Instructions for .90 Practical:
Sentiment Detection of Reviews

Simone Teufel (Lead demonstrator Paula Czarnowska)
sht25@cl.cam.ac.uk; pjc211@cl.cam.ac.uk

Michaelmas 2018/19

This practical concerns sentiment classification of movie reviews. You will use two different
machine learning approaches based on bag-of-word features. For this task, you are not allowed
to use any other packages than those described below. Your second task is to improve over
the two baseline systems using document embeddings and perform an error analysis on the
strengths and weaknesses of the new approach. You can use whichever machine you want for
development, but your final system(s) must run on the MPhil machines (on your own personal
VMs provided for you), and you must include a pointer to your working code on the Mphil
machines (your account).

You will find 1000 positive and 1000 negative movie reviews in /usr/groups/mphil/L90/
data/{P0S,NEG}/*.txt. You will write code that decides whether a random unseen movie
review is positive or negative, and two reports in the form of a scientific article that describe
the results you achieved in the two tasks. To prepare yourself for this practical, you should
have a look at a few of these reviews to understand the difficulties of the task, and think about
how one might go about classifying them.

In particular, you will reimplement key aspects of the following paper:

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan (2002). Thumbs up? Senti-
ment Classification using Machine Learning Techniques. Proceedings of EMNLP.

Bo Pang et al. were the “inventors” of the movie review sentiment classification task, and the
above paper was one of the first papers on the topic.

Advice: Please read through the entire instruction sheet and familiarise yourself with all
requirements before you start coding or otherwise solving the tasks. Writing clean, modular
code can make the difference between solving the assignment in a matter of hours, and taking
days to run all experiments.

A quick note on installing packages in the MPhil machines

You can install packages by downloading the .tar file in your home folder and then installing
the packages from there (while setting your path variables as needed). An alternative would be
to do the following:

1. Go to https://pip.pypa.io/en/stable/installing/ and download get-pip.py
2. Run python get-pip.py --user

3. Then to install a package (e.g., scipy) run python -m pip install --user scipy

Part One: Naive Bayes Baseline

How could one automatically classify movie reviews according to their sentiment? Your task in
Part One is to establish two commonly used baselines.

1

Machine Learning using Bags of Words representations

You will implement a Machine Learning approach that operates on a simple Bag-of-Words
(BoW) representation of the text data, as described in Pang et al. (2002). In this approach,
the only features we will consider are the words in the text themselves (or short sequences of
these words), without any other sources of information. The BoW model is a popular way of
representing text information as vectors (or points in space), making it easy to apply classical
Machine Learning algorithms on NLP tasks. However, the BoW representation is also very
crude, since it discards all information related to context (other than ngram information).

Write your own code to implement the Naive Bayes (NB) classifier.! As a reminder, the
Naive Bayes classifier works according to the following equation:

n

¢ = argmax P(c|f) = arg max P(c) HP(fi|c)
ceC ceC =1

where C' = {POS,NEG} is the set of possible classes, ¢ € C' is the most probable class, and

f is the feature vector. Remember that we use the log of these probabilities when making a
prediction:

¢ = argmax{logP(c) + Z logP(filc)}
ceC i—1
You can find more details about Naive Bayes here:
https://web.stanford.edu/~jurafsky /slp3/6.pdf
and pseudocode here:

https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-
1.html

As features for classification, please use unigrams and bigrams (separately and jointly), as
described in Pang et al. (2002). Reimplement their frequency cutoff (infrequent unigrams and
bigrams are discarded).

You may use whichever programming language you prefer (C++, Python, or Java being
the most popular ones), but you must write the Naive Bayes training and prediction code from
scratch. You will not be given credit for using off-the-shelf Machine Learning libraries such as
mlpack (C++), scikit (Python), Weka (Java), etc.

