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Reminder: languages can also be defined using automata

Recall that a language is regular if it is equal to the set of strings accepted
by some deterministic finite-state automaton (DFA).
A DFA is defined as M = (Q,Σ,∆, s,F) where:

Q = {q0, q1, q2...} is a finite set of states.

Σ is the alphabet: a finite set of transition symbols.

∆ ⊆ Q×Σ×Q is a function Q×Σ→ Q which we write as δ. Given
q ∈ Q and i ∈ Σ then δ(q, i) returns a new state q′ ∈ Q
s is a starting state

F is the set of all end states
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Reminder: regular languages are accepted by DFAs

For L(M) = {a, ab, abb, ...}:
M=( Q = {q0, q1, q2},

Σ = {a, b},
∆ = {(q0, a, q1), (q0, b, q2), ..., (q2, b, q2)},
s = q0,

F = {q1} ) q0start q1

q2

a

b

b

a

a, b

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 24



Regular grammars

Simple relationship between a DFA and production rules

Sstart A B C q4

b a a !

a

Q ={S ,A,B,C , q4}
Σ = {b, a, !}
q0 = S

F = {q4}

S → bA

A → aB

B → aC

C → aC

C → !
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Regular grammars

Regular grammars generate regular languages

Given a DFA M = (Q,Σ,∆, s,F) the language, L(M), of strings accepted
by M can be generated by the regular grammar Greg = (N ,Σ,S ,P)
where:

N= {Q} the non-terminals are the states of M

Σ = Σ the terminals are the set of transition symbols of M

S = s the starting symbol is the starting state of M

P = qi → aqj when δ(qi , a) = qj ∈ ∆
or qi → ε when q ∈ F (i.e. when q is an end state)
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Regular grammars

Strings are derived from production rules

In order to derive a string from a grammar

start with the designated starting symbol
then non-terminal symbols are repeatedly expanded using the rewrite
rules until there is nothing further left to expand.

The rewrite rules derive the members of a language from their internal
structure (or phrase structure)

computational linguistics 3

S

b A

S

b A

a B

S

b A

a B

a C

S

b A

a B

a C

!

S → bA A → aB B → aC C →!

Figure 3: The derivation of the small-
est member of the sheep language,
derived from the grammar in Figure 2
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a C

a C

a C

!
Figure 4: The 3 smallest members of
the sheep language, presented with
their internal structure as defined by
the regular grammar in Figure 2

There is a clear relationship between the grammatical definition
of sheep language and the FSA definition. The start symbol of the
grammar can be mapped to the starting state of the FSA. Then for
each production rule of the form A → aB (where A and B are non-
terminals and a is a terminal) there is a transition between states via
the symbol a. Finally, for each production rule of the form A → a
there is a transition to a terminal state. If the FSA is relabelled as
shown in Figure 5 then it is possible to see this relationship.

S → bA

A → aB

B → aC

C → aC

C → !
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Regular grammars

A regular language has a left- and right-linear grammar

For every regular grammar the rewrite rules of the grammar can all be
expressed in the form:

X → aY

X → a

or alternatively, they can all be expressed as:

X → Ya

X → a

The two grammars are weakly-equivalent since they generate the same
strings.
But not strongly-equivalent because they do not generate the same
structure to strings
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Regular grammars

A regular language has a left- and right-linear grammar
computational linguistics 5

S

b A

a B

a C

!

S → bA
A → aB
B → aC
C → aC
C → !

S

A !

B a

C a

b

S → A!
A → Ba
B → Ca
C → Ca
C → b

Figure 6: Structures for the smallest
element of the language from the
weakly equivalent left and right-linear
grammars for sheep talk.

