
L41: Lab 2 - Kernel Implications of IPC

Dr Graeme Jenkinson

Lent Term 2019

The goals of this lab are to:

• Continue to gain experience tracing user-kernel interactions via system calls and traps.

• Explore the performance of varying IPC models, buffer sizes, and process models.

• Gather data to support writing your first assessed lab report.

You will do this by using DTrace to analyse the behaviour of a potted, kernel-intensive IPC benchmark.

Background: POSIX IPC objects
POSIX defines several types of Inter-Process Communication (IPC) objects, including pipes (created using the
pipe() system call) and sockets (created using the socket() and socketpair() system calls).

Pipes are used most frequently between pairs of processes in a UNIX process pipeline: a chain of processes
started by a single command line, whose output and input file descriptors are linked. Although pipes can
be set up between unrelated processes, the primary means of acquiring a pipe is through inheritance across
fork(), meaning that they are used between closely related processes (e.g., with a common parent pro-
cess).

Sockets are used when two processes are created in independent contexts and must later rendezvous – e.g.,
via the filesystem, but also via TCP/IP. In typical use, each endpoint process creates a socket via the
socket() system call, which are then interconnected through use of bind(), listen(), connect(),
and accept(). However, there is also a socketpair() system call that returns a pair of interconnected
endpoints in the same style as pipe() – convenient for us as we wish to compare the two side-by-side.

Both pipes and sockets can be used to transmit ordered byte streams: a sequence of bytes sent via one file
descriptor that will be received reliably on the other without loss or reordering. As file I/O, the read() and
write() system calls can be used to read and write data on file descriptors for pipes and sockets. It is useful
to know that these system calls are permitted to return partial reads and partial writes: i.e., a buffer of some size
(e.g., 1k) might be passed as an argument, but only a subset of the requested bytes may be received or sent, with
the actual size returned via the system call’s return value. This may happen if the in-kernel buffers for the IPC
object are too small for the full amount, or if non-blocking I/O is enabled. When analysing traces of IPC behaviour,
it is important to consider both the size of the buffer passed and the number of bytes returned in evaluating the
behaviour of the system call.

You may wish to read the FreeBSD pipe(2) and socketpair(2)manual pages to learn more about these
APIs before proceeding with the lab.

The benchmark
As with our earlier I/O benchmark, the IPC benchmark is straightforward: it sets up a pair of IPC endpoints
referencing a shared pipe or socket, and then performs a series of write() and read() system calls on the file
descriptors to send (and then receive) a total number of bytes of data. Data will be sent using a smaller userspace
buffer size – although as hinted above, there is no guarantee that a full user buffer will be sent or received in

1

any individual call. Also as with the I/O benchmark, there are several modes of operation: sending and receiving
within a single thread, a pair of threads in the same process, or between two threads in two different processes.

The benchmark will set up any necessary IPC objects, threads, and processes, sample the start time using the
clock gettime() system call, perform the IPC loop (perhaps split over two threads), and then sample the
finish time using the clock gettime() system call. Optionally, both the average bandwidth across the IPC
object, and also more verbose information about the benchmark configuration, may be displayed. Both statically
and dynamically linked versions of the binary are provided: ipc-static and ipc-dynamic.

Compiling the benchmark
The laboratory IPC benchmark has been preinstalled onto the BeagleBone Black (BBB) SD card image. However,
you will need to build it before you can begin work. Once you have configured the BBB so that you can log in
(see L41: Lab Setup), you can build the benchmark as follows:

cd /data
make -C ipc

Running the benchmark
Once built, you can run the benchmark binaries as follows, with command-line arguments specifying various
benchmark parameters:

ipc/ipc-static

or:

ipc/ipc-dynamic

If you run the benchmark without arguments, a small usage statement will be printed, which will also identify
the default IPC object type, IPC buffer, and total IPC sizes configured for the benchmark. As in the prior lab,
you will wish to be careful to hold most variables constant in order to isolate the effects of specific variables. For
example, you might wish the vary the IPC object type while holding the total IPC size constant.

Required operation argument
Specify the mode in which the benchmark should operate:

1thread Run the benchmark entirely within one thread; note that, unlike other benchmark configurations, this
mode interleaves the IPC calls and must place the file descriptors into non-blocking mode or risk deadlock.
This may have observable effects on the behaviour of the system calls with respect to partial reads or writes.

2thread Run the benchmark between two threads within one process: one as a ‘sender’ and the other as a ‘re-
ceiver’, with the sender capturing the first timestamp, and the receiver capturing the second. System calls
are blocking, meaning that if the in-kernel buffer fills during a write(), then the sender thread will sleep;
if the in-kernel buffer empties during a read(), then the receiver thread will sleep.

2proc As with the 2thread configuration, run the benchmark in two threads – however, those threads will be
in two different processes. The benchmark creates a second process using fork() that will run the sender.
System calls in this variation are likewise blocking.

Optional I/O flags
-b buffersize Specify an alternative userspace IPC buffer size in bytes – the amount of memory allocated to hold

to-be-sent or received IPC data. The same buffer size will be used for both sending and receiving. The total
IPC size must be a multiple of buffer size.

-i ipctype Specify the IPC object to use in the benchmark: pipe, local, or tcp (default pipe).

2

-t totalsize Specify an alternative total IPC size in bytes. The total IPC size must be a multiple of userspace IPC
buffer size.

-B Run in bare mode: disable normal quiescing activities such as using sync() to cause the filesystem to
synchronise before the IPC loop runs, and using sleep() to await terminal-I/O quietude. This will be
the more appropriate mode in which to perform whole-program analysis but may lead to greater variance if
simply analysing the IPC loop.

