson =T University of Cambridge
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‘ Negation Normal Form I

1. Get rid of <= and —, leaving just A\, V, —:

A—~B~(A—-B)A(B—A)
A—-B~—-AVB

2. Push negations in, using de Morgan’s laws:

Lawrence C. Paulson & University of Cambridge
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‘ From NNF to Conjunctive Normal Form I

3. Push disjunctions in, using distributive laws:

AV(BAC)~(AVB)A(AVC
(BAC) VA~ (BVA)A(CVA)
4. Simplify:
e Delete any disjunction containing P and —P

e Delete any disjunction that includes another: for example, in
(PV Q) AP, delete PV Q.

e Replace (PVA)A(=PV A)by A

Lawrence C. Paulson & University of Cambridge
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‘ Converting a Non-Tautology to CNF I

PVQ—QVR

1. Elim —: —(PVvQ)VI(QVR)

2. Push—in: (mPA—=Q)V(Q VR)
3.PushVin: (mFPVQVRIA(—QV QVR)
4. Simplify: —PVQVR

Not a tautology: try P +—t, Q — f, R — f

Lawrence C. Paulson & University of Cambridge
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Tautology checking using CNF

uioogy checking usins O )

(P—Q)—P)—P

1. Elim —:

2. Push —in:

3. Push V in:

4. Simplify:

~[~(=PVQ)VP]VP
—~—(—PV Q) A—=P] VP

(~PVQ)A—P] VP
(~PV QVP)A (=P V P)
t At

t

It's a tautology!
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‘ A Simple Proof System I

Axiom Schemes

K A— (B—A)
s A—=-B—-C)—(A—=B)—(A—-C)

DN —A — A

Inference Rule: Modus Ponens
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‘A Simple (?) Proof of A — AI

(A—=((D—=A)—A))—
(A—(D—-A))— (A—A))

A—((D—=A)—A)
(A—=(D—A)) —(A—-A)
A— (D—A)

Lawrence C. Paulson & University of Cambridge
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‘ Some Facts about Deducibility I

A is deducible from the set S if there is a finite proof of A starting from
elements of S. Write S - A.

Soundness Theorem. If S - A then S = A.

Completeness Theorem. If S = A then S - A.

Deduction Theorem. If SU{A}F BthenS + A — B.

Lawrence C. Paulson & University of Cambridge
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‘ Gentzen’s Natural Deduction Systems I

The context of assumptions may vary.

Each logical connective is defined independently.

The introduction rule for A shows how to deduce A A B:

A B
ANB

The elimination rules for /A shows what to deduce from A A B:
ANDB A NB

Lawrence C. Paulson & University of Cambridge
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‘ The Sequent Calculus I

Sequent Aq,..., A = B1,..., B,y means,
ifAi AN...NAjthenBy V...V B,

A1, ..., A are assumptions; B, ..., B, are goals

["and Aaresetsin[ = A

A,I'= A, Aistrivially true (and is called a basic sequent).

Lawrence C. Paulson
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‘ Sequent Calculus Rules I

N=AA AT=A
= A

(cut)

PSAA L ATSA

ABT=A r~AA T=AB

(AL)
AABT=A

Lawrence C. Paulson
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‘ More Sequent Calculus Rules I

AT=A BT=A . '=AA,B (
V \Va ¥
AVBT=A r'=AAVB

)

N=AA B,F#A( D AT=AB o
A—BIT=A '=AA—B

Lawrence C. Paulson & University of Cambridge
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‘ Easy Sequent Calculus Proofs I

AB=A
ANB=A (
= (AANB) = A

(AL)

—7)

A, B=B A
A=DB,B— A
A —-B,B— A

Lawrence C. Paulson & University of Cambridge
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\ Part of a Distributive Law .

B.C=A,B

(AL)

V1)

A=AB BAC=ZAB.

AV(BAC)=A,B .
AV(BAC)=AVB similar
AV(BAC)=(AVB)A(AVC)

(AT)

Second subtree proves A V (B A C) = A V C similarly

Lawrence C. Paulson & University of Cambridge
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\ A Failed Proof '

A=B,C B=B,C

(V1)
AVB=B,C

(V)

AVB=BVC

(=)

= (AVB)— (BVC)

A=t B—f C— ffalsifies unproved sequent!

Lawrence C. Paulson
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‘ Outline of First-Order Logic I

Reasons about functions and relations over a set of individuals:

father(father(x)) = father(father(y))

cousin(x, y)

Reasons about all and some individuals:

All men are mortal Socrates is a man
Socrates is mortal

Cannot reason about all functions or all relations, etc.

Lawrence C. Paulson & University of Cambridge
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‘ Function Symbols; Terms I

Each function symbol stands for an n-place function.

A constant symbol is a 0-place function symbol.
A variable ranges over all individuals.

A term is a variable, constant or a function application

f(t1,...,tn)

402

where f is an n-place function symbol and t1, .. ., t,, are terms.

We choose the language, adopting any desired function symbols.

Lawrence C. Paulson
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‘ Relation Symbols; Formulae I

Each relation symbol stands for an n-place relation.