Using a regular grammar to model natural language

There are other forms of formal grammar that vary in the combi-
nation of terminal and non-terminals permitted either side of the
production arrow. We shall come back to these in lecture 8 when
we discuss the complexity of different grammars. Broadly speaking,
the less restrictive you are about the form of the production rules
the more expressive your language can be; but this usually has the
side effect of increasing the search space and the complexity of the
search algorithm (more on that later). For now the question is sim-
ply whether we need anything more expressive than the regular
grammar we have discussed in order to model natural language.
The answer is that we probably do need something more expressive
for several reasons:

Centre Embedding - The syntax of natural languages cannot be
described by an FSA, even in principle, due to the presence of
centre-embedding; i.e. infinitely recursive structures described
by the rule, A → αAβ, which generate language examples of
the form, anbn. For instance, Sentence 1 has a centre-embedded
structure. J&M provide the example shown in Sentence 23. 3 See J&M section 12.6, page 447

1. The students the police arrested complained

2. The luggage that the passengers checked arrived.

3. The luggage that the passengers that the storm delayed
checked arrived.

The reason that an FSA cannot describe centre-embedding is
that it has no memory of what has occurred previously in the
sentence. In order to ‘know’ that n verbs were required to match
n nominals already seen, the FSA would have to ‘record’ that n
nominals had been seen; but the FSA has no mechanism to do
this. However, examples of centre-embedding quickly become
unwieldy for human processing (n.b. the difficulty of under-
standing Sentence 3). For finite n we can still model the language
using an FSA: we can design the states to capture finite levels

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 8 / 24



Phrase structure grammars

A regular grammar is a phrase structure grammar

A phrase structure grammar over an alphabet Σ is defined by a tuple
G = (N ,Σ, S ,P). The language generated by grammar G is L(G ):

Non-terminals N : Non-terminal symbols (often uppercase letters) may
be rewritten using the rules of the grammar.

Terminals Σ: Terminal symbols (often lowercase letters) are elements of
Σ and cannot be rewritten. Note N ∩ Σ = ∅.

Start Symbol S : A distinguished non-terminal symbol S ∈ N . This
non-terminal provides the starting point for derivations.

Phrase Structure Rules P: Phrase structure rules are pairs of the
form (w , v) usually written:
w → v , where w ∈ (Σ ∪N )∗N (Σ ∪N )∗ and v ∈ (Σ ∪N )∗
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Phrase structure grammars

Definition of a phrase structure grammar derivation

Given G = (N ,Σ,S ,P) and w , v ∈ (N ∪ Σ)∗ a derivation step is
possible to transform w into v if:

u1, u2 ∈ (N ∪ Σ)∗ exist such that w = u1αu2, and v = u1βu2

and α→ β ∈ P

This is written w =⇒
G

v

A string in the language L(G ) is a member of Σ∗ that can be derived in a
finite number of derivation steps from the starting symbol S .

We use =⇒
G∗

to denote the reflexive, transitive closure of derivation steps,

consequently L(G ) = {w ∈ Σ∗|S =⇒
G∗

w}.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 24



Phrase structure grammars

PSGs may be grouped by production rule properties

Chomsky suggested that phrase structure grammars may be grouped
together by the properties of their production rules.

Name Form of Rules
regular (A→ Aa or A→ aA) and A→ a | A ∈ N and a ∈ Σ
context-free A→ α | A ∈ N and α ∈ (N ∪ Σ)∗

context-sensitive αAβ → αγβ | A ∈ N and α, β, γ ∈ (N ∪ Σ)∗and γ 6= ε
recursively enum α→ β | α, β ∈ (N ∪ Σ)∗ and α 6= ε

A class of languages (e.g. the class of regular languages) is all the
languages that can be generated by a particular type of grammar.

The term power is used to describe the expressivity of each type of
grammar in the hierarchy (measured in terms of the number of subsets of
Σ∗ that the type can generate)
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Phrase structure grammars

We can define the complexity of language classes

The complexity of a language class is defined in terms of the recognition
problem.

Type Language Class Complexity
3 regular O(n)
2 context-free O(nc )
1 context-sensitive O(cn)
0 recursively enumerable undecidable
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Context-free grammars

Context-free grammars capture constituency

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

G = (N ,Σ, S ,P) where
P = {A→ α |
A ∈ N , α ∈ (N ∪ Σ)∗}
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Context-free grammars

CFGs can be written in Chomsky Normal Form

Chomsky normal form: every production rule has the form, A→ BC , or,
A→ a where A,B,C ∈ N , and, a ∈ Σ.

