Interactive Formal Verification

Lawrence C Paulson
Computer Laboratory
University of Cambridge

This lecture course introduces interactive formal proof using Isabelle.The lecture notes
consist of copies of the slides, some of which have brief remarks attached. Isabelle
documentation can be found on the Internet at the URL http://www.cl.cam.ac.uk/research/
hvg/Isabelle/documentation.html. Documentation is also available from the sidebar when
running Isabelle. The first manual shown (Programming and Proving in Isabelle/HOL) is the most
useful, but the much older Tutorial on Isabelle/HOL (available in the sidebar under Old
Manuals) is more comprehensive. Please note that the style of proof it presents is now quite
outdated.

The other tutorials listed on the documentation page (or sidebar) are specialised and mainly
for advanced users.

Interactive Formal Verification
|: Introduction

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Motivation

e Complex systems almost inevitably contain bugs.

® Debugging suffers from diminishing returns. Many
critical bugs are never fixed!

® Critical systems (avionics, ...) are required to meet
a standard of 10-? failures per hour. Testing to such
a standard is infeasible.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra

What is Interactive Proof?

® Prove theorems in a o Create hierarchies of
logical formalism definitions and proofs
e with precise e specifications of
definitions of concepts components and
properties
¢ aformal deductive
system * proofs that designs
meet their

¢ and automatic tools requirements

Interactive Theorem Provers

® Based on higher-order logic
¢ Isabelle, HOL (many versions), PVS
® Based on constructive type theory
¢ Coq,Twelf,Agda, ...
® Based on first-order logic with recursion

e ACL2

Here are some useful web links:

Isabelle: http://www.cl.cam.ac.uk/research/hvg/Isabelle/
HOL4: http://hol.sourceforge.net/

HOL Light: http://www.cl.cam.ac.uk/~jrh13/hol-1light/
PVS: http://pvs.csl.sri.com/

Coq: http://coq.inria.fr/

ACL2: http://www.cs.utexas.edu/users/moore/acl2/

The LCF Architecture

® A small kernel implements the logic and can
generate theorems.

® All specification methods and automatic proof
procedures expand to full proofs.

® Unsoundness is less likely with this architecture

® . but the implementation is more complicated, and
performance can suffer.

® Used in Isabelle, HOL, Coq but not PVS or ACL2.

Theorem Provers: Key Features

® |ogical formalism (higher-order, type theory etc.)
® Control issues:

¢ User interface / Proof language

¢ Automation
® Libraries of formalised mathematics

® Tools: typesetting, library search and more!

Isabelle

® |sabelle is a generic interactive theorem prover,
developed by Lawrence Paulson (Cambridge) and
Tobias Nipkow (Munich). First released in 1986.

Integrated tool support for

¢ Automated provers

¢ Counter-example finding

¢ Code generation from logical terms

¢ LaTeX document generation

Higher-Order Logic

® First-order logic extended with functions and sets

Polymorphic types, including a type of truth values

® No distinction between terms and formulas

® ML-style functional programming

“HOL = functional programming + logic”

Basic Syntax of Formulas

formulas A, B, ... can be written in ASCII as

(A) t=u ~A
A&B A|B A-->B
A<->B Ix.A ?x. A

(Among many others)

Isabelle also supports symbols such as
<2 FAV VI

See the Tutorial, section 1.3: “Types, terms and formulae”. The ASCII notation for logical symbols can be used to input them to
Isabelle, which will offer to replace them by special symbols.

See the Tutorial, section 1.3: “Types, terms and formulae”
Some Syntactic Conventions

In vx. A A B, the quantifier spans the entire formula
Parentheses are required in A A (Vx y.B)

Binary logical connectives associate to the right:
A— B = Cisthesameas A— (B = ()

“AAB=CvDisthesameas (mA)A(B=C) vD

See the Tutorial, section 1.3: “Types, terms and formulae”
Basic Syntax of Terms

® The typed A-calculus:
e constants,c
e variables, x and flexible variables, ?x
® abstractions Ax.t
¢ function applications t u

® Numerous infix operators and binding operators
for arithmetic, set theory, etc.

Types

® Every term has a type; Isabelle infers the types of
terms automatically.We write ¢ :: 7

® Types can be polymorphic, with a system of type
classes (inspired by the Haskell language) that
allows sophisticated overloading.

® A formula is simply a term of type bool.
® There are types of ordered pairs and functions.

® Other important types are those of the natural
numbers (nat) and integers (int).

Product Types for Pairs

e (x1,x2) has type 71 x 72 provided x; :: 7
o (x1, .., Xn-1, Xn) abbreviates (x1, .., (Xn-1,Xn))

* Extensible record types can also be defined.

Function Types

® Infix operators are curried functions
e + :: nat => nat => nat

e & :: bool => bool => bool

* Curried function notation: Ax y. ¢
® Function arguments can be paired

¢ Example:nat*nat => nat

e Paired function notation: A(x,)). ¢

Arithmetic Types

® nat: the natural numbers (nonnegative integers)

¢ inductively defined: @, Suc n

e operators include + - * div mod

¢ relations include < < dvd (divisibility)
e int:the integers,with + - * div mod ..
e rat,real: + - * / sin cos 1n..

® arithmetic constants and laws for these types

Only integer constants are available. Traditional notation for floating point numbers would be inappropriate, but rational numbers
can be expressed.

HOL as a Functional Language

recursive data type of lists

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
app Nil ys = ys"
| "app (Cons x xs) ys = Cons x (app xs ys)"

fun re¥ where
wev Nil = Nil"
| "rey (Sons x xs) = app (rev xs) (Cons x Nil)"

recursive functions

(types can be inferred)

Recursive data types can be defined as in ML, although with somewhat less generality. Recursive functions can also be declared,
provided Isabelle can establish their termination; all functions in higher-order logic are total. Naturally terminating recursive
definitions pose no difficulties for Isabelle. In complicated situations, it is possible to give a hint.

Proof by Induction

declaring a lemma

use it to simplify other formulas
lemma [simp]: "app xs Nil = xs"

apply (induct xs)
apply auto
done

two steps: induction followed
by automation

end of proof

Example of a Structured Proof

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
® base case and inductive show "app Nil Nil = Nil"
by aut:
step can be proved 0
explicitly case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
® Invaluable for proofs by auto
that need intricate qed

manipulation of facts

Interactive Formal Verification
2:Isabelle Theories

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Formal Theories

® Collections of specifications: types, constants,
functions, sets and relations.

® even axioms occasionally, but it is safer to define
explicit models satisfying desired properties.

Axiom systems are frequently inconsistent!

® Theories can specify mathematics, formal models
or abstract implementations.

name of the

new theory A Tln)’ Th €0 I")’

‘theory BT imports Main begin

datatype 'a bt = the theory it builds upon
Lf

| Br 'a "'abt" "'abt"
PRI dcclarations of types,
fun reflect :: "'a bt => 'a bt" where constants, etc
"reflect Lf = Lf"
| "reflect (Br a tl1 t2) = Br a (reflect t2) (reflect t1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"

apply (induct t)
apply auto 3
doEZ Y

lend

See the Tutorial, section 1.2 (Theories) and 2.1 (An Introductory Theory).

Notes on Theory Structure

® A theory can import any existing theories.

® Types, constants and functions must be declared
before use.

® The various declarations and proofs may
otherwise appear in any order.

® Many declarations can be confined to local
scopes, which can be nested.

® A finished theory can be imported by others.

Some Fancy Type Declarations
typedecl locg_--"an unspecified type of locations"

type_synonym val = nat --"values"
type_synonym state

"loc => val"
type_synonym aexp "state => val" end-of-line comments
type_synonym bexp = "state => bool" --"functions on states"

datatype concrete syntax for commands
com = SKIP
| Assign loc aexp " == 60)
| semi com com ("_; 60, 601 1o0)
Cond bexp com com ("IF _ THEN _ ELSE _" 60)
While bexp com ("WHILE DO _" 60)

recursive type of commands

Notes on Type Declarations

® Type synonyms merely introduce abbreviations.

® Recursive data types are less general than in
functional programming languages:

* No recursion into the domain of a function.
* Mutually recursive definitions can be tricky.

® Recursive types are equipped with proof
methods for induction and case analysis.

See the tutorial, section 2.5.

Basic Constant Definitions

e0o < Detshy <
ety (-/Drapbos/ACS/2 - abelle Theories
- |theory Def imports Main begin e
- |definition square :: "nat => nat® where H
“square n = n*n" 3
1]1E
o|definition prime :: "nat => bool" where .
“prime(p::nat) = (lL<pA (mdvdp — m=1Vms=p))" £
definition prime :: "nat => bool" where 2
“prime p = (1 < p A (vm. m dvd p m=1vm=p))" i
o Ao upduie [Updste | [Detsch | [iomx
Extra variables on rhs: “m"
The error(s) above occurred in definition:
“prime p=1<pA (mdvdip — m=1Vvm=p)"
LI e pes———
5. 897289, sl ek T 8- U0/ 1988 1319
T —— -

The second one contains an error, which is corrected in the third example.

See the Tutorial, Section 2.7.2 Constant Definitions.

Notes on Constant Definitions

Basic definitions are not recursive.

Every variable on the right-hand side must also
appear on the left.

In proofs, definitions are not expanded by
default!

* Defining the constant C to denote t yields the
theorem C_def, asserting C=t.

¢ Abbreviations can be declared through a
separate mechanism.

Extended Example: Lists

We illustrate data types and functions using a
reduced Isabelle theory (one without lists).

The standard Isabelle environment has a
comprehensive list library:

* Functions # (cons), @ (append), map, filter,

nth, take, drop, takeWhile, dropWhile,...

* Cases:(case xs of [=[] | x#xs = ...)

® Over 600 theorems!

10

List Induction Principle

To show (xs), it suffices to show the base case and
inductive step:

. Q(Ni)
* P(xs) = p(Cons(x,xs))

The principle of case analysis is similar, expressing
that any list has one of the forms Nil or Cons(x,xs)
(for some x and xs).