Equality is the 2-place relation symbol =

An atomic formula has the form R(tq, ..., t,,) where R is an n-place

relation symbol and tq, ..., t,, are terms.

A formula is built up from atomic formulae using —, A, V, and so forth.

Later, we can add quantifiers.

Lawrence C. Paulson & University of Cambridge
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‘ The Power of Quantifier-Free FOL '

It is surprisingly expressive, if we include strong induction rules.
We can easily prove the equivalence of mathematical functions:

p(Z,O) ] q(Z,1) Z

plz,n+1)=plz,n) xz q(z,2xn) =q(zxz,n]

q
q

q(z,2 xn+1) (zXxz,n) Xz

The prover ACL2 uses this logic to do major hardware proofs.

Lawrence C. Paulson & University of Cambridge
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‘ Universal and Existential Quantifiers '

Vx A for all x, the formula A holds

dx A there exists x such that A holds
Syntactic variations:

Vxyz A abbreviates Vx Vy Vz A
Vz.A A B is an alternative to Vz (A A B)

The variable x is bound in Vx A; compare with | f(x)dx

Lawrence C. Paulson & University of Cambridge
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The Expressiveness of Quantifiers I

All men are mortal:

Vx (man(x) — mortal(x))

All mothers are female:

Vx female(mother(x))

There exists a unique x such that A, sometimes written d!x A

Lawrence C. Paulson University of Cambridge
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\ The Point of Semantics '

We have to attach meanings to symbols like 1, +, <, efc.

Why is this necessary? Why can’t 1 just mean 17??

The point is that mathematics derives its flexibility from allowing

different interpretations of symbols.

e A group has a unit 1, a product X - Yy and inverse x 1.

e In the most important uses of groups, 1 isn’t a number but a ‘unit

permutation’, ‘unit rotation’, etc.

Lawrence C. Paulson & University of Cambridge
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Constants: Interpreting mortal(Socrates)

An interpretation Z = (D, I) defines the semantics of a first-order

language.

D is a non-empty set, called the domain or universe.

I maps symbols to ‘real’ elements, functions and relations:

C a constant symbol
f an n-place function symbol

P an n-place relation symbol

Lawrence C. Paulson

I[c
I[f]
I[P]

cD
cD"—=D
c D™ —{1,0}
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Variables: Interpreting father(y)

A valuation V : Var — D supplies the values of free variables.
V and Z together determine the value of any term t, by recursion.

This value is written Zv/[t], and here are the recursion rules:

X, i V(x) if X is a variable

Lawrence C. Paulson & University of Cambridge
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\ Tarski’s Truth-Definition '

An interpretation Z and valuation function V similarly specify the truth
value (1 or O) of any formula A.

Quantifiers are the only problem, as they bind variables.

V{a/x} is the valuation that maps x to a and is otherwise like V.

With the help of V{a/x}, we now formally define =7 v A, the truth

value of A.

Lawrence C. Paulson & University of Cambridge
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‘ The Meaning of Truth—In FOL! I

For interpretation Z and valuation V, define ):I,v by recursion.

=7 v P(t) if [[P](Zv/[t]) equals 1 (is true)

—rvt=u if Zy/ [t] equals Zy/ [ul

—7.V ANB if 'ZI,V A and ):I,V B
=7 v XA if =7 vim/x} A holds forsome m € D

Finally, we define

=7 A if =7 v A holds for all V.

A closed formula A is satisfiable if =7 A for some Z.

Lawrence C. Paulson & University of Cambridge
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\ Free vs Bound Variables '

All occurrences of x in Vx A and dx A are bound

An occurrence of x is free if it is not bound:
vy JzR(y, z, f(y, x))

In this formula, y and z are bound while X is free.

We may rename bound variables without affecting the meaning:

vw 3z’ R(w,z" f(w,x))

Lawrence C. Paulson & University of Cambridge
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‘ Substitution for Free Variables '

A [t/x] means substitute t for x in A:

(BAC
(Vx B
(Vy B
(P{u)

t/x] is Blt/x] A C[t/x]

t/x] is VxB

t/x] is VyBlt/x] (x#Y)
t/x] is P(ult/x])

)
)
)
)

When substituting A [t/x], no variable of t may be bound in A!

Example: (Vy (x =1y)) [y/x] is not equivalentto Yy (y = y)

Lawrence C. Paulson & University of Cambridge
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‘ Some Equivalences for Quantifiers I

—(Vx A) ~ Ix—A
Vx A ~Vx A AA[t/x]

(Vx A) A (VxB) ~ Vx (A A B)
But we do not have (Vx A) V (VxB) ~ Vx (A V B).

Dual versions: exchange V with 3 and A with VV

Lawrence C. Paulson University of Cambridge
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‘ Further Quantifier Equivalences I

These hold only if x is not free in B.

(Vx A) A B ~Vx (A A B)

(VxA)V B ~Vx(AVB)
(VxA) — B~ 3dx (A — B)

These let us expand or contract a quantifier's scope.

