The Network Stack

L41 Lecture 3
Dr Graeme Jenkinson
25 February 2018

This time: Introduction to Network Stacks

Rapid tour across hardware and software:

* Networking and the sockets API

Network-stack design principles: 1980s vs. today
Memory flow across hardware and software
Network-stack construction and work flows
Recent network-stack research

The Transmission Control Protocol (TCP)
The TCP state machine

TCP congestion control

TCP implementations and performance
The evolving TCP stack

Labs 4 + 5 on TCP

* Wrapping up the L41 lecture series

Networking: A key OS function (1)

 Communication between computer systems
* Local-Area Networks (LANSs)
 Wide-Area Networks (WANsSs)

* A network stack provides:
e Sockets APl and extensions

* Interoperable, feature-rich, high-performance protocol
implementations (e.g., IPv4, IPv6, ICMP, UDP, TCP, SCTP,
802.1, 802.11, ...)

Security functions (e.g., cryptographic tunneling, firewalls...)
e Device drivers for Network Interface Cards (NICs)

* Monitoring and management interfaces (BPF, ioctl)
Plethora of support libraries (e.g., DNS)

Networking: A key OS function (2)

* Dramatic changes over 30 years:
1980s: Early packet-switched networks, UDP+TCP/IP, Ethernet
1990s: Large-scale migration to IP; Ethernet VLANSs
2000s: 1-Gigabit, then 10-Gigabit Ethernet; 802.11; GSM data

2010s: Large-scale deployment of IPv6; 40/100-Gbps Ethernet
... billions = trillions of devices?

* Vanishing technologies
* UUCP, IPX/SPX, ATM, token ring, SLIP, ...

The Berkeley Sockets APl (1983)

close() * The Design and Implementation of the
read() 4.3BSD Operating System
write() * (but APIs/code first appeared in 4.2BSD)

* Now universal TCP/IP (POSIX, Windows)
e Kernel-resident network stack serves

t : . . .
g;ﬁj?)() networking applications via system calls
connect () * Reuses file-descriptor abstraction
getsockopt() e Same API for local and distributed IPC
listen() e Simple, synchronous, copying semantics
recv() Blocking/non-blocking 1/0, select()
Selj‘:t() * Multi-protocol (e.g., IPv4, IPv6, ISO, ...)
Sez ()k c * TCP-focused but not TCP-specific
setsockopt() * Cross-protocol abstractions and libraries
socket()

* Protocol-specific implementations
* “Portable” applications

BSD network-stack principles (1980s-1990s)

Multi-protocol, packet-oriented network research framework:

* Object-oriented: multiple protocols, socket types, but one API

* Protocol-independent: streams vs. datagrams, sockets, socket buffers,
socket addresses, network interfaces, routing table, packets

* Protocol-specific: connection lists, address/routing specialization,
routing, transport protocol itself — encapsulation, decapsulation, etc.

* Packet-oriented:
* Packets and packet queueing as fundamental primitives
» Best effort: If there is a failure (overload, corruption), drop the packet
* Work hard to maintain packet source ordering
* Differentiate ‘receive’ from ‘deliver’ and ‘send’ from ‘transmit’
e Heavy focus on TCP functionality and performance
* Middle-node (forwarding), not just edge-node (1/0), functionality
* High-performance packet capture: Berkeley Packet Filter (BPF)

FreeBSD network-stack principles (1990s-2010s)

All of the 1980s features and also ...

* Hardware:

* Multi-processor scalability
NIC offload features (checksums, TSO/LRO, full TCP)
Multi-queue network cards with load balancing/flow direction
Performance to 10s or 100s of Gigabit/s
Wireless networking

* Protocols:
* Dual IPv4/IPv6
e Pluggable congestion control
 Security/privacy: firewalls, IPSec, ...

* Software model:
* Flexible memory model integrates with VM for zero-copy
* Network-stack virtualisation
e Userspace networking via netmap

Memory flow in hardware

Ethernet O O 12
CPU CPU 4“‘1"[">
32K, L1 Cache i L1 Cache PCI 1o /(:|
3-4 CyC|eS I y I PJ
256K, y — y
8-12 cycles L2 Cache L DDIO 8
25M I | —— I N
32-40 cycles Last-Level Cache (LLC) . '
DRAM i 7]
up to 256-290 DRAM OO \Ifl
cycles

* Key idea: follow the memory
 Historically, memory copying is avoided due to instruction count
* Today, memory copying is avoided due to cache footprint