Isabelle’s user interface is the work of Makarius Wenzel. The entire proof document is processed as far as possible,
. . errors and all.
Isabelle/jEdit

Isabelle/jEdit allows inspection of proof states and the declarations of identifiers, symbols and even Isabelle keywords.

800 5 Demolist.thy_ — "]
g ;1;;:;”;e:;L;/st‘il;l;;::‘ugatatype FunDef (*not Main, because lists are buil I f
oot g All documentation is accessible from the sidebar.
datatype 'a list = Nil | Cons 'a "'a list" g
B Launch using the command “isabelle jedit FILENAME”
| “app (Cons x xs) ys = Cons x (app xs ys)" -
~ [lemma [simp]: "app xs Nil = xs'[] °
:;‘:ti ;:’t‘:“" xs) panels for output,
documentation,
e (e SO symbols, navagation...
goal (1 subgoal):
1. app xs Nil = xs
See the tutorial, section 2.3 (An Introductory Proof). For the moment, there is no important difference between
Proof by Induction induct_tac (used in the tutorial) and induct (used above). With both of these proof methods, you name an induction
—)’ variable and it selects the corresponding structural induction rule, based on that variable’s type. It then produces an
@D & 9e XDO R@ T EED B & © e instance of induction sufficient to prove the property in question.
*Fiheory Demabiot inports Stedpshammer (-not Hain, becavss Tists are buili-ind) a
o |begin -
datatype 'a list = Nil | Cons 'a "'a list" g
© |[fun app :: "'a list => 'a list => 'a list" where g
"app Nil ys = ys" :
- |l "app (Cons x xs) ys = Cons x (app xs ys)" g
structural induction z
5 [temma [simp]: "app xs Nil = xs" - -
apply [(induct xs)[f on the list xs §
apply auto 3
9 Auto uf ~| 00x é

base case and
proof (prove)

goal (2 subgoals): inductive step
1. app Nil Nil = Nil
2. AX1 xs. app xs Nil = xs = app (Cons x1 xs) Nil = Cons x1 xs

PO T wewmm————— induction hypothesis

11,20 295/1704) (sabelle,isabelle,UTF-8-Isabelle) 1 o UG

11

By default, Isabelle simplifies applications of recursive functions that match their defining recursion equations. This is

Finishing a Proof quite different to the treatment of non-recursive definitions.

IEdE & 9¢ XDE R@ T BEE B & © |«»

- DemoListhy -/Dropbox/Teach/ACS/ 1 - Itroduction))
idatatype 'a list = Nil | Cons 'a "'a list" L
fun app :: "'a list => 'a list => 'a list" where 9

“app Nil ys = ys* £

| "app (Cons x xs) ys = Cons x (app xs ys)" 2

£

lemma [simp]: "app xs Nil = xs" M

apply (induct xs) g

apply auto]l auto proves both subgoals =
done

H

fus rev_whare We must still issue “done” ¢

A

to register the theorem ety < ox) &

proof (prove)
goal:
No subgoals!

B v Ouput Query Sledgehammer State Symbols

| 12,13 308 /1704) (isabelle,isabelle,UTF-8-Isabelle) - 1 - UG

Another Proof Attempt

eoce & Demolist.thy.
IEdE & 9 ¢ X0OB B@: -

© DemoList.thy (~Dropbox/Teach/ACS/ 1 - Introduction/)

B & 0 |«»

done

fun rev where list reversal function L

"rev Nil = Nil"
| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma rev_rev: "rev (rev xs) = xs"
apply [induct xs)ff

apply auto

v ook v

buwil ssucaul DRPIS uonEwRWN0G 4 T

proof (prove) ve both subgoals?
goal (2 subgoals):

1. rev (rev Nil) = Nil
2. Ax1 xs. rev (rev xs) = xs == rev (rev (Cons x1 xs)) = Cons x1 xs

B v Ouput Query Sledgehammer State Symbols
| 20,20 (453/1780) Input/output complete (sabelle,isabelle, UTF-8-Isabelle) - - UG RIS/ 1172M8 15:23

It isn’t clear how to continue, but it is clear that we should be able to do something with terms of the form rev (app xs

Stuck! ys)-

eoce 4 Demolist.thy
l@dE & ¢ XDE A& " 8EE B & @ [e»
© Demoist.thy (~/Dropbox/Teach/ACS/ 1 - Introduction)
done
fun rev where a
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lenna rev_rev: "rev (rev xs) = xs"
apply (induct xs)
apply autof]

©@| done

auto made progress

 Auoupdate _ Update ¢ but didn’t finish -

buwil suoaulL YVEPIS UomEWAWN0G 4 [

proof (prove)
goal (1 subgoal):
1. Axl xs. rev (rev xs) = xs = rev (app (rev xs) (Cons x1 Nil)) = Cons x1 xs

looks like we need a lemma
relating rev and app!

B v Output Query Sledgehammer State Symbols
| 21,13 466/1780) Input/output complete (isabelle, isabelle,UTF-8-Isabelle) UG I/ 1172M8 15:27
I

12

The subgoal that we cannot prove looks complicated. But when we notice the repeated terms, we see that it is an
Stuck Again! instance of something simple: the associativity of the function app. This fact does not involve the function rev! We see
3 : in this example how crucial it is to prove properties in the most abstract and general form.

o0 e & DemoList.thy
(@®E & 9¢ B0 R TEEE BX & O |¢»
 Demolist.thy (~/Dropbox/ Teach/ACS/ 1 - Inroduction)) B
& |fun rev where a
"rev Nil = Nil" -
| "rev (Cons x xs) = app (rev xs) (Cons x Nil)" =
¢ |lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto -
ol £
Ny < we dreamt up a lemm: 3
ma rev_rev: "rev (rev xs) = xs"
apply (induct xs)
Ganewine (s |JRUEIE NEEds anogher
proof (prove) |
goal (1 subgoal): Iemma'
& 1. AxL xs
{ rev (app xs ys) = app (rev ys) (rev xs) =
app (app (rev ys) r 5J) {Cons X1 Nil) = app (rev ys) (app {FéV_%$) (Cons x1'Nilf)
8 v oupu Quay Siedgenammer [State symbols
23,1 (495/1877) Input/output complete (isabelle,isabelle,UTF -8-Isabelle) UG NI 172MB 15:30
e

This proof of associativity will be successful, and with its help, the other lemmas are easily proved.

The Final Piece of the Jigsaw

eoce & Demolist.thy
BRE S 9 XEE R@ TEHE X & 0 |e»
) DemoList.thy (- Dropbox Teach/ACS/1 - Introduction/) B

© |[fun rev where
“rev Nil = Nil"
L |1 "rev (Cons x xs) = app (rev xs) (Cons x Nil)*

¢ |tenma [simp]: “app (app xs ys) 25 = app xs (app ys z5)"
apply [(linduct xs)ff
apply auto
done

© [temma [simpl: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)

bumwil ssucaul DRPIS uonEwRWNG 4 T

@ Auoupdate Update | | Locate | Search v 100%
proof (prove)
goal (2 subgoals):
1. app (app Nil ys) zs = app Nil (app ys zs)
5 2. XL xs.
app (app xs ys) 25 = app xs (app ys 25) =
app (app (Cons x1 xs) ys) zs = app (Cons x1 xs) (app ys 25)

B v Ouput Query Sledgehammer State Symbols

20,20 (474/1704) (isabelleisabelle UTF-8-Isabelle)

The lemmas must be proved in the correct order. Each is needed to prove the next.

The Finished Proof

— It is actually more usable to give each lemma a name and to supply the relevant names to auto. The two lemmas proved
D@®E & $¢ XD0 RS TREIT % & 0 e above, especially the associativity of append, do not look like they would always be useful in simplification, so normally
e 1 they would be proved without the [simp] attribute.

fun rev where
“rev Nil = Nil"
| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

o [tenma [sinp]: "app (app xs ys) zs = app xs (app ys 25)"
apply [induct xs)ff

apply auto

done

Lenma [sinpl: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

Buwil seuoauL VRPIS UomEWAWNG 4 B

lenma rev_rev: "rev (rev xs) = xs"
apply (induct xs)
apply auto
done

B v Output Query Sledgehammer State Symbols

20,20 (474/1704) (sabelle,isabelle,UTF-8-Isabelle) > UG I3

13

Interactive Formal Verification
3: Elementary Proof

Lawrence C Paulson

Computer Laboratory
University of Cambridge

Elements of Interactive Proof

® Quite a few theorems can
be proved by a
combination of induction
and simplification.

® Induction can be a
straightforward structural
induction rule derived from
a type declaration, but
other induction rules are
quite specialised.

Simplification typically
refers to rewriting
according to the definition
of a recursive function...

but it has many
refinements, including
automatic case splitting,
simple logical reasoning
and arithmetic reasoning.

Goals and Subgoals

We start with a goal: the statement to be proved.

Proof tactics and methods typically replace a single

subgoal by zero or more new subgoals.

[But certain methods, notably auto and

simp_all, operate on all outstanding subgoals.]

When no subgoals remain, the theorem is proved!

See the Tutorial, 2.3 An Introductory Proof. The list of subgoals is always flat. However, Isabelle supports structured
proofs and they are covered later in the course.

14

Structure of a Subgoal

e00 5 Ty
8T thy (-/Dropbox/ACS/2 - sabell Theores)
- |datatype ‘a bt =

18r'a "abt' "tabt

- |fun reflect :: "'a bt => 'a bt" where
“reflect Lf = Lf"
| “reflect (Br a t1t2) = Br a (reflect t2) (reflect t1)"

'~ |lemma reflect reflect ident: "reflect (reflect t) = t"
apply [finduct t)[
apply auto

assumptions (two 1
induction hypotheses)

1. reflect (reflect Lf) = Lf
a tl t2
ect (reflect t1) = t1 —»

o
b Commcr
flect (reflect t2) = t2 =
reflect (reflect (Br a t1t2)) = Bra t1 t2

mmer Symbols

& Auto pdute |_Update | [Detacn | [100%

parameters (arbitrary bl deKRUTEB-Isabelle - UGHIIIES3NG 1641

local variables)
conclusion

At each step, the highlighted term is rewritten to something else. Eventually, the left hand side and right hand side of the desired
equation have become equal. (This equation is the induction step for our lemma, rev (app xs ys) = app (rev ys) (rev xs).)