Lawrence C. Paulson & University of Cambridge
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‘ Reasoning by Equivalences I

Ix(x =aAP(x)) ~Ix(x=aAP(a))

~ Jdx (x = a) A P(a)

~ P(a)

Jz (P(z) — P(a) A P(b))
~VYzP(z) — P(a) A P(b)
~VYzP(z) AP(a) AP(b) — P(a) A P(b)

Lawrence C. Paulson & University of Cambridge
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‘ Sequent Calculus Rules for V I

Alt/x], T = A vy N=AA "
Vx A, T = A = A VxA

)

Rule (v1) can create many instances of Vx A
Rule (vr) holds provided x is not free in the conclusion!

Not allowed to prove

P(y)=Py) .
P(y) =Yy P(y) This is nonsense!

Lawrence C. Paulson
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‘ A Simple Example of the V Rules I

P(f(y)) = P(f(yv))

VxP(x) = P(f(y)) "
Vx P(x) =Yy P(f(y))

Lawrence C. Paulson & University of Cambridge
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‘ A Not-So-Simple Example of the V Rules I

P=Qy),P P Qy)= Qly)
P, P — Qy)= Q(y)

(—1)

P, Vx (P — Q(x)
P, Vx (P — Q(x)
vx (P — Q(x)

= Q(y)

= vy Q(y)
=P — Vy Q(y)

)
)
)
)

In (v1), we must replace x by y.

Lawrence C. Paulson & University of Cambridge
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‘ Sequent Calculus Rules for - I

AT=A - = A Alt/x] .
IxA, = A = A JIxA

Rule (31) holds provided X is not free in the conclusion!
Rule (3r) can create many instances of I4x A

For example, to prove this counter-intuitive formula:

Lawrence C. Paulson
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‘ Part of the - Distributive Law I

similar el
IxQ(x)=y ... v
(P(y) VvV Qly))

Second subtree proves Ix Q(x) (P(y) vV Q(y)) similarly

In (3r), we must replace y by x.

Lawrence C. Paulson & University of Cambridge
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\ A Failed Proof '

We cannot use (31) twice with the same variable

This attempt renames the x in 3x Q(x), to get 3y Q(y)

Lawrence C. Paulson =T University of Cambridge
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\ Clause Form '

Clause: a disjunction of literals

KV VoKL VLV--- VL,

Set notation: {(—=K1,...,7 Ky, Ly, ..., L4}

Kowalski notation:  Kq,--- , Ky — L1, -+, L

L1>°'° )LTIHK1>'” >Km

Empty clause: {} or 0O

Empty clause is equivalent to f, meaning contradiction!

Lawrence C. Paulson
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\ Outline of Clause Form Methods '

To prove A, obtain a contradiction from —A:

1. Translate "A intoCNFas A1 A--- ANAn,
2. This is the set of clauses A1, ..., A
3. Transform the clause set, preserving consistency

Deducing the empty clause refutes —A.

An empty clause set (all clauses deleted) means —A is satisfiable.

The basis for SAT solvers and resolution provers.

602
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‘The Davis-Putnam-Logeman-Loveland Method I

1. Delete tautological clauses: {P,—P,...}

2. For each unit clause {L},
e delete all clauses containing L

e delete —L from all clauses
3. Delete all clauses containing pure literals
4. Perform a case split on some literal; stop if a model is found

DPLL is a decision procedure: it finds a contradiction or a model.

Lawrence C. Paulson University of Cambridge
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‘ DPLL on a Non-Tautology I

Consider PV Q — Q VR
Clauses are {P, Q} {—Q} {—R}

{P,Q} {—Q} {—R} initial clauses
{P} {—=R} unit—Q
{—=R} unitP (also pure)

unit —R (also pure)

604

All clauses deleted! Clauses satisfiable by P — t, Q — f, R — f

Lawrence C. Paulson
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‘ Example of a Case Split on P I

{—=Q,R} =R,P} {=R,Q}; {=P,Q,R} {P,Q} {=P,—Q;

{7Q,R} 1—R,Q} 1{Q,R} {—Q} ifPistrue
{—R} {R}
U

—Q,R}  {=R}  {#R,Q} Q)
{—QJ Q)
U

Lawrence C. Paulson & University of Cambridge
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\ SAT solvers in the Real World '

e Progressed from joke to killer technology in 10 years.

e Princeton’s zChaff has solved problems with more than one million

variables and 10 million clauses.

e Applications include finding bugs in device drivers (Microsoft’'s
SLAM project).

e SMT solvers (satisfiability modulo theories) extend SAT solving to

handle arithmetic, arrays and bit vectors.

Lawrence C. Paulson & University of Cambridge
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‘The Resolution Rule '

FromBV Aand BV Cinfer AV C

In set notation,

{B>A1>--->Am} {_|B>C1>°">CT1}
A, ARGy G

Some special cases: (remember that [ is just {})

{B} {_‘B> C] yoeey Cn} {B} {_‘B}
[]

Lawrence C. Paulson
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‘Simple Example: ProvingP AQ — QAP I

Hint: use /(A — B) ~ A A—B

1. Negate! —[PAQ — QAP]
2. Push—in: (PAQ)A—(QAP)
(PAQ)A(=QV—P)

Clauses: P 1Qr  1—Q,—P}

Resolve {P} and {—Q, =P} getting {—Q .

