L90 Practical: Part II

Simone Teufel

Michaelmas 2018/19

\[1\text{This part of practical based on a design by Helen Yannadoukakis}\]
Procedure/Timeline

- **Today:**
 - Using Support Vector Machines
 - Using a validation corpus
 - Developing the extension system (doc2vec)

- **Nov 16:** Submit baseline report (get feedback Nov 24)

- **Next Demonstrated Practical: Nov 21**
 - Sanity check results
 - Analysis methods on results

- **Jan 17:** Submit report on the extension system
From last time, you should have...

- code for sign test
- code for feature manipulation (e.g., bigrams)
- code for NB + smoothing
- code for Round-Robin cross-validation
We will next add a superior classifier – Support Vector Machines.

There are many parameters that can be set in SVMs, e.g. feature cutoff, kernels, . . .

You therefore need a validation corpus.

Validation corpus is a similar status to test and training corpus.

We first set parameters on the validation corpus, which is never used for training or testing.

This is for generalisability.
What you should do

- Declare fold 1 (n=10 Round Robin Xval) as validation corpus
- You can now set all your parameters to your heart’s content on this validation corpus, without risking overtraining.
 - Train on all remaining 90%
 - Test each parameter on the validation corpus
- After parameter setting, run an entirely new experiment, using only the information of what parameters work best.
- This entirely new experiment is a cross-validation as you did before.
- Note: you have lost some data, and your folds are now a bit smaller.
Standard way to use the validation corpus

- Work with a 10-10-80 split (validation, test, training)
- Set your parameters by training on the 80% training split
- Choose the best parameters by comparing results on the validation split
- Then test the best system, with the supposedly best parameters, only once, on the test data.
- Not done here, as we want to compare to published cross-validated results.
SVM is a generalisation of simple maximal margin classifier and support vector classifier.

Both of these require that classes are separable by linear boundary.

Support Vector Machines can use non-linear boundaries (kernels).

Further extensions lead to multi-class SVMs.
Hyperplanes and support vectors

- A hyperplane in p-dimensions is a flat $p - 1$-dimensional affine subspace.
- Compute the distance between data points and various hyperplanes.
- Select the one that creates the largest margin (best separation) between the two classes.
- Support vectors are data points lying on the margin.

Images from: https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e93
Support Vector Machines

- **SVM-Light**: implementation of Support Vector Machines (Joachims, 1999)
 - Easy to use (just download the binaries and convert your features to SVM-Light format)
Doc2vec for Sentiment Analysis

- **word2vec**: learning neural word embeddings (Mikolov et al., 2013)
- **doc2vec** (Le and Mikolov, 2014): embeddings for *sequences* of words
- Agnostic to granularity: sentence, paragraph, document
- Learned ‘document’ vector effective for various/some tasks, including sentiment analysis

\(^2\)Or paragraph vectors, or document vectors...
Distributed representation of words

Task: predict the next word given the context

Optimisation objective:

\[
\frac{1}{T} \sum_{t=k}^{T-k} \log p(w_t | w_{t-k}, \ldots, w_{t+k})
\]

Softmax output layer:

\[
p(w_t | w_{t-k}, \ldots, w_{t+k}) = \frac{\exp y_{w_t}}{\sum_i \exp y_i}
\]

\[
y = b + U h(w_{t-k}, \ldots, w_{t+k}; W)
\]
Add paragraph token: each paragraph mapped to a unique vector

- Paragraph vector now also contributes to the prediction task
 - Shared across all contexts from the same paragraph
- Works as a “memory” of context / topic
Alternatively, train paragraph vector to predict words in a window (no word order); similar to Skip-gram model.
Doc2vec

- Our level of granularity: document / review
- Parameters:
 - Training algorithm (dm, dbow)
 - The size of the feature vectors (e.g., 100 dimensions good enough for us)
 - Number of iterations / epochs (e.g., 10 or 20)
 - Context window
 - Hierarchical softmax (faster version) ...
- A number of available tools (e.g., gensim python library)
Doc2vec: how can we use it for sentiment analysis?

- Paragraph embeddings achieved through word2vec training can be used as features within a typical supervised machine learning framework.
Questions?