Proof by Rewriting

The equalities on the slide are fully general with the exception of the third one, which (being an induction hypothesis) holds only for

app (Cons ?x ?xs) ?ysepCons ?x (app ?Xs ?ys) «— | 5
i recursive defs
rev (Cons ?x ?xs) wpapp (rev 2xs) (Cons ?x Nil) - a fixed value of xs. Here we indicate the generality of each variable using ?-notation, as follows:
rev (app Xxs ys) app (rev ys) (rev xs)

induction hyp
N Shfxedests) app (Cons ?x ?xs) ?ys = Cons ?x (app ?xs ?ys)
oo ¢ . (S re ¢ 'e“bwtapp rev (Cons ?x ?xs) = app (rev ?xs) (Cons ?x Nil)
rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs
rev (app xs ?ys) = app (rev ?ys) (rev xs)
- app (app ?xs ?ys) ?zs = app ?xs (app ?ys ?zs)

app (app ?xs ?ys) ?zs=papp ?xs (app ?ys ?zs)

rev (app (Cons a xs) ys)
rev (Cons a (app Xs ys))
app (rev (app xs ys)) (Cons a Nil) =

app (app (rev ys) (rev xs)) (Cons a Nil) = An identifier preceded by ? is a true variable and can be substituted by any term, while the other identifiers are fixed.
app (rev ys) (app (rev xs) (Cons a Nil))

app (rev ys) (rev (Cons a xs)) =
app (rev ys) (app (rev xs) (Cons a Nil))

Rewriting with Equivalences

(x dvd -y) = (x dvd y)
(a*b=0)=(a=0VDb
(A-BSC)=(ASBuU
(a*c < b*c) = ((B<c = a £ b) A (c<@ = b < a))

introduces a case split

0) on the sign of ¢

® |ogical equivalencies are just boolean equations.
® They give a clear, simple proof style.

® They can also be written with the syntax P < Q.

15

Automatic Case Splitting

Simplification will replace
P(if b thenx elsey)
by
(b= PX)) A (7b = P())

By default, this only happens when simplifying the
conclusion. But assumptions can also be split.

Other kinds of case splitting can be enabled.

See the Tutorial, 3.1.9 Automatic Case Splits

Conditional Rewrite Rules

xs # [] = hd (xs @ ys) = hd xs
n<m= (Suc m) - n=Suc (m-n)
[l]az@; bz0o|l]] =b/ (a*b) =1/ a

® First match the left-hand side, then recursively
prove the conditions by simplification.

® If successful, applying the resulting rewrite rule.

Termination Issues

® looping: f(x) = h(g(x)), g(x) = f(x+2)
® looping:P(x) = x=0
e simp will try to use this rule to simplify its own
precondition!
® X+y = y+x is actually okay!

o Permutative rewrite rules are applied but only if
they make the term “lexicographically smaller”.

16

See the Tutorial, 3.1 Simplification. This section describes the options and possibilities thoroughly.

The Methods simp and auto

® simp performs rewriting (along with simple
arithmetic simplification) on the first subgoal

® auto simplifies all subgoals, not just the first.
® auto also applies all obvious logical steps

¢ Splitting conjunctive goals and disjunctive
assumptions

* Performing obvious quantifier removal

Variations on simp and auto

X omitting a certain rule
simp add: app_assoc

simp del: rev_rev (no_asm_simp)

simp (no_asm) not simplifying the

assumptions
simp_all (no_ asm_simp) add: .. del: ..
auto simp\add: ..\simp del: ..

ignoring all assumptions

do simp for all subgoals

auto with options

These identifiers denote lists of theorems that work together well as rewrite rules for performing various simplification

Rules for Arithmetic tasks.

® An identifier can denote a list of lemmas.

® add_ac and mult_ac:associative/commutative
properties of addition and multiplication

® algebra_simps:for multiplying out polynomials
e field_simps and divide_simps:for multiplying
out denominators

Example: auto simp add: field_simps

17

Basics of Proof by Induction

State the desired theorem using “lemma”, with its
name and optionally [simp]

Identify the induction variable

¢ |ts type should be some datatype (incl. nat)

¢ |t should appear as the argument of a recursive
function.

Complicating issues include unusual
recursions and auxiliary variables.

Completing the Proof

Apply “induction” with the chosen variable.

The first subgoal will be the base case, and it
should be trivial using “simp”.

Other subgoals will involve induction hypotheses
and the proof of each may require several steps.

Naturally, the first thing to try is “auto”, but much
more is possible.

Basics of Isabelle/jEdit

Based on the jEdit text editor.

Isabelle automatically processes the entire visible
window, errors and all, using parallel threads.

Identifiers and other elements can be inspected
using hover-click.

Dockable panels give access to the Isabelle output,
theory structure, manuals, symbols, etc.

18

AView of Isabelle/jEdit

more panels

<

<

proof

subsection{* Ackermann's Function *MfaleYel018s1= g 1#-Nu o]

fun ack :: "nat => nat => nat" whel
"ack 0 n = Suc n"

| "ack (Suc m) @ = ack m 1"

| "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)*

[lenma less_ack2 [iffl: "j < ack i j"
apply (induct i j rule: ack.induct)
apply auto

: step 1
output panel
goal (3 subgoals):
1.

An. n < ack 0 n
2. Am. 1<ackm1 =0 <ack (Sucm) 0
- 3. Ann.

0~ rind | Output | Siedgehammer Symbols

s

58
free variable

0%

& Auto pdate | Update | [Detach |

(prove

n < ack (Suc m) n =
Examples

5062)

19

Interactive Formal Verification
4: Advanced Recursion,
Induction and Simplification

Lawrence C Paulson

Computer Laboratory
University of Cambridge

Ina

program—even trivial

Why does Induction Fail?

formal proof—like in a
P ® The statement being proved
is too weak, so the

errors can be fatal. induction hypothesis is too

Everything must be set up weak.

exactly right...
® You have chosen an
inappropriate induction
rule.

e Or maybe you just don’t
know how to make use of
the induction hypotheses.

May as well

give up!

eono & oenotiaiin
O DemoLis hy -/Dropbox/ACS/1 - ntoduction)

A Failing Proof by Induction

length of a list

(tail-recursive)

~ [fun itlen :: "'a list = na
“itlen Nil n = n"

R N S ERIEER cquivalent to the built-
~ [tenna "itlen xs n = size xs + n* in length function?
| apply (induct xs)

apply autd]]
| oops

H

sawonus prrepss

@ Avtoupdate [Updae | | Oeach | [100% v
roof (prove): step 2

bal (1 subgoal):
I Axs. itlen xs n = size xs + n = itlen xs (Suc n) = Suc (size xs + n)

Mismatch between induction
hypothesis and conclusion!

B~ rind | Output | symbors

515 (48/1786) -5 isabello” UGB/ 27v8 13 44

20

The need to generalise the induction formula in order to obtain a more general induction hypothesis Is well known from
. e . mathematics. Logically, note that the induction formula above has only one free variable: xs. The induction formula on
Generallsmg the Induction the previous slide has two free variables: xs and n.

e00
2 Demolistthy (-/Dropbox ACS/ 1 - Introduction))

Insert a universal

- [fun itlen :: a4

“itlen Nil n = n" quantifier

| "itlen (Cons

~ [temna "vn. itlen xs n = size xs + n"
apply (induct xs)

apply auto

done

Induction hypothesis gl

holds for all n

goal (2 subgoals):
1. vn. itlen Nil n = Wil + n
- 2. faxs.
vn. flen xs n = size xs + n —
vn. itlen (Cons a xs) n = size (Cons a xs) + n

9 v rind | Output | symbols
42.20 839/1789) GsabeiesidexickUTE 8- sabeller - UGB 419V 1546

The approach described above is logically similar to the one on the previous slide, but it avoids the use of a universal
guantifier (v) in the theorem statement. Because Isabelle is a logical framework, it has meta-level versions of the
universal quantifier and the implication symbol, and we generally avoid universal quantifiers in theorems. But it is

Generalising: A Better Way

S —— - important to remember that behind the convenience of the method illustrated here is a straightforward use of logic: we
N . - are still generalising induction formula. For more complicated examples, see the Tutorial, 9.2.1 Massaging the
I iRl Dcsignate a variable f Proposition

| "itlen (Cons x xs) n = itlen xs (Suc n) as “arbitrary”

|* [lemma "itlen xs n = size xs + n"
apply [linduct xs arbitrary: m[f

apply auto
done
Induction hypothesis gisemalirzams
proof (prove): step 1 still holds for all n!

goal (2 subgoals):
1. An. itlep Nid-T = size Nil +n
- 2. Aa xs n
(An. itlen xs n = size xs + n) = itlen (Cons a xs) n = size (Cons a xs) + n

O v rind | Output | symbols
3233 @48/1708 Gsabeiesidexick UTF-8-sabeller > UGIEIE 19V 1347

For full documentation, see Defining Recursive Functions in Isabelle/HOL, by Alexander Krauss.

Unusual Recursions

5 Primrec.thy

Two variables in gaR]
the induction! WS

Two variables in
the recursion!
—

bk ot fhefe

I
1 A specialised induction rule!
Tema Less DU Ff]:

Cinduct i j rule: ack.induct)

The subgoals follow
the recursion!

proof (prove): step 1

goal (3 subgoals):

1. An. n<ack @ n

2. An. 1<ackm1=> 0 <ack (Suc m) @

3. Amn. In < ack (Suc m) n; ack (Suc m) n < ack m (ack (Suc m) ml
= Suc n < ack (Suc m) (Suc n)

-u-:%%- *goals’ Top L1 (Isar Utoks Abbrev;
Wrote /Users/lp15/.emacs

21

Recursion: Key Points

® Recursion in one variable, following the structure
of a datatype declaration, is called primitive.