Resolve {Q} and {—Q} getting [J: we have refuted the negation.

608
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‘ Another Example I

Refute =[(PVQ)A(PVR) —= PV (QAR)]
From (P V Q) A (P V R), get clauses {P, Q} and {P, R}.
From— [P V (Q A R)] get clauses {—P} and {—Q, —R}.

Resolve {—P} and {P, Q} getting {Q .
Resolve {—P} and {P, R} getting {R}.
Resolve {Q} and {—Q, —R} getting {—R}.

Resolve {R} and {—R} getting [, contradiction.

Lawrence C. Paulson
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‘ The Saturation Algorithm I

At start, all clauses are passive. None are active.

1. Transfer a clause (current) from passive to active.
2. Form all resolvents between current and an active clause.
3. Use new clauses to simplify both passive and active.

4. Put the new clauses into passive.

Repeat until contradiction found or passive becomes empty.

Lawrence C. Paulson & University of Cambridge
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\ Heuristics and Hacks for Resolution '

Orderings to focus the search on specific literals
Subsumption, or deleting redundant clauses
Indexing: elaborate data structures for speed

Preprocessing: removing tautologies, symmetries . . .

Weighting: giving priority to “good” clauses over those containing

unwanted constants

Lawrence C. Paulson & University of Cambridge
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‘ Reducing FOL to Propositional Logic.

NNF : Eliminate all connectives except V, /\ and —

Skolemize: Remove quantifiers, preserving consistency
Herbrand models: Reduce the class of interpretations
Herbrand’s Thm: Contradictions have finite, ground proofs

Unification: Automatically find the right instantiations

Finally, combine unification with resolution

Lawrence C. Paulson & University of Cambridge
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‘ Skolemization, or Getting Rid of - I

Start with a formula in NNF, with quantifiers nested like this:

Vxg (- Vxo (- X (- FYA ) )

Choose a fresh k-place function symbol, say f

Delete Jy and replace y by f(x1,%2,...,Xx). We get

Vxq (- xg (o xe (- Alf(xa, %2, -y xa) /Yyl s ) o) oo )

Repeat until no 3 quantifiers remain

Lawrence C. Paulson & University of Cambridge
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703

‘ Example of Conversion to Clauses I

For proving 3x [P(x) — Yy P(y)]

— [3x [P(x) — Yy P(y)]]

vx [P(x) A 3y =P(y)]

Vx [P(x) A —P(f(x))]

negated goal
conversion to NNF
Skolem term f(x)

Final clauses

University of Cambridge
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\ Correctness of Skolemization '

The formula Vx 3y A is consistent
<& it holds in some interpretation Z = (D, I)

&= forallx € D thereis somey € D such that A holds

&= some functionfinD — D yields suitable values of Y

&= Al[f(x)/y] holds in some Z’ extending Z so that f denotes
& the formula Vx A[f(x)/y] is consistent.

Lawrence C. Paulson & University of Cambridge
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‘ The Herbrand Universe for a Set of Clauses S I

def .
Ho = the set of constants in S (must be non-empty)

def
Hi—|—1 éHiU{f(-h)"')tn) ‘t1>"'>tTLEHi

and f is an n-place function symbol in S}

Herbrand Universe

H; contains just the terms with at most 1 nested function applications.

H consists of the terms in S that contain no variables (ground terms).

Lawrence C. Paulson University of Cambridge
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\ The Herbrand Semantics of Predicates '

An Herbrand interpretation defines an n-place predicate P to denote a
truth-valued function in H™ — {1, 0}, making P(t7,...,tn ) true...

e if and only if the formula P(tq, ..., t,,) holds in our desired “real”

interpretation Z of the clauses.

e Thus, an Herbrand interpretation can imitate any other

interpretation.

Lawrence C. Paulson & University of Cambridge
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‘ The Inspiration for Clause Methods I

Herbrand’s Theorem: Let S be a set of clauses.

S is unsatisfiable <= there is a finite unsatisfiable set S’ of ground

instances of clauses of S.
e Finite: we can compute it
e Instance: result of substituting for variables

e Ground: no variables remain—it’s propositional!

Example: S couldbe {P(x)} {—=P(f(y))},
and S’ could be {P(f(a))} {—P(f(a))k.

Lawrence C. Paulson & University of Cambridge
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\ Unification '

Finding a common instance of two terms. Lots of applications:

e Prolog and other logic programming languages

e [heorem proving: resolution and other procedures

e Tools for reasoning with equations or satisfying constraints
e Polymorphic type-checking (ML and other functional languages)

It is an intuitive generalization of pattern-matching.
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‘ Four Unification Examples I

fx,x) f(x,x) j(x,%,z)

fla,b) | fly,gly)) j(w, a,h(w))
None None j(a,a,h(a))

Fail Fail la/w,a/x,h(a)/z]

The output is a substitution, mapping variables to terms.
Other occurrences of those variables also must be updated.

