L95: Natural Language Syntax and Parsing
4) Categorial Grammars

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge
For statistical parsing generally we need...

- a grammar
- a parsing algorithm
- a scoring model for parses
- an algorithm for finding best parse

- Parsing **efficiency** is dependent on the parsing and best-parse algorithms
- Parsing **accuracy** is dependent on the grammar and scoring model
- There are reasons that we might use a more sophisticated (and perhaps less robust) grammar formalism even if at the expense of accuracy
Some grammars provide a mapping between syntax and semantic structure

- **Combinatory Categorial Grammars** provide a mapping between syntactic structure and predicate-argument structure
- CCG parsers exist that are robust and efficient (Clark & Currans 2007) https://www.cl.cam.ac.uk/~sc609/candc-1.00.html
- The **C&C parser** uses a CCG treebank (CCGBank) derived from the Penn Treebank to build a grammar and training the scoring model
- A **supertagging** phase is needed before parsing commences
- Uses a discriminative model over complete parses

First, what is a CCG?
Categorial grammars are **lexicalized grammars**

In a **classic categorial grammar** all symbols in the alphabet are associated with a finite number of **types**.

- Types are formed from primitive types using two operators, \ and /.
- If \(P_r \) is the set of **primitive types** then the set of all types, \(T_p \), satisfies:
 - \(P_r \subset T_p \)
 - if \(A \in T_p \) and \(B \in T_p \) then \(A\backslash B \in T_p \)
 - if \(A \in T_p \) and \(B \in T_p \) then \(A/B \in T_p \)

- Note that it is possible to arrange types in a hierarchy: a type \(A \) is a **subtype** of \(B \) if \(A \) occurs in \(B \) (that is, \(A \) is a subtype of \(B \) iff \(A = B \); or \(B = B_1\backslash B_2 \) or \(B = B_1/B_2 \)) and \(A \) is a subtype of \(B_1 \) or \(B_2 \).
Categorial grammars are **lexicalized grammars**

- A relation, \mathcal{R}, maps symbols in the alphabet Σ to members of T_p.
- A grammar that associates at most one type to each symbol in Σ is called a **rigid grammar**.
- A grammar that assigns at most k types to any symbol is a **k-valued grammar**.
- We can define a classic categorial grammar as $G_{cg} = (\Sigma, P_r, S, \mathcal{R})$ where:
 - Σ is the alphabet/set of terminals
 - P_r is the set of primitive types
 - S is a distinguished member of the primitive types $S \in P_r$ that will be the root of complete derivations
 - \mathcal{R} is a relation $\Sigma \times T_p$ where T_p is the set of all types as generated from P_r as described above
Categorial grammars are **lexicalized grammars**

A string has a valid parse if the types assigned to its symbols can be combined to produce a derivation tree with root \(S \).

Types may be combined using the two rules of **function application**:

- **Forward application** is indicated by the symbol \(> \):
 \[
 \frac{A/B \quad B}{A} >
 \]

- **Backward application** is indicated by the symbol \(< \):
 \[
 \frac{B \quad A\backslash B}{A} <
 \]
Categorial grammars are **lexicalized grammars**

Derivation tree for the string xyz using the grammar $G_{cg} = (\Sigma, P_r, S, \mathcal{R})$ where:

- $P_r = \{S, A, B\}$
- $\Sigma = \{x, y, z\}$
- $S = S$
- $\mathcal{R} = \{(x, A), (y, S\setminus A/B), (z, B)\}$

```
  S  
  /
 A    S\setminus A
  /
 x    S\setminus A/B
   /           /
  y    B       z
```

```
  x  \mathcal{R}
  \------------>
A  \mathcal{R}
  \mathcal{R}
  \mathcal{R}
  \mathcal{R}
  \mathcal{R}
  S\setminus A
  S\setminus A/B
  \mathcal{R}
  \mathcal{R}
  \mathcal{R}
  \mathcal{R}
  \mathcal{R}
  S
  S
```

Paula Buttery (Computer Lab)
Categorial grammars are **lexicalized grammars**

Derivation tree for the string *Alice chases rabbits* using the grammar $G_{cg} = (\Sigma, P_r, S, \mathcal{R})$ where:

- $P_r = \{S, NP\}$
- $\Sigma = \{alice, chases, rabbits\}$
- $S = S$
- $\mathcal{R} = \{(alice, NP), (chases, S\backslash NP/\backslash NP), (rabbits, NP)\}$

```
aple NP
  \text{chases} \xrightarrow{\mathcal{R}} S\backslash NP/\backslash NP \xrightarrow{\mathcal{R}} S\backslash NP
  \frac{\text{rabbits}}{NP} \xrightarrow{\mathcal{R}} \frac{S\backslash NP}{NP} \xrightarrow{\mathcal{R}} S
```
We can construct a strongly equivalent CFG

To create a context-free grammar $G_{cfg} = (\mathcal{N}, \Sigma, S, \mathcal{P})$ with strong equivalence to $G_{cg} = (\Sigma, P_r, S, \mathcal{R})$ we can define G_{cfg} as:

$$\mathcal{N} = P_r \cup \text{range}(\mathcal{R})$$
$$\Sigma = \Sigma$$
$$S = S$$
$$\mathcal{P} = \{ A \rightarrow B \ A \backslash B \mid A \backslash B \in \text{range}(\mathcal{R}) \}$$
$$\cup \{ A \rightarrow A/B \ B \mid A/B \in \text{range}(\mathcal{R}) \}$$
$$\cup \{ A \rightarrow a \mid \mathcal{R} : a \rightarrow A \}$$
Combinatory categorial grammars extend classic CG

Combinatory categorial grammars use **function composition** rules in addition to function application:

- **Forward composition** is indicated by the symbol $> B$:
 \[
 \frac{X/Y \ Y/Z}{X/Z} > B
 \]

- **Backward composition** is indicated by the symbol $< B$:
 \[
 \frac{Y\backslash Z \ X\backslash Y}{X\backslash Z} < B
 \]

They also use **type-raising** rules (only applies to NP, PP, $S[adj]\backslash NP$):

- Also backward crossed composition and co-ordination (see Steedman)
CCG examples in class
The C&C parser uses a log-linear model

- Recall that discriminative models define $P(T|W)$ directly (rather than from subparts of the derivation)
- C&C is a discriminative parser that uses a log-linear model to score parses based on their features:
 $$P(T|W) = \frac{1}{Z_W} \exp^{\lambda.F(T)}$$
 where $\lambda.F(T) = \sum_i \lambda_i f_i(T)$ and λ_i is the weight of the ith feature, f_i (and Z_W is a normalising factor)
- Train by maximising log-likelihood over the training data (minus a prior term to prevent overfitting)
- Requires building a packed chart of all the trees using CKY (instance of a feature forest)
- Packing requires the features in the model are local—confined to a single rule application
The C&C parser uses a **log-linear** parsing model.

The features used in the C&C parser are:

- features encoding local trees (that is two combining categories and the result category)
- features encoding word-lexical category pairs at the leaves of the derivation
- features encoding the category at the root of the derivation
- features encoding word-word dependencies, including the distance between them

Each feature type has variants with and without head information (lexical items and pos tags)
Lexicalised grammar parsers have two steps

Parsing with lexicalised grammar formalisms is a two-stage process:

1. Lexical categories are assigned to each word in the sentence
2. Parser combines the categories together to form legal structures

For C&C:

1. Uses a **supertagger** (log-linear model using words and PoS tags in a 5-word window)
2. Uses the CKY chart parsing algorithm and Viterbi to find the best parse
Ambiguous CCG parse example in class