® Recursion in multiple variables, terminating by size
considerations, can be handled using fun.

e fun produces a special induction rule.
* fun can handle nested recursion.

e fun also handles pattern matching, which it
completes (if patterns overlap)

Isabelle provides the command primrec for primitive recursion as well. It is closely based on the internal derivation of recursion,
and can handle function definitions involving certain complicated features (in particular, higher-order primitive recursion) where fun
fails. See the Tutorial, 2.1 An Introductory Theory. More difficult examples of primrec are covered in 3.3 Case Study:

Compiling Expressions.

Specialised Induction Rules

® They follow the function’s recursion exactly.
® For Ackermann, they reduce P x y to

e PO n, forarbitrary n

* P (Sucm)0 assuming P m 1, for arbitrary m

o P (Suc m) (Suc n) assuming P (Suc m) n and
P m (ack (Suc m) n), for arbitrary m and n

e Usually they do what you want.Trial and error is

tempting, but ultimately you will need to think!

The Ackermann example proves several lemmas using the special rule, but several others using ordinary mathematical
induction!

Another Unusual Recursion

© Mergssors recursive calls,

eono
MergeSor hy -/Dropbox/ACS/4 - Advanced Recursion)
[[fun merge :: "'a list = ‘'a list = 'a list"
where
“merge (xitxs) (y#ys) =
(if x <y then x # merge xs (y#ys) else y # merge (x#xs) ys)"

| "merge xs [] = xs*
| merge [1 ys = ys*

lenna set_merge [simp]: "set (merge xs ys) = set xs U set ys"
applyf(linduct xs ys rule: merge.induct)
apply auto

done 2 induction hypotheses,
guarded by conditions!) [

1. Axxsyys.
(x <y = set (merge xs (y # ys)) = set xs U set (y # ys))
(< x <y => set (merge (x # xs) ys) = set (x # xs) U set ys)
set (merge (x # xs) (y # ys)) = set (x # xs) U set (y # ys)
2. Axs. set (merge xs [1) = set xs U set []
3. Av va. set (merge [] (v # va)) = set [] U set (v # va)

B v rind | Output | symbols

1839 671/1040) nout/output compiete

guarded by conditions § .

GsabeiesideickUTF 8- sabelley - UGEERAZMS 1435

Again, see Defining Recursive Functions in Isabelle/HOL. Each induction hypothesis can only be used if the corresponding
condition is provable.

22

Proof Outline

set (merge (x#xs) (y#ys)) = set (x # xs) U set (y # ys)

set (if x <y then x # merge xs (y#ys)
else y # merge (x#xs) ys) =

(x £y = set(x # merée xs (y#ys)) = ...) &
(- x £y —» set(y # merge (xi#xs) ys) = ...)
(x £y = {x} U set(merge xs (y#ys)) = ...) &
(- x £y = {y} U set(merge (x#xs) ys) = ...)
(x £y > {x} Uset xs Uset (y#ys)=...)8&
(- x <y = {y} Uset (x # xs) Usetys=...)

The first rewriting step in the proof unfolds the definition of merge. The second one is a case-split involving if. This
step introduces a conjunction of implications, creating contexts that exactly match the induction hypotheses. But first,
the definition of set (a function that maps a list to the finite set of its elements) must be unfolded. The last step
highlighted above applies the induction hypotheses. The remaining steps, not shown, prove the equality between the
set expressions just produced and the right-hand side of the original subgoal.

The Case Expression

® Similar to that found in the functional language ML.
® Automatically generated for every datatype.

® The simplifier can (upon request!) perform case-
splits analogous to those for “if”.

® Case splits in assumptions (not the conclusion)
never happen unless requested.

Case-Splits for Lists

fun ordered :: "'a list => bool"
where
“"ordered [] = True"
| "ordered (x#l) =
(case 1 of [] => True
| Cons y xs => (x<y & ordered (y#xs)))"

The definition shown on the slide describes the same function as the following one:

fun ordered :: "'a list => bool"
where
"ordered [] = True"
| "ordered [x] = True"
| "ordered (x#y#xs) = (x \<le> y & ordered (y#xs))"

The version adopted in this example works better in the simplifier. Two logically equivalent definitions may behave very differently
with respect to formal proof.

23

Case-Splitting in Action

e00 5 MergeSortthy,

Mergesorthy (- /Dropbox/ACS/ - Avanced Recursion))
- lenna ordered _merge [simp]: "ordered (merge xs| Automatic case
apply (induct xs ys rule: merge.induct)

apply simp_all splitting to the rescue!

apply (auto split: list.split

o Ao updwe [Update | [Deach | [55%
b 1 Axxs yys
(x<y=
ordered (merge xs (y # ys)) =
reredxs A (case ys of (1 = True | ya # xs = y < ya A ordered (ya # xs)))) =
y =
mmerge (x # xs) ys) =
bhse xs of [1 = True | y # xs = x <y A ordered (y # xs)) A ordered ys)) —

¥ (x # x5) ys of [] = True | ya # xs = y < ya A ordered (ya # xs)) =
f [= True | y # xs = x < y A ordered (y # xs)) A
(case ysWf [1 = True | ya # xs = y < ya A ordered (ya # x5))))

8 v rind | Output | symbols

25,16 (666/1040) GsabeliesidexickUTE - sabeller - UGEEED W 1442

There isn’t room to show the full subgoal, but the second part of the conjunction (beginning with = x <y) has a similar form to the
first part, which is visible above.

Note that the last step used was simp_all, rather than auto. The latter would break up the subgoal according to its logical

structure, leaving us with 14 separate subgoals! Simplification, on the other hand, seldom generates multiple subgoals. The one

common situation where this can happen is indeed with case splitting, but in our example, case splitting completely proves the
theorem.

Completing the Proof

eo0o + Mergesorthy.

MergeSor hy - Dropbox/ACS/4 - Advanced Recursion))

'~ [temna ordered merge [simp]: "ordered (merge xs ys) = (ordered xs & ordered ys)"
apply (induct xs ys rule: merge.induct)
apply simp_all
apply (auto split: list.split

f Auto updae [Update | [Deach | [95%
proof (prove): step 3

. But what is this?

g0

Mo subgoals! Risk of looping!
— see below

All solved, i
<I| second.

8 v rind | Output | symbols

3031 69771040, GsabeiesidexickUTE 8- sabelley > UGEEIEDIN 1444

The identifier ordered.simps refers to the two equations that make up the definition of the function ordered. The suffix

(2) selects the second of these. Now “simp del: ordered.simps(2)” tells auto to ignore this equation. Otherwise, the call
will run forever.

Case Splitting for Lists

Simplification will replace
P (case xs of []1 => a| Cons xI => bx]l)
by
(xs =[] Pa) A (vxLxs=x#I]—Pbxl))

® |t creates a case for each datatype constructor.

® Here it causes the simplifier to loop if combined
with the second rewrite rule for ordered.

Specifically, a case split will create an instance where the list has the form a#l, and therefore ordered(a#l) will rewrite to another
instance of case, ad infinitum.

24

Summary

® Many forms of recursion are available.

® You are given a specialised induction rule, which
often leads to simple proofs.

® The “case” operator can often be dealt with using
automatic case splitting...

® but complex simplifications can run forever!

An experimental new tracing panel now exists, invoked via Plugins > Isabelle > Simplifier Trace in conjunction with the declaration

How to Trace the Slmpllﬁer using [[simp_trace_new mode=full]]

@00 - MergeSortthy (modified)

© MergeSot.hy (-/Dropbox/ACS/4 - on)
- [tenma ordered_nerge [s: jered (merge xs ys) = (ordered xs & ordered ys)*

aply (induct xs ys rule: merge. induct)

apply simp_all

using [[sinp_trace]]

- |apply (auto split: list.split

simp del: ordered.sinps(2)) H

This opens its own panel where the trace is displayed along with filtering options. Either way, simplifier tracing requires quite a bit of
patience.

H

done

- lfun meart 22 v0a vicr = va viere

o Auto updsie [Update | Deuach | [o5%

x < a A ordered (a # list) i
(11Applying instance of rewrite rule *72.unknown": trace appears in
ordered (1 = True output panel
[1IReuriting

ordered (1 = True

[11Applying instance of rewrite rule "HOL.simp_thms 21°: t,-acing is
7y A True = 7y

(11Reuriting: very slow

(x < a A ordered (a # list)) A True = x < a A ordered (a # list)
Tracing paused. Stop, or continue with next 100, 1000, 10000 messages?

8 v rind | Output | symbols
311 699/1060 GsabeliesdexicUTE 8- sabeller - UGRE/397W8 1456

25

Interactive Formal Verification
5:Logic in Isabelle

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Isabelle as a Logical Framework

® A formalism to represent other formalisms
® Support for natural deduction
® A common basis for implementations

® Type theories are commonly used, but Isabelle
uses a simple meta-logic whose main primitives
are

e = (implication)

* A (universal quantification)

Isabelle’s Family of Logics

ZF LCF
\ / Modal
FOL HOLCF logics
IFOL LK

Pure Isabelle

26

Natural Deduction Basics

® Proof is done using e Contrast with Hilbert-
mainly inference rules style proof systems,
rather than axioms. where typically the main
inference rule is modus
e For each logical symbol, ponens...
there are rules to
introduce and eliminate it. e and there are many
cryptic axioms, each
e Assumptions can be combining a number of
introduced and discharged. logical symbols.

Natural Deduction in Isabelle

P
PAg P=(Q=PAQ)
PAQ
Iz PAQ=P
PAQ PAQ=Q
Q

P=Q P pog= (P=0
Q

See the Tutorial, Chapter 5: The Rules of the Game. The first of these is an introduction rule, conjl in Isabelle. The
following three are elimination rules: conjunctl, conjunct2, and mp. Isabelle parlance, these three are actually
destruction rules because they lack the general form of an elimination rule in natural deduction.