* Recent Intel CPUs push and pull DMA via the LLC (“DDIO”)

* |f we differentiate ‘send’ and ‘transmit’, ‘receive’ vs. ‘deliver’, is this
a good idea?

e ...it depends on the latency between DMA and processing

Memory flow in software

User process recv() send(
copyout() copyin()
AY (l
Socket/protocol - / | | \D om Socket/protocol
deliver A free() | network | |alloc) send
Kernel o memory !
| | allocator
NIC. o ,'El | " o T NIQ
receive alloc() | |free() \ transmit

* Socket APl implies one software-driven copy to/from user memory
 Historically, zero-copy VM tricks for socket APl ineffective

* Network buffers cycle through the slab allocator
* Receive: allocate in NIC driver, free in socket layer
* Transmit: allocate in socket layer, free in NIC driver

 DMA performs second copy; can affect cache/memory bandwidth
* NB: what if packet-buffer working set is larger than the cache?

L41 Lecture 3 — The Network Stack

The mbuf abstraction

r mbuf packet queue N
socket ~\‘~‘________,—’-_—----—::_::_::’:éA structmouf > - >
buffer 72 D e ®
mbuf header ® BT [mbuf |
[
_ . £
r\:\%ﬁ{ I8 data VM/ %
A G packet header ®© buffer- o
queue / £ © 3 4
o cache a
, T # EI page E
TCP data | external mbuf
reassembly / o storage ¢
SIEIE 2 || current &
S data El current
e/ data
networ / 1) pad
interface 4 4
queue

* Unit of work allocation and distribution throughout the stack

 mbuf chains represent in-flight packets, streams, etc.
* Operations: alloc, free, prepend, append, truncate, enqueue, dequeue

* Internal or external data buffer (e.g., VM page)
» Reflects bi-modal packet-size distribution (e.g., TCP ACKs vs data)

e Similar structures in other OSes — e.g., skbuff in Linux

Send/receive paths in the network stack

Application

System call layer

Socket layer

TCP layer

IP layer

Link layer

Device driver

recv() send()
recv() send()
[| [|
| soreceive() sosend()
| sbappend() sbappend()
[| [|
tcp_reass() tcp_send()

tcp_input()

tcp_output()

ip_input()

ip_output()

ether_input()

ether_output()

L41 Lecture 3 — The Network Stack

Forwarding path in the network stack

ip_forward()
IP layer | [
ip_input() ip_output()
Link layer ether_input() ether_output()

L41 Lecture 3 — The Network Stack

Work ©

iIspatch: input path

Hardware

Kernel

Userspace

Device

o
I

Linker layer
+ driver

o
I

"

3

T

TCP + Socket

!

Socket

il
L7

Application

Receive, Interpret and r\]/ al'g ate Validate Look u Reassemtble Kernel copies Data stream
validate strips link checxsum, checksum, strip P segments, out mbufs + to
strip IP TCP header socket deliver to clusters application
checksum layer header header socket
netisr e e >l
dispatch ithread netisr software ithread ' user thread '
Direct sle >l
dispatch ' ithread ' user thread '

* Direct dispatch: ithread - user thread
* Pros: reduced latency, better cache locality, drop early on overload
* Cons: reduced parallelism and work placement opportunities

Deferred dispatch: ithread - netisr thread - user thread

Work dispatch: output path

Userspace

Kernel

Hardware

Application

Socket

| 256J—>

Y

2k, 4k,
9k, 16k

il

TCP

MSS MSS

Kernel copies in

p

Link layer +
driver

o
I

Device

.

Data stream TCP segmentation, IP header Ethernet frame
from data to mbufs + header encapsulation, encapsul- encapsulation, Checksur_n
application clusters checksum ation, insert in + transmit
checksum descriptor ring

je

user thread -
ithread

* Fewer deferred dispatch opportunities implemented
» (Deferred dispatch on device-driver handoff in new if1ib KPIs)

e Gradual shift of work from software to hardware
* Checksum calculation, segmentation, ...

Work dispatch: TOE input path

Driver +
socket layer

5 RN N ST

Device Application

Receive, validate Interpret and . . LooT up Kernel copies Data stream
ethernet, IP, TCP strips link ‘E’g;%g S:]rg;;li'gP and deliver Rs:s;zr:g e out mbufs + FO)
checksums layer header to socket 9 clusters application
je »le >}
ithread "~ userthread '

Move majority of TCP processing
through socket deliver to hardware

» Kernel provides socket buffers and resource allocation
 Remainder, including state, retransmissions, etc., in NIC

e But: two network stacks? Less flexible/updateable structure?
* Better with an explicit HW/SW architecture — e.g., Microsoft Chimney

L41 Lecture 3 — The Network Stack

Netmap: a novel framework for fast packet 1/0

Luigi Rizzo, USENIX ATC 2012 (best paper).