Conversion to Chomsky Normal Form

For every CFG there is a weakly equivalent CNF alternative.
A→ BCD may be rewritten as the two rules, A→ BX , and, X → CD.

A

B C D

A

B X

C D
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Context-free grammars

CFGs can be written in Chomsky Normal Form

For A,B,C ,D,X ,Y ∈ N and γ, β ⊆ N∗ and a ∈ Σ.

Conversion to Chomsky Normal Form

Keep all existing conforming rules

replace A→ γaβ with D → γAβ and A→ a

repeatedly replace A→ γBC with A→ γX and X → BC

if A =⇒
∗

B is a chain of one or more unit productions, and B → a then

replace all the unit productions with A→ a (where a unit production
is any rule of the form X → Y )

CNF is a requirement for the CKY parsing algorithm but it causes some
problems:

Grammar is no longer linguistically intuitive

Direct correspondence with compositional semantics may be lost
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Context-free grammars

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

are a proper subset of the context-free languages

can be modelled by an unambiguous grammar

can be parsed in linear time

parser can be automatically generated from the grammar

CFGs used to model natural language are not deterministic

Natural languages (with all their inherent ambiguity) are not well
suited to algorithms which operate deterministically recognising a
single derivation without backtracking

However, natural language parsing can be achieved deterministically
by selecting parsing actions using a machine learning classifier (more
on this in later lectures).

All CFLs (including those exhibiting ambiguity) can be recognised in
polynomial time using dynamic programming algorithms.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 16 / 24



Context-free grammars

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

are a proper subset of the context-free languages

can be modelled by an unambiguous grammar

can be parsed in linear time

parser can be automatically generated from the grammar

CFGs used to model natural language are not deterministic

Natural languages (with all their inherent ambiguity) are not well
suited to algorithms which operate deterministically recognising a
single derivation without backtracking

However, natural language parsing can be achieved deterministically
by selecting parsing actions using a machine learning classifier (more
on this in later lectures).

All CFLs (including those exhibiting ambiguity) can be recognised in
polynomial time using dynamic programming algorithms.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 16 / 24



Context-free grammars

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

are a proper subset of the context-free languages

can be modelled by an unambiguous grammar

can be parsed in linear time

parser can be automatically generated from the grammar

CFGs used to model natural language are not deterministic

Natural languages (with all their inherent ambiguity) are not well
suited to algorithms which operate deterministically recognising a
single derivation without backtracking

However, natural language parsing can be achieved deterministically
by selecting parsing actions using a machine learning classifier (more
on this in later lectures).

All CFLs (including those exhibiting ambiguity) can be recognised in
polynomial time using dynamic programming algorithms.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 16 / 24



Context-free grammars

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

are a proper subset of the context-free languages

can be modelled by an unambiguous grammar

can be parsed in linear time

parser can be automatically generated from the grammar

CFGs used to model natural language are not deterministic

Natural languages (with all their inherent ambiguity) are not well
suited to algorithms which operate deterministically recognising a
single derivation without backtracking

However, natural language parsing can be achieved deterministically
by selecting parsing actions using a machine learning classifier (more
on this in later lectures).

All CFLs (including those exhibiting ambiguity) can be recognised in
polynomial time using dynamic programming algorithms.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 16 / 24



CKY

The CKY algorithm recognises strings in a CFL

0 they 1 can 2 fish 3

TO
1 2 3

0 NP . S

1FROM
VV
VM

VP

2
VV
NP

they can fish

Toy CNF grammar:

N = {S ,NP,VP,VV ,VM}
Σ = {can, fish, they}
S = S
P = {S → NP VP

VP → VM VV
VP → VV NP
VV → can | fish
VM → can
NP → they | fish }

String is in the language when
the cell [0, 3] contains S
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CKY

The CKY algorithm recognises strings in a CFL

In the general case for A,B,C ∈ N and a ∈ Σ:

If a ∈ Σ exists between indexes m and m + 1, and A→ a then cell
[m,m + 1] contains A

if cell [i , k] contains B and cell [k , j ] contains C and A→ BC then
cell [i , j ] contains A

