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Interactive Formal Verification consists of twelve lectures and four prac-
tical sessions. The handouts for the first two practical sessions will not be
assessed. You may find that these handouts contain more work than you
can complete in an hour, but you are not required to complete them: they
are merely intended to be instructive. Many more exercises can be found
at http://isabelle.in.tum.de/exercises/. Many of these on-line examples are
easy: the assessed exercises are considerably harder. You are strongly en-
couraged to attempt a variety of exercises, and perhaps make up your own.

The handouts for the last two practical sessions determine your final
mark (50% each). For each assessed exercise, please complete the indicated
tasks and write a brief document explaining your work. You may earn addi-
tional credit by preparing this document using Isabelle’s theory presentation
facility1 Alternatively, write the document using your favourite word pro-
cessing package. Please ensure that your specifications are correct (because
proofs based on incorrect specifications could be worthless) and that your
Isabelle theory actually runs.

Each assessed exercise is worth 100 marks.

• 50 marks are for completing the tasks. Proofs should be competently
done and tidily presented. Be sure to delete obsolete material from
failed proof attempts. Excessive length (within reason) is not pe-
nalised, but slow or redundant proof steps may be. Sledgehammer
may be used, but multi-line sledgehammer proofs can be unreadable
and should not be presented in their raw form.

• 20 marks are for a clear, basic write-up. It can be just a few pages,
and probably no longer than 6 pages. It should explain your proofs,
preferably displaying these proofs if they are not too long. It could
perhaps outline the strategic decisions that affected the shape of your
proof and include notes about your experience in completing it.

1See section 4.2 of the Isabelle/HOL Tutorial, https://www.cl.cam.ac.uk/research/
hvg/Isabelle/dist/Isabelle2018/doc/tutorial.pdf.
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• The final 30 marks are for exceptional work. To earn some of these
marks, you may need to vary your proof style, maybe expanding some
apply-style proofs into structured proofs. The point is not to make
your proofs longer (brevity is a virtue) but to demonstrate a variety
of Isabelle skills, perhaps even techniques not covered in the course.
An exceptional write-up also gains a few marks in this category, while
untidy proofs will lose marks. Very few students will gain more than
half of these marks, but note that 85% is a very high score.

Isabelle theory files for all four sessions can be downloaded from the course
materials website. These files contain necessary Isabelle declarations that
you can use as a basis for your own work.

You must work on these assignments as an individual; collaboration is
forbidden. Copying material found elsewhere counts as plagiarism. Here are
the deadline dates. Exercises are due at 12 noon.

• 1st exercise: Wednesday, 21 November 2018

• 2nd exercise: Friday, 30 November 2018

For each exercise, submit both the Isabelle theory file and the accompanying
write-up by the deadline, using Moodle.
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1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.

consts replace :: "’a ⇒ ’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.

theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: del1 x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.

consts del1 :: "’a ⇒ ’a list ⇒ ’a list"
delall :: "’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems.

theorem "del1 x (delall x xs) = delall x xs"
theorem "delall x (delall x xs) = delall x xs"
theorem "delall x (del1 x xs) = delall x xs"
theorem "del1 x (del1 y zs) = del1 y (del1 x zs)"
theorem "delall x (del1 y zs) = del1 y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "del1 y (replace x y xs) = del1 x xs"
theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(del1 x xs) = del1 x (rev xs)"
theorem "rev(delall x xs) = delall x (rev xs)"
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2 Power, Sum

2.1 Power

Define a primitive recursive function pow x n that computes xn on natural
numbers.

consts
pow :: "nat => nat => nat"

Prove the well known equation xm·n = (xm)n:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural
numbers: sum[n1, . . . , nk] = n1 + · · ·+ nk.

consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k − 1: Sum f k =
f 0 + · · ·+ f(k − 1).

consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions.
Determine first what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + l) = Sum f k + Sum whatever l"

What is the relationship between powSum_ex.sum and Sum? Prove the fol-
lowing equation, suitably instantiated.

theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j]

on lists in theory List.
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3 Assessed Exercise I: Propositional Modal Logic

Modal logic is a formalism where statements can be possibly or necessarily
true. Its semantics is specified with respect to a set of possible worlds along
with an accessibility relation between worlds. Background material on modal
logic is widely available; see for example my Logic and Proof lecture notes,
pages 28–29.2

Suppose we are given infinitely many propositional letters P0, P1, . . . ,
indexed by the natural numbers. Then the formulas of propositional modal
logic are built up from the atomic formulas Pn using disjunction (A ∨ B),
negation (¬A) and necessitation (�A).

Task 1 Write a datatype declaration of formulas with the four cases above.
Then introduce definitions or abbreviations for conjunction as ¬(¬A∨¬B),
implication as ¬A∨B and the diamond operator ♦A as ¬(�¬A). [5 marks]

Next we define the semantics of propositional modal logic. We identify
the set of possible worlds with the type of natural numbers.

type synonym world = nat

An interpretation maps the propositional letter Pn to the set of worlds in
which Pn is true. The semantics of a formula is a function of an accessibility
relation R, an interpretation I and a world w. The formula �A is true in
world w if and only if, for all v such that (w, v) ∈ R, formula A is true
in world v. Disjunctions and negations are treated using standard Boolean
truth tables.

