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Reminder: languages can also be defined using automata

Recall that a language is regular if it is equal to the set of strings accepted
by some deterministic finite-state automaton (DFA).
A DFA is defined as M = (Q, X, A, s, F) where:

e Q=1{qo,q1,92...} is a finite set of states.
@ 2 is the alphabet: a finite set of transition symbols.

e A C Ox ¥ x Qisa function Q@ X ¥ — O which we write as §. Given
g€ Qand i€ X then d(q,/) returns a new state ¢’ € Q

@ s is a starting state
@ F is the set of all end states
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Reminder: regular languages are accepted by DFAs

For L(M) = {a, ab, abb, ...}
M:( Q = {q07 ai, qZ},

Y ={a, b},

A = {(qo0, a,q1), (q0, b, q2), ---, (92, b, q2) }

S = qo. a \&
F={q}) start —>Q/

a, b
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Regular grammars

Simple relationship between a DFA and production rules

d
b~ a~ CIEN I
()T

Q :{57A7 B7 C; Q4}

Y ={b,a!}
g =S
F = {q}
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Regular grammars

Regular grammars generate regular languages

Given a DFA M = (Q, X, A, s, F) the language, £(M), of strings accepted
by M can be generated by the regular grammar G, = (N, X, S, P)
where:

e N'={Q} the non-terminals are the states of M
@ 2 = X the terminals are the set of transition symbols of M
@ S = s the starting symbol is the starting state of M
e P = q; — aqgj when §(qg;,a) =g € A
or gi — € when g € F (i.e. when ¢ is an end state)
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Regular grammars

Strings are derived from production rules

In order to derive a string from a grammar
@ start with the designated starting symbol
@ then non-terminal symbols are repeatedly expanded using the rewrite
rules until there is nothing further left to expand.
The rewrite rules derive the members of a language from their internal
structure (or phrase structure)

S S S S
/NN N N
b A b A b A b A
N N N
a B a B a B
N AN
a C a C
|
!
S —bA A — aB B —aC C —!
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Regular grammars

A regular language has a left- and right-linear grammar

For every regular grammar the rewrite rules of the grammar can all be
expressed in the form:

X — aY
X — a

or alternatively, they can all be expressed as:

X — Ya
X — a
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Regular grammars

A regular language has a left- and right-linear grammar

For every regular grammar the rewrite rules of the grammar can all be
expressed in the form:

X — aY

X — a
or alternatively, they can all be expressed as:

X — Ya

X — a

The two grammars are weakly-equivalent since they generate the same
strings.
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A regular language has a left- and right-linear grammar

For every regular grammar the rewrite rules of the grammar can all be
expressed in the form:

X — aY
X — a

or alternatively, they can all be expressed as:

X — Ya
X — a

The two grammars are weakly-equivalent since they generate the same
strings.

But not strongly-equivalent because they do not generate the same
structure to strings
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A regular language has a left- and right-linear grammar

S — DbA S = Al
A — aB A — Ba
S B — aC S B — Ca
/\ C — aC /\ C — Ca

cC - ! C —- b

b A A !
a B B a
a C C a
! b
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Phrase structure grammars

A regular grammar is a phrase structure grammar

A phrase structure grammar over an alphabet X is defined by a tuple

G =(N,X,S,P). The language generated by grammar G is L(G):

NON-TERMINALS A: Non-terminal symbols (often uppercase letters) may
be rewritten using the rules of the grammar.

TERMINALS X: Terminal symbols (often lowercase letters) are elements of
Y and cannot be rewritten. Note N’ N = ().

START SYMBOL S: A distinguished non-terminal symbol S € N. This
non-terminal provides the starting point for derivations.

PHRASE STRUCTURE RULES P: Phrase structure rules are pairs of the
form (w, v) usually written:
w — v, where w € (RUN)*N(ZUN)* and v € (ZUN)*
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Phrase structure grammars

Definition of a phrase structure grammar derivation

Given G = (N, X,S,P) and w,v € (N UX)* a derivation step is
possible to transform w into v if:

up, up € (M UX)* exist such that w = vy, and v = u1Sun
anda — g e€P

This is written w :G> v

A string in the language £(G) is a member of £* that can be derived in a
finite number of derivation steps from the starting symbol S.

We use => to denote the reflexive, transitive closure of derivation steps,

G
consequently £(G) = {w € £*|S = w}.
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PSGs may be grouped by production rule properties

Chomsky suggested that phrase structure grammars may be grouped
together by the properties of their production rules.