Meta-implication

® The symbol = (or ==>) expresses the
relationship between premise and conclusion
® ..and between subgoal and goal.

® |t is distinct from —, which is not part of
Isabelle’s underlying logical framework.

® P=(Q=R) is abbreviated as [P;Q] = R

The distinction between meta- and object-connectives is a common source of confusion among students. This
distinction is inherent in the use of a logical framework. There is no reason why an object-logic would have an
implication symbol at all. Isabelle gives a special significance to =, in particular for expressing the structure of

inference rules, as shown on previous slide. This would be impossible if we make no distinction between = and —.

27

A Trivial Proof

@ 0 e»

ot =
eopty (rute conj1)
ot ssumtion reduce the goal
opey (rute mp) using the given rule
soply assunption

lapply assumption
ldone

8 Auto upane | Update
proof (prove)

goal (1 subgoal)

LPipP—a —PAaQ

O v Oupw Query Siedschammer State Symbols

The method “rule” is fundamental. It matches the conclusion of the supplied rule with that of the a subgoal, which is replaced by
new subgoals: the corresponding instances of the rule’s premises. See the Tutorial, 5.7 Interlude: the Basic Methods for Rules.

Normally, it applies to the first subgoal, though a specific goal number can be specified; many other proof methods follow the same
convention.

If automation doesn’t help you, then single step proof construction using the rule method and its variants (drule, erule) may be
the best way forward.

Proof by Assumption

g &0 ¢»

tenna *P
apty (rute conj1)
apply assunption]
|apply (rule mp)
soply assumption
appy assumption
one

8 Ao upane | Update
proof (prove)

goal (1 subgoal)

LPP—o =0

O v Owp Quary Sledschammer State Symbols

The method “assumption” proves (and deletes!) a subgoal if it can unify the subgoal’s conclusion with one of its
premises.

Unknowns in Subgoals

IE W & @ €»

oftema P .
apply (rute conj)

apply assunption
lappty flrute mp)lf
apply assumption
lapply assumption
done

proof (prove)

goal. (2 subgoals):
1P P — O — 3 — 0
A B We need some
instance of mp!
formula placeholder

O v Oup uery Sledsehammer State Symbols
515 anyo0s) o s 1328

Isabelle includes a class of variables whose names begin with the ? character. They are called unknowns or schematic variables.
Logically, they are no different from ordinary free variables, but Isabelle treats them differently: it allows them to be replaced by other
expressions during unification. Isabelle rewrite rules and inference rules contain many such variables, but we normally suppress the
question marks to make them easier to read. For example, the rule conjl is really 7P ==> (?Q ==> 7P & 7Q).

28

Unknowns and Unification

Proving ?P3—Q from the assumption P—Q performs unification, and the variable ?P3 is updated. All occurrences of the variable

are updated. In this way, proving one subgoal can make another subgoal impossible to prove. Sometimes there are multiple choices
and only one will allow the proof to go through.

1P
é (P = Q) = PQ
P—»Q
7l 1Q)
PvQ R R [PV Q P=R; Q=RI = R
R

Such rules take derivations that depend upon particular assumptions (written as [P] and [Q] above) and “discharge” those

assumptions, which means that the conclusion is not regarded as depending on them. The backwards interpretation is more natural:
to prove P—Q, it suffices to assume P and prove Q.

Meta-level implication (=) expresses the discharging of assumptions as well as the relationship between premises and conclusion.

A Proof using Assumptions

& @ o€

a PV P — P
¥ (rute impI)

japply (erule disjE)
apply assumptions

rove)
subgoal)
P— P

Subgoal is an implication.
No assumptions!

O v Oup uery Sledsehammer State Symbols
019205

proof (ps
goal (1
1Ley

Afull list of the predicate calculus rules for higher-order logic is available in Isabelle’s Logics: HOL, an old but still useful reference
manual.

29

After Implies-Introduction

- Bethy o
b ¢ A PO RE "TEHEE FX & 0:|e»

515 - e lgic)

e
epoty ffrote innil
lapply (erule disjE)
apply assumptions
one

Prove P assuming P v P B
proof (prove)
Soat (1 sungl:

LPyvP—rP

Assumption will be used,

then deleted

O v Oupw Query Siedschammer State Symbols
1638 asarsaos) sabllesabaleTF5-tsaeter - UG IS 1332

Disjunction Elimination

b Xp0ae =

575 - e logic)

g &0 ¢»

5 e
appty (rute imp)
anpty erute disi)]} erule is good with
apply assumptions
o elimination rules
B /smatoun [upae] (o o <] o
proof (prove)
goal (2 subgoals):
e 3
2.0 =" An instance of P v 1Q

has been found

O v Owp Quary Sledschammer State Symbols
1520 085205 e

The point of the erule method is to apply inference rules (one at a time) where the first premise of the rule participates in the
matching. There is also drule, which in effect performs forward reasoning, matching the first premise of a rule and adding the
conclusion as a new assumption.

The Final Step

{ apoty (rute smp)

appy (erute disie)
oy assuptions| + applies a method
one or more times

@ o upae | Upsme | tocwe | secn o
proof (prove)

goal:

Mo subgoals!

O v Oup uery Sledsehammer State Symbols
16.39 2715205

30

Isabelle’s logical framework includes the typed lambda calculus, so quantifiers can be declared as constants of appropriate type.

Quantiﬁers Variable-binding syntax can also be specified.

P(t)
m P(x) = 3x.P(x)
P)
3. Plr) O \ [3x.P(X); AX.P(x)=Q] = Q

Q

meta-universal quantifier

states the variable condition

A Tiny Quantifier Proof

2 ¢ XpHR@ CEIE FX: @@ €»
15~ e open B
£ A — el
apply (erute ext) Find, use, delete an
|apply (erule conjE)
japply (rule ext) existential assumption
lapply assunption
ldone
8/se e (vpdns] (o] s <] o

proof (prove)
goal (1 subgoal):
L3P (T X AQx = 3 Px

O v Owp Quary Sledschammer State Symbols
el TF_5-tsable - UG IR S 13:37

2035 @r219205)

conjE is an alternative to the conjunctl and conjunct2. It has the standard elimination format (like disjE for disjunction

Conjunction Elimination elimination) so it can be used with the method erule.

QR@ -EIE FEX:# 0| e»
it

g Nox) = P
appty Terute exe)l
anply (erule conjE) Find, use, delete a
lapply (rule exI) < % s 3
|apply assumption con]unctlve assumpuon

ldone.

@ Autoupaae | Update | w0

proof (prove)

goal (1 subgoal) :
LOAG P (T X) A QX = 36 Px

The x that is
claimed to exist

O v Oup uery Sledsehammer State Symbols

2135 as019200)
S —

31

Now for 3-Introduction

¢ PO RE -OHIE FX# 0:|e»
51 et ot
(Fx) AQx) — K Px

lapply (erule exE)
oty ferute conse)l

vty (rute ext) Apply the rule exI
ety assurption

done

- o

proof (prove)
goal (1 subgoal):
LA [P UE x5 Q] = 36 P x

Two assumptions
instead of one

O v Oupw Query Siedschammer State Symbols

220 51019200) sablesabaleTF-5-saeler
S —

An Unknown for the Witness

¢ PO R® "OHIE IX# 0:|¢»
51 et it

() A Qx) = 3x P "

apply (erule exe)

|apply (erule conjE)

lapply [rute exn)]

lapply assumption

ldone

I
@ Awousine | Upae < lor

proof (prove)
goal (1 subgoal):
LA P E X5 @ x] = P (x4 %)

Proof by assumption will

unify these two terms

O v Owp Quary Sledschammer State Symbols
sbeleTF_5-tsable - UG RS 1337

2337 Gasior0e)
S —

A proof of existence normally requires a witness, namely a specific term satisfying the required property. Isabelle allows
this choice to be deferred. The structure of the term, in this case ?x4 x, holds information about which bound variables

may appear in the witness. Here, x may appear in the witness.

Done!

QR@ -EIE FEX:# 0| e»
it

— 3 P x

avply (erule exk)
|apply (erule conjE)
lapply (rule exI)
lappy assumption]

il
0 Auto upane | Upa: Locae ey - o
proof (prove)
goal:
No subgoals!
O v Oup uery Sledsehammer State Symbols
sbeleTF5-tsable - UG ISR 1337

2027 Gasiona)
S —

32

Final Remarks

There are analogous rules for universal quantifiers.

Higher-order unification respects bound variables,
ensuring that quantifier reasoning is sound.

The examples above illustrate how things work,
but typically most logical reasoning is automatic.

When automation fails, you can try single-step

reasoning using methods such as rule and erule.

33

Interactive Formal Verification
6: Structured Proofs

Lawrence C Paulson
Computer Laboratory
University of Cambridge

A Proof about “Divides”
Note: bdvda < (3k.a=b x k)

e00 Stuctthy (modifed)
1 Stauctthy (/Dropbox/ACS 6 - Structured roots/)

umea ¢ @ |,

~O|lemma "(k dvd (n + k)) = (k dvd (n::nat))"
ooply [fauto sinp add: dvd_def)]]

We unfold the
definition and get...?
oorie (i) (s) (o6
proof (prove): step 1 an assumption
goal (2 subgoals):

1. Akagn + k = k * ka = 3ka * ka .
2. AkayRib. k * ka + k = k A messy proof with

locally bound variables two subgoals...

8~ find | Output | Symbols

5431 1685/3945) sabelie idekick UTF—8-isabelle) ~~ UGERIERENS 2301

auoaus preRrs voneuae

. The old-fashioned tactics mentioned above, have names like rule_tac and are described in the old Tutorial, particularly from
Captu ring the section 5.7 onwards.

Structure in Proofs

® [sabelle provides many tactics that refer to
bound variables and assumptions.

¢ Assumptions are often found by matching.

¢ Bound variables can be referred to by name,
but these names are fragile.