Unification yields a most general substitution (in a technical sense).

Lawrence C. Paulson & University of Cambridge
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‘Theorem-Proving Example 1 I

(Fy ¥x R(x,y)) — (Vx3Jy R(x,y))

After negation, the clauses are {R(x, a)} and {—R(b,y)}.

The literals R(x, a) and R(b,y) have unifier [b/x, a/y].

We have the contradiction R(b, a) and =R(b, a).

The theorem is proved by contradiction!

Lawrence C. Paulson & University of Cambridge
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‘ Theorem-Proving Example 2 I

(Vx Jy R(x,y)) — (Fy VxR(x,y))

After negation, the clauses are {R(x, f(x))} and {—R(g(y),y)}.

The literals R(x, f(x)) and R(g(y),y) are not unifiable.

(They fail the occurs check.)

We can’t get a contradiction. Formula is not a theorem!

Lawrence C. Paulson & University of Cambridge



VI Logic and Proof 801

‘The Binary Resolution Rule I

{B>A1>°">Am} {_‘D>C1>°">Cn}
{A1>--->Am>C1>--->Cn}G

(0 is a most general unifier of B and D.)

provided Bo = Do

First, rename variables apart in the clauses! For example, given

{P(x)} and {=P(g(x))J,

we must rename X in one of the clauses. (Otherwise, unification fails.)
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‘The Factoring Rule I

This inference collapses unifiable literals in one clause:

{B1>°">Bk>A1>°">Am}
{B1>A1>--->Am}0

provided Bijo = - --

Example: Prove Vx 3y —(P(y, x) < —P(y,y))

The clauses are  {—P(y, a),~P(y,y)} {P(y,y),Ply,a)}
Factoring yields {—P(a, a)} {P(a,a)}

Resolution yields the empty clause!
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\ A Non-Trivial Proof .

Ix [P — Q(x)] A Ix[Q(x) — P] — Ix [P < Q(x]]
Clauses are {P,—~Q(b)} {P,Q(x)} {—P,—Q(x)} {—P,Q(a)}

Resolve {P,—Q(b)} with {P, Q(x)}  getting {P, P}

Factor {P, P} getting {P}
Resolve {—P, —Q(x)} with {—=P, Q(a)} getting {—P, =P}
Factor {—P,—P} getting {—P}
Resolve {P} with {—P} getting []
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‘ What About Equality? I

In theory, it's enough to add the equality axioms:

e The reflexive, symmetric and transitive laws.

e Substitution laws like {x # y, f(x) = f(y)] for each f.

e Substitution laws like {x # y, —P(x), P(y)] for each P.

In practice, we need something special: the paramodulation rule

{BIt'],Aq,...,Am} (t=u,Cq,...,Cq}
Blul,A7,...,Am,Cq,...,Cqlo (if to = t’0)

Lawrence C. Paulson & University of Cambridge
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‘ Prolog Clauses I

Prolog clauses have a restricted form, with at most one positive literal.

The definite clauses form the program. Procedure B with body

“commands” A1, ..., A is

BHA],...,Am

The single goal clause is like the “execution stack”, with say m tasks

left to be done.
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‘ Prolog Execution I

Linear resolution:
e Always resolve some program clause with the goal clause.
e The result becomes the new goal clause.
Try the program clauses in left-to-right order.
Solve the goal clause’s literals in left-to-right order.
Use depth-first search. (Performs backtracking, using little space.)

Do unification without occurs check. (Unsound, but needed for speed)
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‘ A (Pure) Prolog Program I

parent (elizabeth, charles).

parent (elizabeth, andrew) .

parent (charles,william) .

parent (charles, henry) .

parent (andrew, beatrice) .

parent (andrew, eugenia) .

grand (X, Z) :— parent(X,Y), parent(Y,?Z).
cousin(X,Y) :—- grand(Z,X), grand(Z,Y).
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‘ Prolog Execution I

:— cousin(X,Y).
:— grand(z1,X), grand(z1l,Y).
:— parent (Z1,Y2), parent (Y2,X grand (z1,Y) .

)
)

* :— parent (charles, X), grand(elizabeth,Y).
d (

X=william :— grand(elizabeth,Y).

:— parent (elizabeth,¥Y5), parent (¥Y5,Y).
* :— parent (andrew, Y) .
Y=beatrice :— [.

* = backtracking choice point

16 solutions including cousin (william,william)

and cousin(william, henry)

Lawrence C. Paulson & University of Cambridge
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\ Another FOL Proof Procedure: Model Elimination '

A Prolog-like method to run on fast Prolog architectures.

Contrapositives: treat clause {A1, ..., A | like the m clauses

Aq — _‘Az,... ,_‘Am
Ao — _‘Ag,... ,_‘Am,_‘A1

Am H_‘Ah...,_‘Am_]

Extension rule: when proving goal P, assume —P.

Lawrence C. Paulson University of Cambridge



VI Logic and Proof 810

‘ A Survey of Automatic Theorem Provers I

First-order Resolution: E, SPASS, Vampire, ...

