L95: Natural Language Syntax and Parsing
5) Parsing Efficiency

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 1/12



Reminder...

So far we have looked at:
e grammars (PCFG, Dependancy, CCG)
@ a parsing algorithm (dynamic programming CKY, Shift-Reduce)
@ a scoring model for parses (Bayesian, Log-linear)

@ an algorithm for finding best parse (Viterbi)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 2/12



Yet to come...

Things still to do:
e grammars (Lexicalised PCFG, Unification-Based grammars)
@ a parsing algorithm (heuristic algorithms)
@ a scoring model for parses (A* cost function)
°

an algorithm for finding best parse (n-best parses, parse reranking)

Today: Heuristic search and the A* algorithm

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3/12



CKY is optimal and exhaustive

The basic CKY algorithm will:
@ Finds all possible parses

@ Is guaranteed to find the best-parse

If we associate partial derivations with a state then:

o finding the best-parse is traversing the states until we find the goal
state (state representing [S,0, n])

@ notice that basic CKY discovers all possible states in search of the
goal state

@ a more efficient algorithm might reach the goal state more directly

@ the probabilistic (Viterbi-like) version of CKY reduces the number
states—can we be more efficient?

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4/12



-
The A* algorithm uses an agenda

@ An agenda is a priority queue

@ States representing partial solutions are added to an agenda based on
minimising a cost function, f(n)

@ The first solution state is first found it is guaranteed to be optimal

@ f(n) has two components:

- g(n) the exact cost of the partial solution at state n
- h(n) heuristic approximation that never overestimates the cost of a
solution using of n

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 5/12



-
A* for PSG, Klein and Manning

Search states correspond to edges (partial derivations)
[category, start, end)|

Initialise with word edges and costs:

[X,i,i] and cost(X,i,i) = —log P(w;, t;)

Get the highest priority edge and associated cost from the agenda:
[X,i,j] and cost(X,i,))

If highest priority edge represents [S, 0, n] then stop

Find all compatible neighbours edges:
e.g. if A— XY exists in the grammar find things like [Y/, j, k]

Consider cost of new parent edge:

cost(A, i, k) < cost(X,i,j)+ cost(Y,j, k) + —log P(A— XY)
Insert parent edge, [A, i, k|, into the agenda if cost(A, i, k) has
improved

If the agenda is exhausted the parse has failed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 6/12



A* CFG example in class

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7/12



]
A* for CCG, Lewis and Steedman

function CCG-ASTAR-PARSE(words) returns table or failure

supertags <— SUPERTAGGER(words)
for i < from 1 to LENGTH(words) do
for all {A | (wordsli], A, score) € supertags}
edge < MAKEEDGE(i — 1,i,A, score)
table <+ INSERTEDGE(table, edge)
agenda <+ INSERTEDGE(agenda, edge)
loop do
if EMPTY ?(agenda) return failure
current < POP(agenda)
if COMPLETEDPARSE?(current) return table
table < INSERTEDGE(chart, edge)
for each rule in APPLICABLERULES(edge) do
successor<— APPLY (rule, edge)
if successor not € in agenda or chart
agenda < INSERTEDGE(agenda, successor)
else if successor € agenda with higher cost
agenda <+ REPLACEEDGE(agenda, successor)

Psuedo code from Jurafsky and Martin version 3

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing

8/12



|
h(n) for the A* CCG is based on the lexicon

@ For PCFG the probability of a tree is the product of the probability of
the rules that made up the tree.
@ For CCG derivation use the product of the probability of the supertags
assigned to the words in the derivation (i.e. ignore the rules)
e Formally, given a sentence S and derivation D with suptertag
sequence T:
n
P(D,S) = P(T,S) =[] P(ti|w)
i=1
@ Convert for cost function:
n
g(wi,n) = > —log P(tilsi)

i=1

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9/12



|
h(n) for the A* CCG is based on the lexicon

@ For h(n) assume that each words in the outside span will be assigned
its most probable supertag (approximates but never overestimates the
actual cost)

f(wijs ti)) g(wij) + h(wi)
J
= > —log P(tx|wk)
k=i
i1 .
" kzzjl frgfggs(_ log P(tlwi)) + kZ:J trgti)g(s(_ log P(t|w))

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10/12



A* CCG example in class

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11/12



|
What if | need N-best parses?

Discussion (and more in later lectures):
e Extending CKY for n-best parses
@ Extending A* for n-best parses
@ Extending shift-reduce for n-best parses
°

Discriminative reranking

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12/12