Hardware

Operating system

mbufs

(NIC registers NIC ring Buffers
phys_addr——1" ~ ™ v_addr
len _
head 14" <
tail
ﬁ_/” \\\
User process | Protocol B A
Kernel NIC I/IIIIIIII\I‘IIIII
driver \
\ 7
A 7
NIC DMA E/ E‘D DMA
receive transmit

* Map NIC buffers directly
into user process memory

* Not the sockets API: Zero
copy to/from application

e System calls initiate DMA,
block for NIC events

* Packets can be reinjected
into normal stack

* Ships in FreeBSD; patch
available for Linux

* Userspace network stack
can be specialised to task
(e.g., packet forwarding)

Network stack specialisation for performance
llias Marinos, Robert N. M. Watson, Mark Handley, SIGCOMM 2014, 2017.

o)
@)

Throughput (Gbps)

I
o

CPU utilization (%)
[\™)
[a)

)

W
(@]

DO
(]

.
X

\\
* O
\

,
o
’
7
’
*

T
---4d--O--poA—R—R
SK

g,/

, ’
,

‘7
Jk

4

-+
- (O~ nginx + FreeBSD
- v

Sandstorm

nginx + Linux

0]
@)
|

(o))
@)
|

o

8 16 24

o--o-
- k- - k-

iD\
-*_

|
32 64 128 256 512 756 1024

File size (KB)

-\

>(_

-0

- -

Sandstorm

1T | -O- nginx + FreeBSD

nginx + Linux

4

8 16 24

File size (KB)

| |
32 64 128 256 512 756 1024

e 30 years since the network-
stack design developed

* Massive changes in
architecture, micro-
architecture, memory...

e Optimising compilers

e Cache-centered CPUs
Multiprocessing, NUMA
DMA, multiqueue

10 Gigabit/s Ethernet

* Performance lost to
‘senerality’ throughout stack

* Revisit fundamentals through
clean-slate stack

e Orders-of-magnitude
performance gains

L41 Lecture 3 — The Network Stack

The Transmission Control Protocl (TCP)

R * V. Cerf, K. Dalal, and C.
[T TR Sunshine, Transmission

N Control Protocol (version
o T g B 1), INWG General Note

[o g e] #72, December 1374.

e Vo EL * In practice: J. Postel, Ed.,

Bt] Transmission Control

i Protocol: Protocol

JEEEE R A Specification, RFC 793,

I e September, 1981.

TCP principles and properties

Node A

CLOSED

SYN SENT

FIN WAIT-1

FIN WAIT-2

TIME WAIT

CLOSED

v

_
SYN—
«——SYN/ACK——
= "
ACK —

«— DATA/ACK—
=
ACK —

I
«——ACK

— —FIN/ACK —
— ACK—

4_,,HN/AGK”

\ACK\

* Network may delay, (reorder),
drop, corrupt packets

 TCP: Reliable, ordered, stream
SYN RCVD transport protocol over IP

* Three-way handshake:
SYN / SYN-ACK / ACK (mostly!)

e Sequence numbers ACK'd

e Round-Trip Time (RTT)
measured to time out loss

* Data retransmitted on loss

* Flow control via advertised
window size in ACKs

e Congestion control (‘fairness’)
CLOSED detects congestion via loss

Node B

CLOSED

CLOSE WAIT

LAST ACK

L41 Lecture 3 — The Network Stack

TCP congestion control and avoidance

Packet Sequence Number (KB)
60 80 100 120 140 160

40

o |-
«

o

Figure 4: Startup behavior of TCP with Slow-start

et | J

0 2 4 6 8 10
Send Time (sec)

Same conditions as the previous figure (same time of day, same Suns, same network path,
same buffer and window sizes), except the machines were running the 4.37 TCP with slow-
start. No bandwidth is wasted on retransmits but two seconds is spent on the slow-start
so the effective bandwidth of this part of the trace is 16 KBps — two times better than
figure 3. (This is slightly misleading: Unlike the previous figure, the slope of the trace is
20 KBps and the effect of the 2 second offset decreases as the trace lengthens. E.g., if this
trace had run a minute, the effective bandwidth would have been 19 KBps. The effective
bandwidth without slow-start stays at 7 KBps no matter how long the trace.)

e 1986 Internet CC collapse
* 32Kbps - 40bps

* Van Jacobson, SIGCOMM 1988

e Don’t send more data than the
network can handle!