Higher-Order Logic: TPS, LEO and LEO-II, Satallax

Model Elimination: Prolog Technology Theorem Prover, SETHEO

(historical)
Parallel ME: PARTHENON, PARTHEO

Tableau (sequent) based: LeanTAP, 3TAP, ...

Lawrence C. Paulson University of Cambridge
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\ Decision Problems .

Any formally-stated question: is . prime or not? Is the string S

accepted by a given context-free grammar?

Unfortunately, most decision problems for logic are difficult:

e Propositional satisfiability NP-complete.

e The halting problem is undecidable. Therefore there is no decision

procedure to identify first-order theorems.

e The theory of integer arithmetic is undecidable (Godel).
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\ Solvable Decision Problems .

Propositional formulas are decidable: use the DPLL algorithm.

Linear arithmetic formulas are decidable:

® comparisons using + and — but X only with constants, e.g.

o 2x <y /Ay < x (satisfiableby y = —3,x = —2) or
2x <y Ay < x/\3x > 2 (unsatisfiable)

e the integer and real (or rational) cases require different algorithms

Polynomial arithmetic is decidable, and so is Euclidean geometry.

Lawrence C. Paulson & University of Cambridge
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\ Fourier-Motzkin Variable Elimination '

Decides conjunctions of linear constraints over reals/rationals

m n
/\ E aijXj < by
=1 j=1

Eliminate variables one-by-one until one remains, or contradiction
Devised by Fourier (1826) — resembles Gaussian elimination
One of the first decision procedures to be implemented

Worst-case complexity: O(m?2" )
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‘ Basic Idea: Upper and Lower Bounds I

To eliminate variable x,,, consider constraint i, fori = 1, ..., m:

Define B = by — Z;l:_ﬂ aijX;. Rewrite constraint 1i:

If i, > 0then x,, < f—l

1imn

if ai, < Othen —x, < — Bi

Ain

Adding two such constraints yields 0 < (f’—l _ B

in a;’n

Do this for all combinations with opposite signs

Then delete original constraints (except where ai;; = 0)

Lawrence C. Paulson & University of Cambridge
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‘ Fourier-Motzkin Elimination Example.

initial problem eliminate x eliminate z  result

X <Y

x <z
—Xx+y+22<0

—z < —1
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‘ Quantifier Elimination (QE) I

Skolemization eliminates quantifiers but only preserves consistency.

QE transforms a formula to a quantifier-free but equivalent formula.

The idea of Fourier-Motzkin is that (e.g.)

Ixy (2x < yAy<x) & Ix2x<x &<t

In general, the quantifier-free formula is enormous.
e With no free variables, the end result must be t or f.

e But even then, the time complexity tends to be hyper-exponentiall
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‘ Other Decidable Theories '

Linear integer arithmetic: use Omega test or Cooper’s algorithm, but

any decision algorithm has a worst-case runtime of at least 227"

QE for real polynomial arithmetic:

Ix [ax* +bx +¢c =0] <
b* >4acA(c=0Va#0Vb?>4ac)

There exist decision procedures for arrays, lists, bit vectors, ...

Sometimes, they can cooperate to decide combinations of theories.

Lawrence C. Paulson 5 University of Cambridge
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‘ Problem: To Combine Theories with Boolean Logic I

These procedures expect existentially quantified conjunctions.

Formulas must be converted to disjunctive normal form.

Universal quantifiers must be eliminated using Vx A ~ —(3dx (—A)).

Could there be a better way? Couldn’t we somehow use DPLL?

Lawrence C. Paulson University of Cambridge
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‘ Satisfiability Modulo Theories I

ldea: use DPLL for logical reasoning, decision procedures for theories

Clauses can have literals like 2x < Yy, which are used as names.
If DPLL finds a contradiction, then the clauses are unsatisfiable.
Asserted literals are checked by the decision procedure:

e Unsatisfiable conjunctions of literals are noted as new clauses.

e (Case splitting is interleaved with decision procedure calls.

Lawrence C. Paulson University of Cambridge
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‘ SMT Example I

{c=0,2a<b} {b<a} {3a>2,a<0} {c#0,~(b<a)}

{c=0,2a<b} {3a>2,a<0} {c#0} unitb<a
{2a < b} {3a>2,a<0} unit ¢ 7~ 0

{3a>2,a<0} unit2a < b
Now a case split returns a “model” b < a,c # 0, 2a < b, 3a > 2

But the dec. proc. finds these contradictory and returns a new clause:
{(—=(b< a),—(2a <b),—(3a > 2)}

Finally get a satisfiable result: b < aAc #0A2a<bAa <0

Lawrence C. Paulson =T University of Cambridge
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‘ Remarks on the Previous Example I

DPLL works only for propositional formulas!

We should properly write
c=0|2a<b| {7c=0,-/b<al etc.

The DPLL part knows nothing about arithmetic.

SMT makes two independent reasoners cooperate!

Lawrence C. Paulson
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‘ SMT Solvers and Their Applications I

Popular ones include Z3, Yices, CVC4, but there are many others.