® Structured proofs provide a robust means of
referring to these elements by name.

® Structured proofs are typically verbose but
much more readable than linear apply-proofs.

34

A Structured Proof

eo0o o Snvcuiny
Structthy (-/Dropbox/ACS 6 - Structured Poofs))
“O|tenma "(k dvd (n + K)) = (k dvd (n::nat))"
proof (simp only: dvd_def, safe)
fix m

assume *n + k = k * "
then have "n = k * (n - 1)
by (metis diff add_inverse diff mult distrib2 nat add_commute nat mult 1_right
then show *3n'. n =k *
by blast
next
fix m A
show *3n'. k * m+ k = k
by (metis mult_Suc_right nat_add_commute)

qed

o Auto updae [Update | [etach | (1005

- using this:
kol But how do you
goal (1 subgoal): write them?
lL.a=k* (n-1)

8 v rind | Output | symbols
830 182/3943 Gsabelieidekick T 8- sabelley - UGB 275M8 2505

Structured proofs can be tricky to write at first, and the Tutorial has little to say about them. This course now recommends more

Th El f | modern documentation, reserving the Tutorial as documentation for more old-fashioned but still useful commands. It also contained
e Elements of Isar a great many extended examples.

® A proof context holds a local variables and
assumptions of a subgoal.

* In a context, the variables are free and the
assumptions are simply theorems.

* Closing a context yields a theorem having the
structure of a subgoal.

® The Isar language lets us state and prove
intermediate results, express inductions, etc.

The simplest way to get started is as shown: applying auto with any necessary definitions. The resulting output will then dictate the
Gettin g Started structure of the final proof.

Sty (modifed)

e | This style is actually rather fragile. Potentially, a change to auto could alter its output, causing a proof based on this precise output
to fail. There are two ways of reducing this risk. One is to use a proof method less general than auto to unfold the definition of the

divides relation and to perform basic logical reasoning. The other is to encapsulate the proofs of the two subgoals as local lemmas
that can be passed to auto; this approach is more robust as it does not depend on the exact output.

thy (-[Dropbox/ACS/6 - i

~O|lemma "(k dvd (n + k)) = (k dvd (n::nat))"
proof (simp only: dvd_def, safe) |

onewsunoa ¢ @ s,

indicates the start of a

P —

structured proof
(we avoid auto)

Replacing “auto” by “simp only: dvd_def, safe” produces a more robust proof, since these methods are much simpler and more
O (B (Emh) [stable than auto.

proof (state): step 1
goal (2 subgoals):

1. Aka. n+ k=k*ka = 3ka. n =k * ka
2. Aka. 3kb. k * ka + k = k * kb

8~ find | Output | Symbols
{2154 @ssiaosn bl sidekick UTF—8-isabelley ~~ UGB 35M6 2508

35

The Proof Skeleton

eoo =
Sy [Drapbos ACS - i ot -
5 Lenna " (k dvd (n + k) = (k dvd (n::nat))" °
EESVIIole(eT)] proof (simp only: dvd_def, safe) M
|, fixm < - a name for the bound variable
conclusion IRt H
B show *3n°. n = k * m'* H
sorry H
dummy |5 separates proofs of goals ¢
fix m -3
pow 3m. K+ K=k a :
]
d terminates the proof i
™ Auto update | Update Detach | [100% v
show 3n'. k *m+ k =k *
Successful attempt to solve goal by exported rule:
. kM2 e k=Kt
proof (state): step 9
0 - rin g smbas
{1530 o 4050 ek T e UGG 7310
T—

We have used sorry to omit the proofs. These dummy proofs allow us to construct the outer shell and confirm that it fits together.
We use show to state (and eventually prove for real!) the subgoal’s conclusion. Since we have renamed the bound variable ka to m,
we must rename it in the assumption and conclusions. The context that we create with fix/assume, together with the conclusion
that we state with show, must agree with the original subgoal. Otherwise, Isabelle will generate an error message, “Local statement

will fail to refine any pending goaf’.

Fleshing Out that Skeleton

labels for facts

@00
2 Strctthy (~/Dropbox/ACS/6 - Structured Proofs))
Oftenna *(k dvd (n + k) = (k dvd_(per
- [proof (simp only: dvd def, sa

fix m

assume 1: "
have 2:
sorry

show *3a'. n = K * m'* using 2 inserting a helpful fact

by blast ST
next ...and using it, a real proof

- | fixm
show *3m'. k *m+ k =k *m'"

- | serml)

lqed

[

pep—

@ Ao updte [Updste | [Detsch | [1oox v
show3n'. k*m+k=k*n
Successful attempt to solve goal by exported rule:
Ikt m2ek=k*w
proof (state): step 13

O v Find | Output | symbols
63,10 07474048 GrabeliesdekickTF 8- aabelley - UCHERIERN 2313

Looking at the first subgoal, we see that it would help to transform the assumption to resemble the body of the quantified formula
that is the conclusion. Proving that conclusion should then be trivial, because the existential witness (m-1) is explicit. We use sorry

to obtain this intermediate result, then confirm that the conclusion is provable from it using blast. Because it is a one line proof, we
write it using “by”. It is permissible to insert a string of “apply” commands followed by “done”, but that looks ugly. The beauty of Isar
is that it provides a continuum between fully structured proofs and fully linear apply-style reasoning.

We give labels to the assumption and the intermediate result for easy reference. We can then write “using 1”, for example, to

indicate that the proof refers to the designated fact. However, referring to the previous result is extremely common, and soon we
shall streamline this proof to eliminate the labels. Also, labels do not have to be integers: they can be any Isabelle identifiers.

Completing the Proof

@00 - Sttty (mosifed)
1 Struchy (-/Dropbox/ACS 6 - Srucured Proots)
©O[temna *(k dvd (n + K)) = (k dvd (n::nat))"
proof (simp only: dvd_def, safe)
fix m
assune 1: *n + k = k * n*
have 2: *n = k * (n - 1)* using 1

by (metis diff add inverse diff mult distrib2 nat add_commute nat mult 1 right
show *3n’. n = k * m'" using 2[]
et This line came from
o sledgehammer

show *3m'. k *m+ k=K *m'*

onewsumoa < @ |gy

suons s

sorry
laed sledgehammer does it again!
™ Auto pdate | Update. Detach | [100% ~
proof (prove): step 8 '
(000 Siedoshammer
- using this: T
DSBS (O o brovers: e pass rmor vamie 23 reor.«_sne <] Otsarprons & [y]
Cance | (_toume | [r5%
a v ot IR st e Try this: by (netis com semiring 1 class.normalizing semiring rules(2s)

“spass®: Try this: by (metis com semiring 1 class.normalizing semiring rules(
“rencte vampire’: Try this: by (metis mult Suc_right nat_add comute) (7 ms).
“23": Tined out.

“renote e sine”: Try this: by (metis nult Suc_ right nat add_commute) (10 ms)

{7733 azsoaonn

We have narrowed the gaps, and now sledgehammer can fill them. Replacing the last “sorry” completes the proof.

There is of course no need to follow this sort of top-down development. It is one approach that is particularly simple for beginners.

36

Streamlining the Proof

assume 1: "n + k = k * n" assume "n + k = k * n"
:"n=k* (n-1)" using 1 ——— then have "n = k * (n - 1)"
sorry

‘.n=k*m'" using2 ——— then show "In'. n =k * m'"

using the previous fact without mentioning labels
e then have or hence
e then show or thus

There are numerous other tricks of this sort!

Avoiding the contracted forms “hence” and “thus” may be better for readability, emphasising the role of “then”, which uses the
previous fact.

Another Proof Skeleton

specify m’s type

v . declare a premise separately
abs m = 1*

o p—— (=) is the null proof step

by auto
have *- (2 < abs m)®
mi:’ﬁiw.,s = 1% using © steps towards the result

by autd]
qed B
now the conclusion is trivial

Ao updme [Update | [Detach | (100 v

show {mf = 1
Successful attempt to solve goal by exported rule:
inp =1

proof (state): step 10

B v Fing | Output | Siedgehammer Symbols

130.12 2012/ 4043) GsabeiesidexicUTE 8- sabelley - YGRSV 1406

This is an example of an obvious fact whose proof is not obvious. Clearly m=0, since otherwise m*n=0. If we can also show that Iml
=2 is impossible, then the only remaining possibility is Iml=1.

In this example, auto can do nothing. No proof steps are obvious from the problem’s syntax. So the Isar proof begins with “-”, the

null proof. This step does nothing but insert any “pending facts” from a previous step (here, there aren’t any) into the proof state. It is
quite common to begin with “proof -”.

Starting a Nested Proof

eo0o o Strvershy
Structthy (-/Dropbox/ACS 6 - Structured Proofs)
~O|tenna abs_m_1:
fixes m :: int
assumes mn: "abs (m * n) = 1"
shows “abs m = 1"
proof -
have 0: "m # 0" using mn

by auto
have "~ (2 < abs)"

6| _then show *abs n - 1° using 0 the default proof step
ofacd (depends on the goal)

owach | [0~
proof (state): step 6 error symbols (syntax)
goal (1 subgoal)
12 < ing — False

O v Find | Output | Siedgehammer Symbols

126,10 1568/ 4043) in

Gsabeiesidexick UTF-5-Tsabeller > YGRS 1410

To begin with “proof” (not to be confused with “proof -”) applies a default proof method. In theory, this method should be
appropriate for the problem, but in practice, it is often unhelpful. The default method is determined by elementary syntactic criteria.
For example, the formula “- (2 < abs m)” begins with a negation sign, so the default method applies the corresponding logical
inference: it reduces the problem to proving False under the assumption 2 < abs m.