* Conservation of packets via
ACK clocking

* Exponential retransmit timer,
slow start, aggressive receiver
ACK, and dynamic window
sizing on congestion

 ECN (RFC 3168), ABC (RFC
3465), Compound (Tan, et al,
INFOCOM 2006), Cubic (Rhee
and Xu, ACM OSR 2008)

L41 Lecture 3 — The Network Stack

TCP time/sequence graphs

e Extracted from TCP packet
traces (e.g., via tcpdump)

Sequence numbers

3 * Visualize windows,

| Advertised . | congestion response,
| window | |\ buffering, RTT, etc:

. R .
— . | TCP * X: Time

| segments

- 1 SR * Y: Sequence number
: L \§

e * We can extract this data

— | ACKs
| | TN e from the network stack
- flight

s L o directly using Dtrace

 Allows correlation/plotting
with respect to other
variables / events

Evolving BSD/FreeBSD TCP implementation
Year [Version |Featwe

1983
1986
1999
2000
2001
2002
2003
2004
2008
2008
2009
2009
2012

4.2BSD

4.3BSD
FreeBSD 3.1
FreeBSD 4.2
FreeBSD 4.4
FreeBSD 4.5
FreeBSD 5.0-5.1
FreeBSD 5.2-5.3
FreeBSD 6.3
FreeBSD 7.0
FreeBSD 7.1
FreeBSD 8.0
FreeBSD 9.0

BSD sockets, TCP/IP implementation
VJ/Karels congestion control
sendfile(2)

TCP accept filters

TCP ISN randomisation

TCP SYN cache/cookies

IPv6, TCP TIMEWAIT state reduction

TCP host cache, SACK, fine-grained locking
TCP LRO, TSO

T/TCP removed, socket-buffer autosizing
Read-write locking, full TCP offload (TOE)
TCP ECN

Pluggable TCP congestion control, connection groups

* Which changes have protocol-visible effects vs. only code?

L41 Lecture 3 — The Network Stack

Lect. 5 - Send/receive paths in the network stack

Application

System call layer

Socket layer

TCP layer

IP layer

Link layer

Device driver

recv() send()
recv() send()
[| [|
| soreceive() sosend()
| sbappend() sbappend()
[| [|
tcp_reass() tcp_send()
tcp_input() tcp_output()
[| [|
ip_input() ip_output()

ether_input()

ether_output()

L41 Lecture 3 — The Network Stack

Data structures — sockets, control blocks

Socket and Internet Protocol TCP Protocol
Socket Buffers Control Blocks Control Blocks
P> >
socket inpcb tcpcb

inp_ppcb
List/hash entries
IP/port 4-tuple
IP options
Flow/RSS state

Protocol

Description
>

[]

tcptw

L41 Lecture 3 — The Network Stack

% of connections completed

100

80 -

60

40 -

20

Denial of Service (DoS) — state minimisation

Time needed to connect() to remote system

syncache, idle

syncache, SYN flooded
RELENG_4, idle
RELENG_4, SYN flooded

1 1 1 1
0 200 400 600 800

Figure 3: Time needed to connect() to remote system.

1000

* Yahoo!, Amazon, CNN

taken down by SYN floods
in February 2000

D. Borman: TCP SYN cache
— minimise state for new
connections

D. Bernstein: SYN cookies —
eliminate state entirely — at
a cost

J. Lemon: TCP TIMEWAIT
reduction — minimise state
during close

J. Lemon: TCP TIMEWAIT
recycle — release state
early under load

L41 Lecture 3 — The Network Stack

TCP connection lookup tables

Global connection 4-tuple hash table

>
inpcbinfo inpcbhead

rwlock v v v
inpcb list inpcb inpcb inpcb

inpcb hash table v]
UMA zone inpcb inpcb

“next port” fields v
port hash table inpcb

* Global list of connections for monitoring (e.g., netstat)
* Connections are installed in a global hash table for lookup
» Separate (similar) hash table for port-number allocations

* Tables protected by global read-write lock as reads dominate
* New packets are more frequent than new connections

Lect. 5 - Work dispatch: input path

Hardware

Kernel

Userspace

Device

3

Linker layer
+ driver

o
I

"

3

T

TCP + Socket

!