The data in /usr/groups/mphil/L90/data-tagged/{P0S,NEG}/*.tag contains the text
of the reviews, where each document is one review. You will find the text has already been
tokenised for you. Your algorithm should read in the text, store the words and their frequencies
in an appropriate data structure that allows for easy computation of the probabilities used in
the Naive Bayes algorithm, and then make predictions for new instances.

Train your classifier on files ¢cv000—cv899 from both the /P0S and the /NEG direc-
tories, and test it on the remaining files cv900-cv999. Report results using simple
classification accuracy as your evaluation metric?.

Smoothing

The presence of words in the test dataset that haven’t been seen during training can
cause probabilities in the Naive Bayes classifier to be 0, thus making that particular
test instance undecidable. The standard way to mitigate this effect (as well as to

IThis section and the next aim to put you a position to replicate Pang et al., Naive Bayes results. However,
the numerical results will differ from theirs, as they used different data.

2Voluntary thought experiment: Is accuracy an equally appropriate evaluation metric in a situation
where 90% of your data instances are of positive movie reviews? If you are curious about this, you can simulate
this scenario by keeping the positive reviews data unchanged, but only using negative reviews cv000—-cv089 for
training, and c¢v900-cv909 for testing. Calculate the classification accuracy, and explain what changed. (This is
a voluntary exercise; if you decide to do it, please don’t report it)

2

give more clout to rare words) is to use smoothing, in which the probability fraction
count(w;,c) count(w;,c)+smoothing(w;)

>~ count(w,c) for a word w; becomes > count(w,c)+ >, smoothing(w)
weV wev wev

Implement Laplace feature smoothing (smoothing(-) = k, constant for all words)
in your Naive Bayes classifier’s code, and report the impact on performance.

Statistical significance testing

When comparing two versions of a system, significance testing is used to determine whether
their difference in performance (with respect to a particular performance metric) is statistically
significant.?

What would it mean for a difference not to be statistically significant? The sample you train
and test on are always just a tiny sample of an infinite set of all possible instances. Thus, it is
possible that observed differences in the reported performance are really just noise (random),
despite looking as if there was a real difference.

We perform a paired difference test, as the two systems can be run on the identical data,
which creates paired samples — the score obtained by one system for a particular data item is
paired to that of the other system for the same item. Paired difference test are designed to
assess whether the population mean (in terms of performance) of the two runs is different.

Formally, a paired difference test is carried out in the form of a two-tailed paired hypothesis
test with two disjoint hypotheses:

Hy: p1 = po or equivalently py; — o =0
there is no difference in statistic i between the two samples

Hy: py # po or equivalently gy — g # 0
there is a difference in statistic p between the two samples

There are two outcomes of a statistical test, Reject Hy (difference found) and Do Not Reject
Hy (no difference found).

Hy True H, True
Reject Hy Type I Error Correct (Difference)
Do Not Reject Hy | Correct (No Difference) Type I Error

One of the simplest statistical tests is the sign test. The sign test is described in Siegel
and Castellan (1986)*, page 80 (scans of the relevant pages are available in the L0 directory
/usr/groups/mphil/L90/resources/). As presented in the slides, the sign test is based on
the binomial distribution.

You will implement this test and apply it to find out whether the difference between
smoothed and unsmoothed NB systems is significant. (Each change that you apply can be
thought of as a new “system”). In short, you will count all cases when System A is better than
System B, when System B is better than System A, and when they are the same. Call these
numbers Plus, Minus and Null respectively. The sign test returns the probability that the
null hypothesis is true. This probability is called the p-value and it can be calculated for the
two-sided sign test using the following formula (we multiply by two because this is a two-sided
sign test and tests for the significance of differences in either direction):

2 é(@v) (- gV

where N = 2 {NT“”] +Plus+Minus is the total number of cases, and k = (NT“NW +min{Plus, Minus}
is the number of cases with the less common sign. In this experiment, ¢ = 0.5. Here, we treat

3You should always attempt to perform a significance test with any results. If it’s not possible due to the
properties of data or metric, then you should explain in the text why it’s not possible. If you cannot find
significance a the chosen level, you can also report “marginal” significance (typically if 0.5 < p < 0.6).

