
L95: Natural Language Syntax and Parsing
5) Parsing Efficiency

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 1 / 12



Reminder...

So far we have looked at:

grammars (PCFG, Dependancy, CCG)

a parsing algorithm (dynamic programming CKY, Shift-Reduce)

a scoring model for parses (Bayesian, Log-linear)

an algorithm for finding best parse (Viterbi)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 2 / 12



Yet to come...

Things still to do:

grammars (Lexicalised PCFG, Unification-Based grammars)

a parsing algorithm (heuristic algorithms)

a scoring model for parses (A* cost function)

an algorithm for finding best parse (n-best parses, parse reranking)

Today: Heuristic search and the A* algorithm

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 12



CKY is optimal and exhaustive

The basic CKY algorithm will:

Finds all possible parses

Is guaranteed to find the best-parse

If we associate partial derivations with a state then:

finding the best-parse is traversing the states until we find the goal
state (state representing [S , 0, n])

notice that basic CKY discovers all possible states in search of the
goal state

a more efficient algorithm might reach the goal state more directly

the probabilistic (Viterbi-like) version of CKY reduces the number
states—can we be more efficient?

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 12



The A* algorithm uses an agenda

An agenda is a priority queue

States representing partial solutions are added to an agenda based on
minimising a cost function, f (n)

The first solution state is first found it is guaranteed to be optimal

f (n) has two components:

- g(n) the exact cost of the partial solution at state n
- h(n) heuristic approximation that never overestimates the cost of a

solution using of n

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 5 / 12



A* for PSG, Klein and Manning

Search states correspond to edges (partial derivations)
[category , start, end ]

Initialise with word edges and costs:
[X , i , i ] and cost(X , i , i) = − logP(wi , ti )

Get the highest priority edge and associated cost from the agenda:
[X , i , j ] and cost(X , i , j)

If highest priority edge represents [S , 0, n] then stop

Find all compatible neighbours edges:
e.g. if A→ XY exists in the grammar find things like [Y , j , k]

Consider cost of new parent edge:
cost(A, i , k) ≤ cost(X , i , j) + cost(Y , j , k) +− logP(A→ XY )

Insert parent edge, [A, i , k], into the agenda if cost(A, i , k) has
improved

If the agenda is exhausted the parse has failed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 6 / 12



A* CFG example in class

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 12



A* for CCG, Lewis and Steedman

24 CHAPTER 12 • STATISTICAL PARSING

function CCG-ASTAR-PARSE(words) returns table or failure

supertags SUPERTAGGER(words)
for i from 1 to LENGTH(words) do

for all {A | (words[i], A, score) 2 supertags}
edge MAKEEDGE(i�1, i, A, score)
table INSERTEDGE(table, edge)
agenda INSERTEDGE(agenda, edge)

loop do
if EMPTY?(agenda) return failure
current POP(agenda)
if COMPLETEDPARSE?(current) return table
table INSERTEDGE(chart, edge)
for each rule in APPLICABLERULES(edge) do

successor APPLY(rule, edge)
if successor not 2 in agenda or chart

agenda INSERTEDGE(agenda, successor)
else if successor 2 agenda with higher cost

agenda REPLACEEDGE(agenda, successor)

Figure 12.11 A*-based CCG parsing.

Heuristic Functions

Before we can define a heuristic function for our A* search, we need to decide how
to assess the quality of CCG derivations. For the generic PCFG model, we defined
the probability of a tree as the product of the probability of the rules that made up
the tree. Given CCG’s lexical nature, we’ll make the simplifying assumption that the
probability of a CCG derivation is just the product of the probability of the supertags
assigned to the words in the derivation, ignoring the rules used in the derivation.
More formally, given a sentence S and derivation D that contains suptertag sequence
T , we have:

P(D,S) = P(T,S) (12.36)

=
nY

i=1

P(ti|si) (12.37)

To better fit with the traditional A* approach, we’d prefer to have states scored
by a cost function where lower is better (i.e., we’re trying to minimize the cost of
a derivation). To achieve this, we’ll use negative log probabilities to score deriva-
tions; this results in the following equation, which we’ll use to score completed CCG
derivations.

P(D,S) = P(T,S) (12.38)

=
nX

i=1

� logP(ti|si) (12.39)

Given this model, we can define our f -cost as follows. The f -cost of an edge is
the sum of two components: g(n), the cost of the span represented by the edge, and

Psuedo code from Jurafsky and Martin version 3

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 8 / 12



h(n) for the A* CCG is based on the lexicon

For PCFG the probability of a tree is the product of the probability of
the rules that made up the tree.

For CCG derivation use the product of the probability of the supertags
assigned to the words in the derivation (i.e. ignore the rules)

Formally, given a sentence S and derivation D with suptertag
sequence T :

P(D, S) = P(T ,S) =
n∏

i=1
P(ti |wi )

Convert for cost function:

g(w1,n) =
n∑

i=1
− logP(ti |si )

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 12



h(n) for the A* CCG is based on the lexicon

For h(n) assume that each words in the outside span will be assigned
its most probable supertag (approximates but never overestimates the
actual cost)

f (wi ,j , ti ,j) = g(wi ,j) + h(wi ,j)

=
j∑

k=i

− logP(tk |wk)

+
i−1∑
k=1

max
t∈tags

(− logP(t|wk)) +
n∑

k=j

max
t∈tags

(− logP(t|wk))

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 12



A* CCG example in class

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 12



What if I need N-best parses?

Discussion (and more in later lectures):

Extending CKY for n-best parses

Extending A* for n-best parses

Extending shift-reduce for n-best parses

Discriminative reranking

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 12