Task 2 Define the predicate isTrue R I w A corresponding to the descrip-
tion above. [5 marks]

The notion of a valid formula takes a parameter R, the accessibility
relation. A formula is valid (with respect to R) if it is true for every inter-
pretation and world.

definition valid where "valid R A ≡ ∀ I w. isTrue R I w A"

Task 3 Prove the following. The first three should be trivial and count as
sanity checks for your answers so far. [5 marks]

lemma "valid R (Box (A OR Neg A))"
lemma "valid R (Box (((A IMP B) IMP A) IMP A))"
lemma "valid R (Box (A IMP B) IMP (Box A IMP Box B))"

2https://www.cl.cam.ac.uk/teaching/1819/LogicProof/logic-notes.pdf
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lemma "∃ R A. ¬ valid R (Box A IMP A)"
lemma "∃ R. ∀ A. valid R (Box A IMP A)"

Deductive systems for modal logics include the standard axioms and
rules for propositional logic to which is added the distribution axiom

�(A→ B)→ (�A→ �B),

as in the previous task.3 A variety of other axioms are sometimes added,
singly or in combination. Some of these are defined below.

abbreviation axT where "axT A ≡ Box A IMP A"
abbreviation axB where "axB A ≡ A IMP Box(Dia A)"
abbreviation ax4 where "ax4 A ≡ Box A IMP Box(Box A)"
abbreviation ax5 where "ax5 A ≡ Dia A IMP Box(Dia A)"
abbreviation axR where "axR A ≡ Box (Box A) IMP Box A"

Each of these axioms turns out to characterise some property of the ac-
cessibility relation, such as being reflexive, symmetric, transitive, Euclidean
or dense. The latter two properties are defined below:

definition Euclidean
where "Euclidean r ≡ ∀ x y z. (x,y) ∈ r −→ (x,z) ∈ r −→ (y,z) ∈ r"

definition dense
where "dense r ≡ ∀ x y. (x,y) ∈ r −→ (∃ z. (x,z) ∈ r ∧ (z,y) ∈ r)"

Task 4 Prove the following results. (The proofs are similar.) [10 marks]

lemma refl_iff_T: "refl R ←→ (∀ A. valid R (axT A))"
lemma trans_iff_4: "trans R ←→ (∀ A. valid R (ax4 A))"

Task 5 Prove the following two results. [10 marks]

lemma sym_iff_B: "sym R ←→ (∀ A. valid R (axB A))"
lemma Euclidean_iff_5: "Euclidean R ←→ (∀ A. valid R (ax5 A))"

Task 6 Prove the following result. [15 marks]

lemma dense_iff_R: "dense R ←→ (∀ A. valid R (axR A))"

Hint : no proof should require more than 20 lines. When proving prop-
erties of relations, it’s enough to consider atomic formulas and a specific,
simple interpretation.

3There is also a rule to infer �A from A.
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4 Assessed Exercise II: Partitions of a Set

A partition of a set A is a pairwise disjoint family B of nonempty sets whose
union equals A, i.e.

⋃
B = A.

Task 1 Define the predicate partitions A B to hold precisely when B is a
partition of A. [5 marks]

Hint : the built-in constants pairwise and disjnt can be used to express
your definition more succinctly and may facilitate reasoning about it. You
can use the query panel to locate facts about these primitives. Script char-
acters like B can be found in the Symbols panel, Letter tab, if you wish to
use them. It would be wise to test your definition by executing examples
such as those below (provable by eval alone).

lemma "partitions {0,1,2,3} {{0,2},{1},{3::int}}"
lemma "¬ partitions {0,1,2,3} {{0,2,3},{1},{3::int}}"
lemma "¬ partitions {0,1,2,3} {{0},{1},{3::int}}"
lemma "¬ partitions {0,1,2,3} {{0,2},{},{1,3::int}}"

Task 2 Prove the following results. [5 marks]

lemma partitions_empty1 [simp]: "partitions {} B ←→ B = {}"
lemma partitions_empty2 [simp]: "partitions A {} ←→ A = {}"
lemma partitions_insert:

assumes "partitions A B" "a /∈ A"
shows "partitions (insert a A) (insert {a} B)"

lemma partitions_insert2:
assumes "partitions A B" "B ∈ B" "a /∈ A"
shows "partitions (insert a A) (insert (insert a B) (B - {B}))"

As we see from the results above, there are two ways to obtain a partition
of the set insert a A (where a /∈ A) from a partition B of A: we can insert
the singleton set {a}, or else we can insert a into some member B of the
partition. Now we work towards proving that these are the only two ways
by reversing those constructions.

Task 3 Prove the following: [20 marks]

lemma Union_diff_sing:
assumes "A ∈ A" "pairwise disjnt A"
shows "

⋃
(A - {A}) = Union A - A"

lemma partitions_diff_sing:
assumes "partitions (insert a A) B" "{a} ∈ B" "a /∈ A"
shows "partitions A (B - {{a}})"
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lemma partitions_diff_insert:
assumes "partitions (insert a A) B" "insert a C ∈ B"

"C 6= {}" "a /∈ C" "a /∈ A"
shows "partitions A (insert C (B - {insert a C}))"

Task 4 Finally, prove this result, giving necessary and sufficient conditions
for B to a partition of insert a A. [20 marks]

lemma partitions_insert_iff:
assumes "a /∈ A"
shows "partitions (insert a A) B
←→ (∃ C. partitions A C ∧ (B = insert {a} C
∨ (∃ C∈C. B = insert (insert a C) (C-{C}))))"
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