4Siegel and Castellan, Nonparametric Statistics for the behavioural sciences, McGraw-Hill.

3

ties by adding half a point to either side, rounding up to the nearest integer if necessary. You
can quickly verify the correctness of your sign test code using a free online tool.®.

From now on, report all differences between systems using the sign test. Be
careful with your exact language when reporting any result in your report. Using words such
as “better” or “outperform” when discussing the differences between two metrics implies that
you have run a test and found the difference to be significant. Writing “better” and not even
having tested for significance is a typical rookie mistake.® If significance was not established,
you are strictly speaking even making a false (or at least unsupported) claim, as results that
might be due to chance are not in fact “better”. The strongest statement you can make in this
situation is “despite not significantly different, the results of system A are at least numerically
higher than those of system B” (but as nobody cares about arbitrary results that could just as
easily have been created by chance, you may as well not bother).

If you are comparing more than two different methods (i.e., systems), tests have to be
performed in a pair-wise manner. This creates a triangular matrix of test results in the general
case. To avoid redundancy, try to see if you can bundle and summarise trends. In text,
it’s enough to mention the keyword “significantly better” or “statistically significantly better”
the first time you make a direct comparison of results. Ideally, you should only talk about
significant difference and ignore all others. At the first point of using “significant”, give details,
maybe in a footnote (which test you use, at which significance level, and whether two- or one-
tailed). From then onward in the paper, your reader will understand that you know what’s
going on and play by the rules, and you don’t need to mention significance again each time.
After having written a section on results, make it a habit to check each “better” (because
it often sneaks in). If you cannot say “significantly better” for some legitimate reason (e.g.,
because no known test exists for a metric you use), you can use the vague term “considerably
better”, which doesn’t have a technical meaning like “significantly better” does.

Cross-validation

A serious danger in using Machine Learning on small datasets, with many iterations of slightly
different versions of the algorithms, is that we end up with Type III errors, also called the
“testing hypotheses suggested by the data” errors. This type of error occurs when we make
repeated improvements to our classifiers by playing with features and their processing, but we
don’t get a fresh, never-before seen test dataset every time. Thus, we risk developing a classifier
that’s better and better on our data, but worse and worse at generalizing to new, never-before
seen data.

A simple method to guard against Type III errors is to use cross-validation. In N-fold cross-
validation, we divide the data into N distinct chunks/folds. Then, we repeat the experiment
N times, each time holding out one of the chunks for testing, training our classifier on the
remaining N - 1 data chunks, and reporting performance on the held-out chunk. We can use
different strategies for dividing the data:

e Consecutive splitting:

cv000—cv099 = Split 1
cv100-cv199 = Split 2

e Round-robin splitting (mod 10):

cv000, cv010, cv020,...= Split 1
cv001, cv011, cv021,...= Split 2

e Random sampling/splitting: Not used here (but you may choose to split this way in a
non-educational situation)

5For example https://www.graphpad.com/quickcalcs/binomiall.cfm

6 An even more embarrassing mistake is to write “significant better” and not know that this is a technical term
with a keyword function. In day-to-day language use, “significant” might be used equivalently to “noticeable”
or “a lot”. This is not how the word is used in science.

4

Write the code to implement 10-fold cross-validation for your Naive Bayes classifier
from and compute the 10 accuracies. Report the final performance, which is the
average of the performances per fold.

If all splits perform equally well, this is a good sign.
Write code to calculate and report variance, in addition to the final performance.

Please report all future results using 10-fold Round-Robin cross-validation now
(unless told to use the held-out test set).

How can you use statistical significance testing on cross-validated data?

Write Report for Part One

Up to 1,000 words, excluding references. Due on Friday 16 November 2017 at 12:00 noon
(Note: mention of word limit always means that you should state the actual number of words
you used. Not doing so will incur loss of some points in the marking scheme). Style your report
as a paper that describes replication of (part of) Pang et al. 2002.