-s When operating on a socket, explicitly set the in-kernel socket-buffer size to match the userspace IPC buffer
size rather than using the kernel default. Note that per-process resource limits will prevent use of very large
buffer sizes.

Terminal output flags
The following arguments control terminal output from the benchmark; remember that output can substantially
change the performance of the system under test, and you should ensure that output is either entirely suppressed
during tracing and benchmarking, or that tracing and benchmarking only occurs during a period of program
execution unaffected by terminal I/O:

-q Quiet mode suppress all terminal output from the benchmark, which is preferred when performing whole-
program benchmarking.

-v Verbose mode causes the benchmark to print additional information, such as the time measurement, buffer size,
and total IPC size.

Example benchmark commands
This command performs a simple IPC benchmark using a pipe and default userspace IPC buffer and total IPC
sizes within a single thread of a single process:

ipc/ipc-static -i pipe 1thread

This command performs the same pipe benchmark, but between two threads of the same process:

ipc/ipc-static -i pipe 2thread

And this command does so between two processes:

ipc/ipc-static -i pipe 2proc

This command performs a socket-pair benchmark, and requests non-default socket-buffer sizes synchronised to a
userspace IPC buffer size of 1k:

ipc/ipc-static -i local -s -b 1024 2thread

As with the I/O benchmark, additional information can be requested using verbose mode:

ipc/ipc-static -v -i pipe 1thread

And, likewise, all output can be suppressed, and bare mode can be used, for whole-program analysis:

ipc/ipc-static -q -B -i pipe 1thread

Note on kernel configuration
By default, the kernel limits the maximum per-socket socket-buffer size that can be configured, in order to avoid
resource starvation. You will need to tune the kernel’s default limits using the following command, run as root,
prior to running benchmarks. Note that this should be set before any benchmarks are run, whether or not they are
explicitly configuring the socket-buffer size, as the limit will also affect socket-buffer auto-sizing.

sysctl kern.ipc.maxsockbuf=33554432

3

Notes on using DTrace
On the whole, this lab will be concerned with just measuring the IPC loop, rather than whole-program behaviour.
As in the last lab, it is useful to know that the system call clock gettime is both run immediately before, and
immediately after, the IPC loop. In this benchmark, these events may occur in different threads or processes, as
the sender performs the initial timestamp before transmitting the first byte over IPC, and the receiver performs the
final timestamp after receiving the last byte over IPC. You may wish to bracket tracing between a return probe for
the former, and an entry probe for the latter; see the notes from the last lab for an example.

As with the last lab, you will want to trace the key system calls of the benchmark: read() and write(). For
example, it may be sensible to inspect quantize() results for both the execution time distributions of the system
calls, and the amount of data returned by each (via arg0 in the system-call return probe). You will also want to
investigate scheduling events using the sched provider. This provider instruments a variety of scheduling-related
behaviours, but it may be of particular use to instrument its on-cpu and off-cpu events, which reflect threads
starting and stopping execution on a CPU. You can also instrument sleep and wakeup probes to trace where
threads go to sleep waiting for new data in an empty kernel buffer (or for space to place new data in a full buffer).
When tracing scheduling, it is useful to inspect both the process ID (pid) and thread ID (tid) to understand
where events are taking place.

By its very nature, the probe effect is hard to investigate, as the probe effect does, of course, affect investigation
of the effect itself! However, one simple way to approach the problem is to analyse the results of performance
benchmarking with and without DTrace scripts running. When exploring the probe effect, it is important to
consider not just the impact on bandwidth average/variance, but also on systemic behaviour: for example, when
performing more detailed tracing, causing the runtime of the benchmark to increase, does the number of context
switches increase, or the distribution of read() return values? In general, our interest will be in the overhead of
probes rather than the overhead of terminal I/O from the DTrace process – you may wish to suppress that output
during the benchmark run so that you can focus on probe overhead.

Notes on benchmark
As with the prior lab, it is important to run benchmarks more than once to collect a distribution of values, allowing
variance to be analysed. You may wish to discard the first result in a set of benchmark runs as the system will not
yet have entered its steady state. Do be sure that terminal I/O from the benchmark is not included in tracing or
time measurements (unless that is the intent).

Experimental questions (part 1/2)
You will receive a separate handout during the next lab describing Lab Report 2; however, this description will
allow you to begin to prepare for the assignment, which will also depend on the outcome of the next lab. Your
lab report will compare several configurations of the IPC benchmark, exploring (and explaining) performance
differences between them. Do ensure that your experimental setup suitably quiesces other activity on the system,
and also use a suitable number of benchmark runs; you may wish to consult the FreeBSD Benchmarking Advice
wiki page linked to from the module’s reading list for other thoughts on configuring the benchmark setup. The
following questions are with respect to a fixed total IPC size with a statically linked version of the benchmark, and
refer only to IPC-loop, not whole-program, analysis. Using 2thread and 2proc modes, explore how varying
IPC model (pipes, sockets, and sockets with -s) and IPC buffer size affect performance:

• How does increasing IPC buffer size uniformly change performance across IPC models – and why?

• Is using multiple threads faster or slower than using multiple processes?

Graphs and tables should be used to illustrate your measurement results. Ensure that, for each question, you
present not only results, but also a causal explanation of those results – i.e., why the behaviour in question occurs,
not just that it does. For the purposes of graphs in this assignment, use achieved bandwidth, rather than total
execution time, for the Y axis, in order to allow you to more directly visualise the effects of configuration changes
on efficiency.

4