NAME ForM OF RULES
regular (A= AaorA—aA)and A—a|AcNandac X
context-free A—-a|AeNand v e (NUX)*

context-sensitive aAfB — ay8 | A€ N and o, 8,7 € (N UX)*and v # ¢
recursively enum o — | a,f € (N UX)* and a # €

A class of languages (e.g. the class of regular languages) is all the
languages that can be generated by a particular TYPE of grammar.

The term power is used to describe the expressivity of each type of
grammar in the hierarchy (measured in terms of the number of subsets of
Y* that the type can generate)
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Phrase structure grammars

We can define the complexity of language classes

The complexity of a language class is defined in terms of the recognition
problem.

TYPE LANGUAGE CLASS COMPLEXITY
3 regular O(n)
2 context-free O(n°)
1 context-sensitive O(c")
0 recursively enumerable undecidable
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Context-free grammars capture constituency

‘ / \ / \ G =(N,%,S,P) where
aice V. NP P NP P—{A-al
[ AN, ae(NUT))

plays N with N

/N

croquet A N

pink  flamingos
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Context-free grammars

CFGs can be written in Chomsky Normal Form

Chomsky normal form: every production rule has the form, A — BC, or,
A — awhere A,B,Cc N, and, ac X.

Conversion to Chomsky Normal Form

For every CFG there is a weakly equivalent CNF alternative.
A — BCD may be rewritten as the two rules, A — BX, and, X — CD.

A
/N 5 X

B C D /\
C D
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Context-free grammars

CFGs can be written in Chomsky Normal Form

For AAB,C,D,X,Y e N and v, C Nx*and a€ L.

Conversion to Chomsky Normal Form
@ Keep all existing conforming rules
@ replace A — vaf with D — yAB and A — a
o repeatedly replace A — vBC with A — vX and X — BC
o ifA = B is a chain of one or more unit productions, and B — a then

replace all the unit productions with A — a (where a unit production
is any rule of the form X — Y)
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Context-free grammars

CFGs can be written in Chomsky Normal Form

For AAB,C,D,X,Y e N and v, C Nx*and a€ L.

Conversion to Chomsky Normal Form

Keep all existing conforming rules

replace A — vaf8 with D — vAB and A — a

repeatedly replace A — vBC with A — vX and X — BC

if A = B is a chain of one or more unit productions, and B — a then

replace all the unit productions with A — a (where a unit production
is any rule of the form X — Y)

CNF is a requirement for the CKY parsing algorithm but it causes some
problems:

Grammar is no longer linguistically intuitive

Direct correspondence with compositional semantics may be lost
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Context-free grammars

CFGs used to model natural language are not deterministic

Deterministic context-free languages:
@ are a proper subset of the context-free languages
@ can be modelled by an unambiguous grammar
@ can be parsed in linear time
°

parser can be automatically generated from the grammar
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Context-free grammars

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

@ are a proper subset of the context-free languages

@ can be modelled by an unambiguous grammar

@ can be parsed in linear time

@ parser can be automatically generated from the grammar
CFGs used to model natural language are not deterministic

o Natural languages (with all their inherent ambiguity) are not well
suited to algorithms which operate deterministically recognising a
single derivation without backtracking
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Context-free grammars

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

@ are a proper subset of the context-free languages

@ can be modelled by an unambiguous grammar

@ can be parsed in linear time

@ parser can be automatically generated from the grammar
CFGs used to model natural language are not deterministic

o Natural languages (with all their inherent ambiguity) are not well
suited to algorithms which operate deterministically recognising a
single derivation without backtracking

@ However, natural language parsing can be achieved deterministically
by selecting parsing actions using a machine learning classifier (more
on this in later lectures).
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Context-free grammars

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

@ are a proper subset of the context-free languages

@ can be modelled by an unambiguous grammar

@ can be parsed in linear time

@ parser can be automatically generated from the grammar
CFGs used to model natural language are not deterministic

o Natural languages (with all their inherent ambiguity) are not well
suited to algorithms which operate deterministically recognising a
single derivation without backtracking

@ However, natural language parsing can be achieved deterministically
by selecting parsing actions using a machine learning classifier (more
on this in later lectures).

e All CFLs (including those exhibiting ambiguity) can be recognised in
polynomial time using dynamic programming algorithms.
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CKY

The CKY algorithm recognises strings in a CFL

0O they 1 can 2 fish 3
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CKY

The CKY algorithm recognises strings in a CFL

0 they 1 <can 2 fish

TO

3

1 ) 3 Toy CNF grammar:

JnuMZ

FROM 1

{S,NP, VP, WV, VM}

{can, fish, they}

S

{S— NP VP

VP — VM VvV
VP — VV NP

WV — can | fish
VM — can

NP — they | fish }

String is in the language when
the cell [0, 3] contains S

they  can fish
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CKY

The CKY algorithm recognises strings in a CFL

0O they 1 can 2 fish 3

TO _
1 ) 3 Toy CNF grammar:

{S, NP, VP, WV, VM}
= {can, fish, they}
= S
{S— NP VP
VP — VM VvV
FROM 1 VP — VV NP
WV — can | fish
VM — can
5 NP — they | fish }

JnuMZ
|

String is in the language when

the cell [0, 3] contains S
they  can fish
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The CKY algorithm recognises strings in a CFL

0O they 1 can 2 fish 3

TO _
1 ) 3 Toy CNF grammar:

{S, NP, VP, WV, VM}
= {can, fish, they}
= S
{S— NP VP
VP — VM VvV
FROM 1 vV VP — VV NP
VM WV — can | fish
VM — can
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JnuMZ
|
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0O they 1 can 2 fish 3

TO _
1 ) 3 Toy CNF grammar:

{S, NP, VP, WV, VM}
= {can, fish, they}
= S
{S— NP VP

VP — VM VvV
FROM 1 vV VP — VV NP
VM WV — can | fish
VM — can
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JnuMZ
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CKY

The CKY algorithm recognises strings in a CFL

0O they 1 can 2 fish 3

TO _
1 ) 3 Toy CNF grammar:

{S, NP, VP, WV, VM}
= {can, fish, they}
= S
{S— NP VP

VP — VM VvV
FROM 1 v VP VP — VV NP
VM WV — can | fish
VM — can
5 vv NP — they | fish }
NP

JnuMZ
|

String is in the language when

the cell [0, 3] contains S
they  can fish

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 17 /24



CKY

The CKY algorithm recognises strings in a CFL

0 they 1 «can
TO
1 2 3
0 NP < S
v
vv
FROM 1 VM VP
4%
2 NP
they  can fish

2 fish 3

Toy CNF grammar:

= {can, fish, they}

= S

{S— NP VP

VP — VM VvV
VP — VV NP

WV — can | fish
VM — can

NP — they | fish }

JnuMZ
|

String is in the language when
the cell [0, 3] contains S
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CKY

The CKY algorithm recognises strings in a CFL

0O they 1 can 2 fish 3

TO
1 ) 3 Toy CNF grammar:
N = {S NP,VP VV VM}
Y = {can,fish, they}
0 NP ) S =S
P = {S—NPVP
VP — VM VV
FROM 1 w viP VP — VV NP
VM WV — can | fish
Y VM — can
5 vv NP — they | fish }
NP

String is in the language when

the cell [0, 3] contains S
they  can fish
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CKY

The CKY algorithm recognises strings in a CFL

In the general case for A,B,C € N and a € ¥:

o If a € ¥ exists between indexes m and m+ 1, and A — a then cell
[m, m + 1] contains A

o if cell [i, k] contains B and cell [k, ] contains C and A — BC then
cell [/, /] contains A

@ String of length n is in the language when the cell [0, n] contains S
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CKY

The CKY algorithm recognises strings in a CFL

In the general case for A,B,C € N and a € ¥:
o If a € ¥ exists between indexes m and m+ 1, and A — a then cell
[m, m + 1] contains A
o if cell [i, k] contains B and cell [k, ] contains C and A — BC then
cell [/, /] contains A
@ String of length n is in the language when the cell [0, n] contains S
The CKY algorithm only recognises a string, in order to obtain the parse
tree we need to:
@ pair each non-terminal in a cell with a 2-tuple of the cells that derived
It
@ allow the same non-terminal to exist more than once in any particular
cell (or allow it to be paired with a list of 2-tuples)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 18 /24



CKY

The CKY algorithm can be used to create a parse

TO
1 2 3
0
FROM 1
2
they can fish
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CKY

The CKY algorithm can be used to create a parse

TO
1 2 3
0 NP they)
FROM 1 &,\‘;((“”))
2
they can fish
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CKY

The CKY algorithm can be used to create a parse

TO
1 2 3
0  NPthey)
vV,
(can)
FROM 1 VM(can)
2 V'V fish)
NP fish)
they can fish
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CKY

The CKY algorithm can be used to create a parse

TO
1 2 3
0 NPhey)
FROM 1 x,\‘f,() VP (12w, 12.3]we)
(can)  VPo_y([1,2]vm.[2,3]w)
2 VW fish)
NP fish)
they can fish
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CKY