String of length n is in the language when the cell [0, n] contains S

The CKY algorithm only recognises a string, in order to obtain the parse
tree we need to:

pair each non-terminal in a cell with a 2-tuple of the cells that derived
it

allow the same non-terminal to exist more than once in any particular
cell (or allow it to be paired with a list of 2-tuples)
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CKY

The CKY algorithm can be used to create a parse

TO

1 2 3

0

S1→([0,1]NP ,[1,3]VP1
)

S2→([0,1]NP ,[1,3]VP2
)

1FROM
VV(can)

VM(can)

.NP(they)

VP1→([1,2]VV ,[2,3]NP)

VP2→([1,2]VM ,[2,3]VV )

2
VV(fish)

NP(fish)

they can fish
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Probabilistic CFGs

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number

Num of trees for sentence length n =
n−1∏
k=2

(n − 1) + k

k

sentence length number of trees

3 2
4 5
5 14
6 42
7 132

sentence length number of trees

8 429
9 1430
10 4862
11 16796
12 58786

We need parsing algorithms that can efficiently store the parse forest and
not derive shared parts of tree more than once—

use packing and/or a
beam (the latter requires knowledge of the probability of derivations)
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Probabilistic CFGs

Parse probabilities may be derived using a PCFG

Gpcfg = (Σ,N , S ,P, q) where q is a mapping from rules in P to a
probability and

∑
A→α ∈ P

q(A→ α) = 1

Gpcfg is consistent if the sum of all probabilities of all derivable
strings equals 1 (grammars with infinite loops like S → S are
inconsistent)

The probability of a particular parse is the product of the
probabilities of the rules that defined the parse tree. For a string W
with parse tree T derived from rules Ai → Bi , i = 1...n

P(T ,W ) =
n∏

i=1
P(Ai → Bi )

But note that P(T ,W ) = P(T )P(W |T ) and that P(W |T ) = 1 so

P(T ,W ) = P(T ) and thus P(T ) =
n∏

i=1
P(Ai → Bi )
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Probabilistic CFGs

Parse probabilities may be derived using a PCFG

The probability of an ambiguous string is the sum of all the parse
trees that yield that string

P(W ) =
∑

trees that yield W

P(T ,W ) =
∑

trees that yield W

P(T )

We can disambiguate multiple parses by choosing the most probable
parse tree for the string

T̂ (W ) = argmax
trees that yield W

P(T |W )

but

P(T |W ) = P(T ,W )
P(W ) → P(T ,W ) = P(T )

so

T̂ (W ) = argmax
trees that yield W

P(T )
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Probabilistic CFGs

Rule probabilities may be estimated from treebanks

A treebank is a corpus of parsed sentences

Rule probabilities can be estimated from counts in a treebank:

P(A→ B) = P(A→ B|A) = count(A→B)∑
γ

count(A→γ) = count(A→B)
count(A)

inside-outside algorithm can be used when no tree bank exists

... more in later lectures

Problems with PCFGs:

Independence ignores structural dependency within the tree

Structure is dependent on lexical items

... more in later lectures
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Probabilistic CYK

Probabilistic CFGs may be incorporated into CKY

1 2 3

0
S0.5∗1.0∗0.8∗0.9∗1.0=0.36
([0,1]NP ,[1,3]VP )

1
VV 0.2

(can)

VM1.0
(can)

.NP0.5
(they)

VP0.2∗0.5∗0.1=0.01
1→([1,2]VV ,[2,3]NP )

VP1.0∗0.8∗0.9=0.72
2→([1,2]VM ,[2,3]VV )

VP1.0∗0.8∗0.9=0.72
([1,2]VM ,[2,3]VV )

2
VV 0.8

(fish)

NP0.5
(fish)

they can fish

N = {S ,NP,VP,VV ,VM}
Σ = {can, fish, they}
S = S
P = {S → NP VP 1.0

VP → VM VV 0.9
VP → VV NP 0.1
VV → can 0.2 | fish 0.8
VM → can 1.0
NP → they 0.5 | fish 0.5 }

For the best parse keep most probable non-terminal at each node

Otherwise can pack and operate a beam
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