37

o

A Nested Proof Skeleton

oo

O v Fing | Output | Siedgehammer Symbols
137.17 2053/ 4043)

5 Stctany
Structthy (-/Dropbox/ACS 6 - Strctured Profs/)
~O|tenna abs_m_1:
fixes m 11 int]
assumes mn: "abs (m * n) = 1*
shows “abs m = 1"
proof -
have 0: "m # 0" using mn
by auto
have "~ (2

then show "abs m = 1% using ©

qed

proof (prove): step 0

by auto

11 cuhanall

GsabeiesidexickUTE 8- sabeller - YGRS 1415

Proofs can be nested to any depth. The assumptions and conclusions of each nested proof are independent of one
another. The usual scoping rules apply, and in particular the facts mn and 0 are visible within this inner scope.

This example is typical of a structured proof. From the assumption, 2 < abs m, we deduce a chain of consequences that become
absurd. We connect one step to the next using “hence”, except that we must introduce the conclusion using “thus”.
A Complete Proof

proof

then show
by auto
qed

by auto
qed

i57.

O v Find Oupu Sledgehammer Symbols

15 2331/4043)

then have "2 * abs n

by (simp add: mult_mono)
then have "2 * abs n

(@) 3
by (simp add: abs_nult) a chain of steps leads
then have "2 * abs n < 1 P
by (auto sip add: mn) to contradiction
“False using 0

then show "abs m = 1* using ©

abs m)"
2 < abs "

< abs m * abs n*

< abs

such chains can be
done as calculations

Gabeliesidexick UTF-8-Tsabelle

nput/output compiete

RN 56 1416

e00

Calculational Proofs

5 Structany
O Structthy (-/Dropbox/ACS /6 - Sruetured Proofs)
assume "2 < abs m"

Note that we have beefed up the fact “0” from simply m=0 to include as well n#0, which we need to obtain a contradiction from 2 x
abs n < 1. In fact, “0” here denotes a list of facts.

O v Fing | Output | Siedgehammer Symbols

19924 6102139700

also have *.

also have *

then have "2 * abs n < abs m * abs n*

by (simp add:

by (simp ad

by (simp add:

finally have "2 * abs n < 1
then show “False" using @

proof (prove): step 15

goal (1 subgoal):
1

.. = abs (n*n)"

o0 2 i

: mult_mono 0)
abs_mul)

mn)

Write a chain of
equalities and inequalities &

1008

GabeliesideKick T8 Tsabelle

UGS 15 02

The chain of reasoning in the previous proof holds by transitivity, and in normal mathematical discourse would be
written as a chain of inequalities and inequalities. Isar supports this notation.

38

The Next Step

1 Structthy (-/Dropbox/ACS/6 - Structured Proofs/)

assune "2 < abs m"
then have "2 * abs n < abs m * abs n"
by (simp add: mult_mono 0)
- also have *..
by (simp addi abs_mult)
also have *... =\
by (simp add: mn)
finally have "2 * absW< 1" .
- then show "False” using O

proof (prove): step 12
. refers to the

goal (1 subgoal):

1. imi * inl=im*n}

previous right-hand side

O v Fing | Output | Siedgehammer Symbols

19733 (048739701 GsabeiesidexickUTE 8- sabeller - UGRED2MG 1502

Use “also” to attach a new link to the chain, extending the calculation. Use “finally” to refer to the calculation itself. It is usual for

The Internal Calculation the proof script merely to repeat explicitly what this calculation should be, as shown above. If this is done, the proof is trivial and is
written in Isar as a single dot (.).

e00 o Suverthy
© Structthy (-/Dropbox/ACS/6 - Strctured Proofs/)
assume "2 < abs m"
then have "2 * abs n < abs m * abs n"
by (simp add: mult_mono 0)

We could instead avoid that repetition and reach the contradiction directly as follows:

structure also have "... = abs (m*n)"
ofa by (simp add: abs_mult) n n
calculation AR also have "... =1

by (simp add: mn)
finallyfhave "2 * abs n < 1" .
then show "False” using 0

by (simp add: mn)
i finally show "False" using ©
calculation: 2 * in} < 1 e o e by autO

proof (chain

-~ picking this:
2% 4n <1

The calculation is displayed for Internally, this proof is identical to the previous one. It merely differs in appearance, not bothering to note that 2 x abs n <1 has

been derived.

also and finally

B v Fing | Output | Siedgehammer Symbols

20112 6138/3970) Gabeliesidexick UTF-8-Tsabelle

UGS 15 03

Ending the Calculation

A ————————— e
St lDrgban A8 - Sevctred s
assume "2 < abs m"
then have "2 * abs n < abs m * abs n"
by (simp add: mult_mono)
- also have "... = abs (m*n)"
by (simp add: abs_mult)
also have *... = 1"
by (sinp add: mn) (.) denotes a

finally have "2 * abs n < 1" .| trivial proof
- then show "False" using @

f Awo pdse [Updste | [Deach | [ioox]
have 2 * i} < 1

proof (state): step 19 We have deduced

2xabsn < |

- this:
2% <1

goal (1 subgoal):
1.2 < Imt = False

O v Fing | Output | Siedgehammer Symbols

20135 6161/3970) GsabelesidekickUTF-8-isabello UCHEBIEIEMS 15 04

39

Structure of a Calculation

The first line begins with have or hence

Subsequent lines begin with

c c

also have “... =

Any transitive relation may be used. New ones may
be declared.

The concluding line begins with
finally have or show

It may restate the final result, terminating with (.)

40

Interactive Formal Verification
7:Sets

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Set Notation in Isabelle

® Set notation is crucial to mathematical discourse.
o Basics: Union, intersection, power set
o Functions: image, inverse image, composition

o Relations: transitive closure, image

* Asetin higher-order logic is similar to a boolean-valued map:

in other words, to a logical predicate.

® The elements of a set must all have the same type!

See the Tutorial, section 6.1 Sets.

Set Theory Primitives

® The membership relation:

The subset relation: C (reflexive)

® Set comprehensions

The empty set: { }

The universal set: UNIV

Type o set is like x=bool, but sets are not functions!

41

Basic Set Theory Equivalences

ec{z.P(x)} < P(e)
ec{z e A Px) < ec ANP(e)

e€—A = e¢ A
e€c AUB < ec AVeeB
e€ANB <= ec ANe€B

e €Pow(Ad) <= eCA

Please note that we do not write {xIP(x)}. Isabelle would interpret the | as expressing disjunction and the expression as denoting the
singleton set containing the element xIP(x)!

The logical equivalences shown above are effectively the definitions of the primitives shown, and any occurrences of the left-hand
side formula will be replaced by the right-hand side by Isabelle’s simplifier.

Big Union and Intersection

ee€ (UxB(z)) < Jz.e € B(x)
ee€ (UIEA.B(I)) < JzecAecBx)

eeUA <~ JreAeca

And the analogous forms of intersections...

Once again, the logical equivalences are essentially definitions.

The third form of union is seldom seen, but fundamental.

A Trivial Set Theory Proof

Examplesthy

o

There’s a popup window!

ouput

Special symbols can be inserted using the Symbols panel. ASCII can simply be typed; auto-completions for symbols will be
offerered. More advanced users can type the names of these symbols preceded by a), if you know what the names are (typically
the same as in Latex).

The main point of this example is that many such proofs are trivial, using auto or other automatic proof methods.

Also: look for icons in the left-hand “gutter”, since they indicate errors, warnings or information.

42

Inverse image is also known as pre-image. Using the actual image primitives gives access to the many theorems proved about

Functions them.

e€ (ffA) < JreAe= f(x)
ee(f—A) — fle)e A
f(x:=y) = (A\z. if z = zthenyelse f(z))

® Also inj, surj,bij, inv, etc. (injective,...)

® Don’t re-invent image and inverse image!!

Finite sets can be written explicitly, enumerating their elements in the obvious way.

Finite Set Notation

{a1,..,a.} =1insert a; (... (insert a, {})...)
where

xEinsertaB <= x=avxERB

Defining functions over finite sets is tricky, because your definition has to make sense regardless of the order of the elements and
regardless of whether they are repeated or not, because the sets {x,y}, {y,x} and {x,y,x} are all equal. The notion of cardinality is

Finite Sets built-in
A ﬁnite set is defined I:nductively The right way to define such functions is through special “fold” primitives, which give the desired result provided it's meaningful.
in terms of {} and insert They are analogous to the well-known fold functionals for lists.

finite(AU B) = (finite A A finite B)

finite A = card(Pow A) = 2274

43

Isabelle provides syntax for bounded and unbounded intervals. These are polymorphic: they are defined over all types that admit an

Intervals Sums and Products ordering, and in particular they are applicable to intervals over the natural numbers, integers, rationals or reals.
y

Sums and products of functions over sets can also be written.

IN A

X. X < u}
X. X £ u}
{1<..} == {x. 1<x}
{1..} == {x. 12x}
{1<..<u} == {1<..} n {..<u}

{1..<u} == {1..} n {..<u}

sum f Aand prod £ A
Siel.f and [Tiel. f

This example needs a type constraint because arithmetic concepts such as sum and product are heavily overloaded. A readable

A Harder Proof Involving Sets way to insert a type constraint is using the fixes keyword. However, If you use fixes, then you must also use shows!

