L95: Natural Language Syntax and Parsing
7) Parsing Accuracy

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge
Reminder...

We have looked at:

- grammars (PCFG, dependency, CCG)
- parsing algorithms (dynamic, deterministic, heuristic)
- parse scoring models (Bayesian, log-linear, cost-functions)
- methods for selecting n-best parses (beams, agendas)

But what do we need to do to make the parser as accurate as possible...?
Reminder: PCFGs have some shortcomings

When we looked at PCFGs we noted two sources of inaccuracy:

- The **independence** assumption: unable to model structural dependency across the tree as a whole
 - The choice of how a non-terminal expands depend on the location in the parse tree.
 - In English, subject NPs are more likely to be pronouns ($\approx 90\%$), and objects NPs are more likely to be non-pronominal ($\approx 60\%$)

- Lack of **lexical specificity**: unable to model the structural behaviour specific to a lexical item
 - E.g. *VP*-attachment of *PPs* are more common in English
 - We will always get *some people like beer in cold glasses* wrong
 - Also lack of subcategorisation
 - And co-ordination
Reminder: PCFGs have some shortcomings

Lack of **lexical specificity**: these co-ordinated trees have the same probability...

From Jurafsky and Martin version 3, following Collins

Today will we look as how to get around these issues.
Relax independence by splitting non-terminals

For the pronoun issue, intuition is that we need more NP rules: instead of $NP \rightarrow PRP$ we need two rules:

- $NP_{subject} \rightarrow PRP$
- $NP_{object} \rightarrow PRP$

How can we implement this without a semantic treebank? by annotating non-terminals with their parent nodes

From Jurafsky and Martin version 3
Other examples of parent annotation:

- e.g. differentiating between **adverbs** by annotating pre-terminals with their parents
- e.g. **subordinating conjunctions**, *while*, *as*, *if*, occur under under *S*

Where parent annotation can’t help we could split on other features (i.e. hand write rules for specific feature scenarios)

See https://nlp.stanford.edu/manning/papers/unlexicalized-parsing.pdf for some discussion
A trade-off between splitting and training

- Splitting non-terminals increases the grammar size.
- Increased grammar size means less data per rule instance for MLE.
- Split and merge techniques automatically searches for the optimal splits by maximising the likelihood of the training set (e.g. Petrov et al. 2006).
non-terminal splitting example in class
Lexicalised-PCFGs include lexical info in the grammar

Collins and Charniak parsers use lexicalised-PCFGs

- Lexicalisation can include both the head word token and its part-of-speech

![Pascal diagram]

From Jurafsky and Martin version 3
Lexicalised-PCFGs include **lexical** info in the grammar

- For each rule one of the RHS daughters is the **head**
- The head information for the LHS of the rule is the same as the RHS head
- **Pre-terminal rules** always have a **probability of 1**
- All other rule probabilities need to be calculated ...
 ... **but the data available per rule is now very sparse**
Collins handles sparsity by generating the RHS of rules.

- RHS of every rule consists of a **head** plus all the non-terminals to the head’s **left** and all the non-terminals to the head’s **right**

 \[LHS \rightarrow L_m \ldots L_1 H R_1 \ldots R_n \]

- To use a rule we:
 - first **generate the head**,
 - then all the **left dependents** from the head outwards
 - and finally all the **right dependents** from the head outwards

- We imagine a **STOP** non-terminal at the edges of the rule

 \[LHS \rightarrow STOP L_m \ldots L_1 H R_1 \ldots R_n STOP \]
Rule probability is the **product** of all generated pieces.

- Remember that for PCFGs: \(P(A \rightarrow B) = P(B|A) \)

- For lexicalised PCFGs: \(A \rightarrow STOP L_m \ldots L_1 H R_1 \ldots R_n STOP \)
 - The probability of the head \(H \) with associated word \(h_w \) and tag \(h_t \) given the parent, \(A \) is:
 \[
P(H(w_h, t_h)) = P(H(h_w, h_t)|A, h_w, h_t)
 \]
 - The probability of modifiers to the left of the head is:
 \[
 \prod_{i=1}^{m+1} P(L_i(lw_i, lt_i)|A, H, h_w, h_t)
 \]
 - The probability of modifiers to the right of the head is:
 \[
 \prod_{i=1}^{n+1} P(R_i(rw_i, rt_i)|A, H, h_w, h_t)
 \]
 where \(L_{m+1} = STOP \) and \(R_{n+1} = STOP \)
lexicalised-PCFG rule probability estimation in class
Collins models have other conditional features

- Collins 1 includes a distance metric in the conditional probabilities
- Collins 2 includes conditioning on subcategorisation and argument/adjunct

- In training Collin’s interpolates three models:
 - fully lexicalised (conditioning on the head word and tag),
 - just the head tag
 - unlexicalized
Remember **Coarse-to-fine** strategy, Charniak

We can now understand better Charniak’s **coarse-to-fine** parsing strategy:

1. produce a parse forest using simple version of the grammar
 i.e. find possible parses using coarse-grained non-terminals, e.g. \(VP \)
2. refine most promising of coarse-grained parses using complex grammar
 i.e with feature-based, lexicalised non-terminals, e.g. \(VP[\text{buys}/\text{VBZ}] \)

- **Coarse-grained step** can be **efficiently parsed** using e.g. CKY
- But the simple grammar **ignores contextual features** so best parse might not be accurate
- **Output a pruned packed parse** forest for the parses generated by the simple grammar (using a beam threshold)
- **Evaluate remaining parses with complex grammar** (i.e. each coarse-grained state is split into several fine-grained states)
Next time

- Head Phrase Structure Grammars and Parsing