The CKY algorithm can be used to create a parse

TO
1 2 3

NP(they) S15([0,1]wes[1,3]vey )
0 g 52—>([0,1]NP7[1:3]VP2)
FROM 1 x,\‘f,() VPL (112w 12,31 we)
(can) VP2‘>([172]VM:[273]V\/)

2 VW fish)

NP fish)

they can fish
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Probabilistic CFGs

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number

n—1

(n—1)+k

Num of trees for sentence length n = H P

k=2
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Probabilistic CFGs

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number
n—1

Num of trees for sentence length n = II

k=2

(n—1)+k
k

sentence length

number of trees

sentence length

number of trees

~NOo kAW

2

5
14
42
132

8
9
10
11
12

429
1430
4862
16796
58786

We need parsing algorithms that can efficiently store the parse forest and
not derive shared parts of tree more than once—

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing

20 /24



Probabilistic CFGs

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number
n—1

Num of trees for sentence length n = II

k=2

(n—1)+k
k

sentence length

number of trees

sentence length

number of trees

~NOo kAW

2

5
14
42
132

8
9
10
11
12

429
1430
4862
16796
58786

We need parsing algorithms that can efficiently store the parse forest and
not derive shared parts of tree more than once—use packing and/or a
beam (the latter requires knowledge of the probability of derivations)
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Parse probabilities may be derived using a PCFG

o Gperg = (X, N, 5, P, q) where g is a mapping from rules in P to a
probability and > ¢g(A—a)=1
A—a P
@ Gpcrg is consistent if the sum of all probabilities of all derivable
strings equals 1 (grammars with infinite loops like S — S are
inconsistent)

@ The probability of a particular parse is the product of the
probabilities of the rules that defined the parse tree. For a string W
with parse tree T derived from rules A; — B;, i =1...n

n
P(T, W) = H P(A,‘ — B,‘)
i=1

e But note that P(T, W) = P(T)P(W|T) and that P(W|T) =1 so

|T)
P(T, W) = P(T) and thus P(T) = ] P(A; — B))
i=1
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Parse probabilities may be derived using a PCFG

@ The probability of an ambiguous string is the sum of all the parse
trees that yield that string
P(W) = > P(T, W)= > P(T)

trees that yield W trees that yield W

@ We can disambiguate multiple parses by choosing the most probable
parse tree for the string

T(W)= argmax P(T|W)
trees that yield W
but
P(T,W
P(TIW) = i) — P(T, W) = P(T)
so

T(W)= argmax P(T)

trees that yield W

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 22/24



Probabilistic CFGs

Rule probabilities may be estimated from treebanks

@ A treebank is a corpus of parsed sentences

@ Rule probabilities can be estimated from counts in a treebank:

P(A — B) = P(A — B|A) = Zcogut;;};j% — coggufgf(:f)

Y
o inside-outside algorithm can be used when no tree bank exists
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@ A treebank is a corpus of parsed sentences

@ Rule probabilities can be estimated from counts in a treebank:

P(A — B) = P(A — B|A) = Zcogut;;};j% — coggufgf(:f)

Y
o inside-outside algorithm can be used when no tree bank exists

. more in later lectures
Problems with PCFGs:

@ Independence ignores structural dependency within the tree

@ Structure is dependent on lexical items
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Probabilistic CYK

Probabilistic CFGs may be incorporated into CKY

1 2 3

N

>

0 S

P
1
2

they can fish

{S, NP, VP, WV, VM}
{can, fish, they }

S

{S— NP VP 1.0

VP — VM VV 0.9

VP — VV NP 0.1

VV — can 0.2 | fish 0.8
VM — can 1.0

NP — they 0.5 | fish 0.5

@ For the best parse keep most probable non-terminal at each node

@ Otherwise can pack and operate a beam
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1 2 3
N
>
0.5
0 NP(they) ,g
1
2
they can fish

{S, NP, VP, WV, VM}
{can, fish, they }

S

{S— NP VP 1.0

VP — VM VV 0.9

VP — VV NP 0.1

VV — can 0.2 | fish 0.8
VM — can 1.0

NP — they 0.5 | fish 0.5

@ For the best parse keep most probable non-terminal at each node

@ Otherwise can pack and operate a beam
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N
>
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0 N P (they) g
VVO 2
! VMICQO,7
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>
0.5
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! VMlcaOn
2 wvi8 (fish)
N'D(flsh
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Probabilistic CYK

Probabilistic CFGs may be incorporated into CKY
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