Representative applications:
e Hardware and software verification
e Program analysis and symbolic software execution
e Planning and constraint solving

e Hybrid systems and control engineering

Lawrence C. Paulson & University of Cambridge
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‘ BDDs: Binary Decision Diagrams I

A canonical form for boolean expressions: decision trees with sharing.

e ordered propositional symbols (the variables)
e sharing of identical subtrees
e hashing and other optimisations

Detects if a formula is tautologous (=1) or inconsistent (=0).
Exhibits models (paths to 1) if the formula is satisfiable.

Excellent for verifying digital circuits, with many other applications.
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Decision Diagram for (P V Q) A R

Lawrence C. Paulson University of Cambridge
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‘ Converting a Decision Diagram to a BDD I

No duplicates No redundant tests

Lawrence C. Paulson & University of Cambridge
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‘ Building BDDs Efficiently.

Do not construct the full binary tree!

Do not expand —, <, @ (exclusive OR) to other connectives!!

e Recursively convert operands to BDDs.

e Combine operand BDDs, respecting the ordering and sharing.

e Delete redundant variable tests.

Lawrence C. Paulson & University of Cambridge
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‘ Canonical Form Algorithm I

To convert Z A Z', where Z and Z' are already BDDs:

Trivial if either operand is 1 or 0.

Let Z = if(P,X,Y)and Z' = if(P’, X', Y’)

e If P = P’ then recursively convert if(P, X A X', Y AY').
e If P < P’ then recursively convertif(P, X A Z', Y AN Z').

e If P > P’ then recursively convertif(P’, Z A X', ZANY').

Lawrence C. Paulson & University of Cambridge
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‘ Canonical Forms of Other Connectives '

/N 7' Z— 7Z"and Z < Z' are converted to BDDs similarly.

Some cases, like Z — 0 and Z «< 0, reduce to negation.

Here is how to convert —Z, where Z is a BDD:
o If Z =if(P, X,Y) then recursively convert if(P, =X, —Y).
e if Z = 1thenreturn 0, and if Z = O then return 1.

(In effect we copy the BDD but exchange the 1 and 0 at the bottom.)

Lawrence C. Paulson & University of Cambridge
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‘ Canonical Form (that is, BDD) of P V () I

Lawrence C. Paulson University of Cambridge
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‘ Canonical Formof PV Q — Q V RI

Lawrence C. Paulson University of Cambridge
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‘ Optimisations I

Never build the same BDD twice, but share pointers. Advantages:

e If X ~ Y, then the addresses of X and Y are equal.

e Canseeifif(P, X,Y) is redundant by checking if X =Y.

e Can quickly simplify special cases like X A X.

Never convert X A Y twice, but keep a hash table of known canonical
forms. This prevents redundant computations.

Lawrence C. Paulson =T University of Cambridge
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‘ Final Observations '

The variable ordering is crucial. Consider this formula:

(P AQ1) V-V (P AQn)

A good orderingis P1 < Q1 < -+ < P;y < Q4 the BDD is linear.
With P; < .-+ <P < Q7 < -+ < Qn, the BDD is exponential.
Many digital circuits have small BDDs: adders, but not multipliers.
BDDs can solve problems in hundreds of variables.

The general case remains hard (it is NP-complete).

Lawrence C. Paulson =T University of Cambridge
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‘ Modal Operators I

W: set of possible worlds (machine states, future times, . . .)

R: accessibility relation between worlds

(W, R) is called a modal frame

CJA means A is necessarily true

in all worlds accessible from here
A means A is possibly true

A cannot be true &< A must be false

Lawrence C. Paulson University of Cambridge
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‘ Semantics of Propositional Modal Logic I

For a particular frame (W, R)

An interpretation I maps the propositional letters to subsets of W

w IF A means A istruein world w

wlkP &— we [(P)
wiFAAB & wlFAandwIF B
w ik OA &= vl A forallvsuch that R(w, V)

wliF CA &= v I A for some Vv such that R(w, V)

Lawrence C. Paulson & University of Cambridge
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‘ Truth and Validity in Modal Logic I

For a particular frame (W, R), and interpretation 1

w Il A means A is true in world w
=wRr1A meansw Ik Aforallwin W

=wRr A meansw I A forall wand all |

= A means =y r A for all frames; A is universally valid

... but typically we constrain R to be, say, transitive.

All propositional tautologies are universally valid!

Lawrence C. Paulson
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‘ A Hilbert-Style Proof System for K I

Extend your favourite propositional proof system with

Dist O(A — B) — (DA — OB)

Inference Rule: Necessitation

Treat < as a definition

Lawrence C. Paulson
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‘ Variant Modal Logics I

Start with pure modal logic, which is called K

Add axioms to constrain the accessibility relation:

T OA—A (reflexive) logic T

4 UOA — OOA (transitive) logic $4

B A — OCA (symmetric) logic S5
And countless others!

We mainly look at S4, which resembles a logic of time.

Lawrence C. Paulson
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‘ Extra Sequent Calculus Rules for S4 I

AT =A = A" A
O1) (Or)

DA,F:>A( M= A, 0OA

AT A o T=AA
OA,T= A [= A OA

T)

M & (OB | OB e T’} Erase non-0J assumptions.