Socket

il
L7

Application

Receive, Interpret and r\]/ al'g ate Validate Look u Reassemtble Kernel copies Data stream
validate strips link checxsum, checksum, strip P segments, out mbufs + to
strip IP TCP header socket deliver to clusters application
checksum layer header header socket
netisr e e >l
dispatch ithread netisr software ithread ' user thread '
Direct sle >l
dispatch ' ithread ' user thread '

Deferred dispatch: ithread - netisr thread - user thread

* Direct dispatch: ithread - user thread
* Pros: reduced latency, better cache locality, drop early on overload
* Cons: reduced parallelism and work placement opportunities

An Evaluation of Network Stack Parallelization

Strategies in Modern Operating Systems
Paul Willmann, Scott Rixner, and Alan L. Cox, USENIX ATC, 2006

* Network bandwidth growth >

CPU frequency growth

* Locking overhead (space,
contention) substantial

Connecti
for(p: cke(-sized '\

segments in message)

Socket Buffer [A]
Prepare T

'CP heager for one packet

TCP Output

e Getting ‘speedup’ is hard!
Evaluate different strategies for

IP Output

TCP processing parallelisation
* Message-based parallelism

e Connection-based parallelism
(threads)

Ethernet
Output

* Connection-based parallelism (locks)

Coalescing locks over connections:
* reduces overhead
* increases parallelism

Driver

L41 Lecture 3 — The Network Stack

FreeBSD connection groups, RSS

inpcbinfo

rwlock

inpcb list

inpcb hash table

UMA zone

“next port” fields

port hash table

inpcbgroup table

global wildcards

] inpcbgroup inpcbgroup
mutex mutex
v v v v
inpcb inpcb inpcb inpcb
v | v
inpcb | inpcb
N J L J

Groups aligned with NIC RSS buckets;
Sets of groups assigned to particular ithreads;
Wildcards readable by group; write requires all

e Connection groups blend MsgP and ConnP-L models
* PCBs assigned to group based on 4-tuple hash
* Lookup requires group lock, not global lock
* Global lock retained for 4—tuple reservation (e.g., setup, teardown)

* Problem: have to look at TCP headers (cache lines) to place work!

* Microsoft: NIC Receive-Side Scaling (RSS)

* Multi-queue NICs deliver packets to queues using hash of 4-tuple
 Align connection groups with RSS buckets / interrupt routing

eiving bulk TCP

8 76 5 43 21

8 7 6 543 21

8 76 5 4321

Performance: dispatch model and locking

Varying dispatch strategy — bandwidth

3 - single

Net bandwidth in Gb/s

e 2010 8-core x86
multicore server

* TCP LRO disabled
(maximise PPS)

e Configurations:

1 queue (no dispatch),
1 thread on 1 core

1 queue (SW dispatch),
8 threads on 8 cores

8 queues (HW dispatch),
8 threads on 8 cores

L41 Lecture 3 — The Network Stack

Architectural = micro-architectural + I/O optimisation

* Hardware, software, protocol co-design causes change to
optimisation approach over time:

* Counting instructions —> counting cache misses
* Reducing lock contention — cache-line contention
e Adding locking — identifying new parallelism

 Work ordering, classification, and distribution
* Vertically integrated distribution and affinity

* NIC offload of further protocol layers, crypto
« DMA/cache interactions

* Convergence of networking and storage technologies?

Labs 4 + 5: TCP

* From abstract to concrete understanding of TCP
* Use tools such as tcpdump and DUMMYNET
* Explore effects of latency on TCP performance

* Lab 4 — TCP state machine and latency
* Measure the TCP state machine in practice
 Start looking at TCP latency vs. bandwidth (DUMMYNET)
* At what transfer sizes are different latencies masked?

e Lab 5 - TCP congestion control
* Draw time-sequence-number diagrams
* Explore OS buffering strategies
* Explore slow-start vs. steady state as latency changes
* Explore OS and microarchitectural performance interactions

L41 |lecture wrap-up

* Goal: Deeper understanding of OS design and
implementation
* Evolving architectural and microarchitectural foundations
Evolving OS design principles
* Evolving tradeoffs in OS design
* Case study: The process model
* Case study: Network-stack abstractions
* Quick explorations of past and current research

* Goal: Gain practical experience analysing OS
behaviour

e Goal: Develop scientific analysis and writing skills
* Feel free to get in touch to learn more!