A E {OB | OB € A} Erase non-< goals!
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Xl

Logic and Proof

A Proof of the Distribution Axiom .

A=B,A B,A=DB
A— B A=DB
A — B OA=DB

(—1)

(O1)

(O1)

O(A — B),DA=1B |
O(A — B),0A = OB

Or)

And thus J(A — B) — (A — OB)

Must apply (Or) first!

Lawrence C. Paulson
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‘ Part of an “Operator String Equivalence” I

OA = OA
OCA = OCA
COOCA = CA
OCOOCA = CA
OCOCA = OOCA

In fact, OCOCA ~ OCA also OOA ~ OA

The S4 operator stringsare O < OO <O O0O OO

Lawrence C. Paulson
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\Two Failed Proofs '

= A
= CA
(Or)
A= 0OOCA

(&)

B=AAB
B= O(A A B)
OA, OB = O(A A B)

(Or)

(C1)

Can extract a countermodel from the proof attempt

Lawrence C. Paulson

1109

University of Cambridge



XIl Logic and Proof 1201

‘ Simplifying the Sequent Calculus I

7 connectives (or 9 for modal logic):

- AV — < YV 3 (O ¢

Left and right: so 14 rules (or 18) plus basic sequent, cut

ldea! Work in Negation Normal Form

Fewer connectives: A V V 4 (O <)

Sequents need one side only!
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‘Tableau Calculus: Left-OnIyI

(basic) —A, =

-AAT= =

ABT=

AAB T=

Alt/x],T' = AT=
(Y1) (3V)
Vx A, I = IxA,I'=

Rule (31) holds provided X is not free in the conclusion!

Lawrence C. Paulson
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‘ Tableau Rules for S4 I

A= A TH =
(O1) (&)
UA, = OA, T =

/OB |OB €T}  Erase non-O assumptions

From 14 (or 18) rules to 4 (or 6)
Left-side only system uses proof by contradiction

Right-side only system is an exact dual

Lawrence C. Paulson & University of Cambridge
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Tableau Proof of Vx (P — Q(x)) — [P — Yy Q(y)]

Negate and convert to NNF:

P, 3y —Q(y), Vx (=P Vv Q(x)) =

P, —Q(y), "P= P, —Q(y), Qly) =
P, =Q(y)

Lawrence C. Paulson University of Cambridge
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\ The Free-Variable Tableau Calculus '

Rule (v1) now inserts a new free variable:

Alz/x], T =
Vx A, =

(V1)

Let unification instantiate any free variable

In—A, B, "= try unifying A with B to make a basic sequent

Updating a variable affects entire proof tree

What about rule (31)? Do not use it! Instead, Skolemize!
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‘ Skolemization from NNF '

Recall e.g. that we Skolemize

Vy3zQ(y,z)] AIxP(x) to [MyQ(u,f(u))] AP(a)

Remark: pushing quantifiers in (miniscoping) gives better results.

Example: proving 3x Yy [P(x) — P(y)]:

Negate; convert to NNF:  Vx 3y [P(x) A =P(y)]
Pushinthe dy: Vx[P(x) A 3y —P(y)]
Pushinthe Vx: (VxP(x)) A (Fy—P(y))

Skolemize: VxP(x) A —P(a)

1206
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Unification chooses the term for (v1)
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\ A Failed Proof '

Try to prove Vx [P(x) V Q(x)] — [¥xP(x) V Vx Q(x)]
NNF: Ix =P (x) A Ix =Q(x) AVx [P(x) V Q(x)] =
Skolemize: =P(a), —Q(b), Vx [P(x) V Q(x)] =

yr—a y — b???
—P(a), =Q(b), P(y)=  —P(a), ~Q(b), Qly)=
—P(a), =Q(b), Ply) VOQ(y)=
—P(a), ~Q(b), Vx[P(x) V Q(x)] =

(V1)

(V1)
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\ The World’s Smallest Theorem Prover? .

prove((A,B),UnkExp,Lits,FreeV,VarLim) :— !,

prove (A, [B|UnExp],Lits,FreeV,VarLim) .

prove ((A;B),UnExp,Lits,FreeV,VarLim) :— !,

prove (A, UnkExp, Lits,FreeV,VarLim),
prove (B, UnExp, Lits, FreeV,VarLim) .
prove (all (X,Fml),UnExp, Lits,FreeV,VarLim)
\+ length (FreeV,VarLim),
copy_term((X,Fml,FreeV), (X1,Fmll,FreeV)),
append (UnExp, [all (X,Fml) ], UnExpl),
prove (Fmll, UnExpl, Lits, [X1|FreeV],VarLim) .
prove (Lit,_, [LILits],_,_) :-— literals; negation
(Lit = —-Neg; -Lit = Neg) —->
(unify (Neg,L); prove(Lit, [],Lits,_,_)).
prove (Lit, [Next |UnExp],Lits,FreeV,VarLim) :-— next formula
prove (Next, UnExp, [Lit|Lits],FreeV,VarLim) .
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