B Isabelle’s type classes allow this theorem to be proved in an overloaded form, but for simplicity here we restrict ourselves to type

fixes ¢ :: "real”

shows "finite A = (LieA. ¢ * f i) = ¢ * (Yiea. f i)ff]
apply (induct A rule: finite_induct)

apply auto 5 & 2
apply (auto simp add: algebra_simps) induction on the finite set,A
done 5

proof (prove)
goal (1 subgoal):
1. finite A — (Yich. ¢ * f i) =c * sun f A

B v Oupu Query Siedgehammer Symbols

The base case is trivial, because both sides of the equality clearly equal zero. In the induction step, the induction hypothesis (which

Outcome of the Induction concerns the set F) will be applicable, because

22e setsum f (insert a F) = f a + setsum f F

2 Examples.thy (/Dropbos Teach/ ACS/7 - Sets)) B

[T < :: Note that Isabelle uses a fancy notation for summations, but only if the body of the summation is nontrivial.
T :

apply auto H
lapply (auto simp add: algebra_simps) 7

8 proofsuate B Awoupdate | Undate _searc ~ o

s < :
proof (prove) base case:A is empty
goal (2 subgoals):

1. (Yie{r. ¢ * fi) =c * sum f {}

2. Ax F. [finite F; x ¢ F; (YieF. ¢ * fi) =c * sum f F|
— (Vicinsert x F. ¢ * f i) =c * sun T (insert x F)

8+ oupn_cusy Sicsgehammer_symals
inductive step:A = insert x F

44

Almost There!

ece 5 Sxamplesny
2 Examples thy (/Dropbox Teach ACS/7 - Sets)) B

enma
fixes ¢ i1 “real”
shows “finite A = (YicA. ¢ * f i) = ¢ * (YicA. fi)"
apply (induct A rule: finite_induct)
apply auto]]
apply (auto simp add: algebra_simps)
done

@ Proofstate B Awoupdare | Update Search: v 2

proof (prove)

goal (1 subgoal):

1. Ax F. [finite F; x ¢ F; (YieF. ¢ * £1) = c * sum £ F]
= c*fx4+c*sumfF=c* (fx+sumfF)

ER need a distributive law!

Finished!

ece 5 Sxamplesny
3 Exampls thy (-/Dropbo Teach/ACS/7 - Sets)) B

enma
fixes ¢ 11 “real”
shows "finite A = (XicA. ¢ * f i) = c * (YicA. fi)"
apply (induct A rule: finite_induct)
apply auto
apply (auto add: algebra_simps) |

done

No need for the first“auto”...

@ proofsute B Awoupdate | Undate Search v ¢

proof (prove)
goal:
No subgoals!

B v Oupu Query Siedgehammer Symbols

Recall that algebra_simps is a list of simplification rules for multiplying out algebraic expressions.

Counterexample Finding

® Don’t waste time trying to prove false
statements!

® |[sabelle can find counterexamples quickly...

e quickcheck:random testing of executable
specifications (broadly interpreted)

e nitpick:a general, SAT-based disprover
* try:calls both of those (and sledgehammer)

® Type these commands right in the document.

45

Quickcheck Example

eo0o Examples thy (modifed)
 Examples.thy (-/Dropbox ACS/ 7 - Sets)

Oftenna *- (AU B) = -A U -B"

@ Avto updste |_Update | | Detach | [100%

goal (1 subgoal) :
1. - (AUB) =-AU-B

~ Auto Quickcheck found a counterexample:
A = {a1}
B={}

Evaluated terms:
- (AU B) = List.coset [a:]
- AU - B = List.coset []

O - Fing | Output Siedgenammer Symbols
35,1 wo1/407) Gabeieidexick UTF-5-Tsabeller UGRIERRDS 2250

A minimal call to quickcheck is performed automatically. Auto nitpick and even auto sledgehammer can be configured
in the plugin options.

They work especially well for functional programs, but work in other domains, as we see here.

Proving Theorems about Sets

® |t is not practical to learn all the built-in lemmas.
® |Instead, try an automatic proof method:

e auto

e force

e blast

® FEach uses the built-in library, comprising
hundreds of facts, with powerful heuristics.

Finding Theorems about Sets

ece & Exampiesthy
1Examples.hy (-/Dropbox Teach/ACS 7 - Sets/) B
a
lenma
fixes ¢ 11 "real”

shows "finite A = (YicA. ¢ * f i) = c * (LicA. fi)"
apply (induct A rule: finite_induct)
apply auto
apply (auto simp add: algebra_simps) [|
done

Updwe Searcn: v oom s 2

Step I:click this button!

B v Oupu Query Siedgehammer Symbols

proof (prove)
goal:
No subgoals!

See the Tutorial, section 3.1.11 Finding Theorems. Virtually all theorems loaded within Isabelle can be located using this function.
Unfortunately, it does not locate theorems that are proved in external libraries.

With some versions of Isabelle, the button is labelled “Query”.

46

Finding Theorems about Sets

ece 5 Sxamplesny
2 Examples thy (/Dropbox Teach ACS/7 - Sets))

enma
fixes ¢ i1 “real”
shows “finite A = (YicA. ¢ * f i) = ¢ * (YicA. fi)"
apply (induct A rule: finite_induct)
apply auto

apply (auto simp add: algebra_simps) ||
done
[mecrens [T oot Contexe
find - up Avply Search

Step 2: type some patterns

B~ Oupur Query Siedgehammer Symbols

<o o

The easiest way to refer to infix operators is by entering small patterns, as shown above. More complex patterns are also permitted.
The constraints are treated conjunctively: use additional constraints if you get too many results, and fewer constraints if you get no
results.

What Theorems Were

ece 5 Sxamplesny
3 Exampls thy (-/Dropbo Teach/ACS/7 - Sets))

lenna
fixes ¢ 11 “real”
shows "finite A = (YicA. ¢ * i) =c * (LieA. fi)"

Find Constans_prnt Comext
i -+ - s - oupcates [Apely | search
Find_theorens
PP
Sy
“card"

found 2 theoren(s):
« Finite_Set.card_Un_Int:

v ¢

[finite 7A; finite 78] — card 7A + card 78 = card (7A U B) + card (7A N 78)

- Finite_Set.card_Un_disjoint:

[finite 7A; finite 7B; 7A N 7B = {}] = card (7A U 7B) = card 7A + card 78

B v Oupu Query Siedgehammer Symbols

The Query panel, like all the other panels, can be detached or docked in various places so that it is always available.

47

Interactive Formal Verification
8: Inductive Definitions

Lawrence C Paulson

Computer Laboratory
University of Cambridge

Overview

® An introduction to inductive definitions

e Demonstrating their use with finite sets.

® Demonstrating more automation: the arith

proof method and the sledgehammer proof tool.

Defining a Set Inductively

® The set of even numbers is the least set such
that

e Oiseven.
e If nis even, then nt+2 is even.
® These can be viewed as introduction rules.

® We get an induction principle to express that no
other numbers are even.

Induction is used throughout mathematics, and
to express programming language semantics.

See the Tutorial, Chaper 7. Inductively Defined Sets.

48

Inductive Definitions in Isabelle

5 inashy

5 Indty - Dropbox/Teach/ACS 5 - Inducte) B
theory Ind 2
inports Complex_Main i
begin H

H
subsection{*Inductive definition of the even numbers*} H

inductive_set Ev :: "nat set" where H

Zero: 2
| Add2I: *n € Ev == Suc(Suc n) € E¥f]| g

8 Proof state 8 Autoupdate | Update _ Search: R

Proofs for inductive predicate(s) "Evp" H

Proving monotonicity ...
Proving the introduction rules ...
Proving the elimination rules
Proving the induction rule

Proving the simplification rules ..

O~ ouput Quey SiedgehammerSymbols

The Tutorial discusses precisely the same example, section 7.1.1.

Even Numbers Belong to Ev

5 inashy
ind.thy (-{Dropbox/Teach/ACS/5 - Induciive/) B

text{*ALl numbers of the form G{term “2*"} belong to this set.*}

wnoa 4 o

apply (auto simp add: Zerol dd2I)
done

ordinary induction

yields two subgoals

@ pperfie @ Awoupdste | Update search o o

Buwis swons sws Pl o

proof (prove)

goal (2 subgoals)

1L2%0ckE

2. Ak. 2%k €Bv = 2% Suc k € Ev

B v Oupu Query Siedgehammer Symbols

Proving Set Membership

™
ind thy (-{Dropbox/Teach/ACS/5 - Induciive/) B

‘text{*ALL numbers of the form @{term "2*k"} belong to this set.*}
lemma “2*k € Ev"

apply (induct k)

apply auto]

apply (auto simp add: Zerol Add2I)
/done

wnxa 4 o

s owis orpss o

PYS after simplification, the subgoals
resemble the introduction rules

proof (prove)
goal (2 subgoals)
1Lo0¢

2. Ak 2 % k € Ev = Suc (Suc (2 * k)) € Ev

B v Oupu Query Siedgehammer Symbols

49

Finishing the Proof

ece 5 inashy
5 ind by - Drepbox Teach/ACS/5 - Inductive) B

‘text{*All numbers of the form @{term "2*k"} belong to this set.*}
lenma "2% € Ev*

apply (induct k)

apply (auto intro: Zerol Add2I) ||

done

Isabelle also supports
introduction rules
(backward chaining)

< o

proof (prove)
goal:
No subgoals!

O~ ouput Quey Siedgehammer_Symbols

The final version eliminates the duplicate “auto” step. In addition, here we see the use of “intro” as an alternative to “simp”. There’s
more information on intro/elim/dest in the documentation under classical reasoning.

Rule Induction

® Proving a fact about every element of the set.
® |t expresses that the inductive set is minimal.
® |t is sometimes called “induction on derivations”

® There is a base case for every non-recursive
introduction rule

e _.and an inductive step for the other rules.

Ev Has only Even Numbers

eo0o < ind by
Ind.thy (-/Dropbox/ACS/8 - Inductive))

text{*ALl elements of this set are even.*}
- [tenma "n € Ev = 3k. n = 2K’
apply (induckn rule: Ev.induct)

apply auto
apply arith naming the induction rule

done

rule induction is needed!

 Avtoupdue [Updme | | Dmach | [100x
proof (prove): step 0
goal (1 subgoal) :
lLnebv= 3k n=2*k
© = find | Output| Siedoehammer Symbos
57.25 62173260 Gsabellesidekic UTF-5-abellsy UGBV 15 03

The classic sign that we need rule induction is an occurrence of the inductive set as a premise of the desired result. Of course,
sometimes the theorem can be proved by referring to other facts that have been previously proved using rule induction.

50

An Example of Rule Induction

000 < ind by <
© Indthy (-/Dropbox/ACS/& - Inductve)) :

text{*ALl elements of this set are even.*}
I~ |lemma "n € Ev = 3k. n = 2*k"
apply [(induct n rule: Ev.induct)[]

Pm————

apply auto
apply arith
done
o (i) () (103
f tep 1
BEIRRSY base case: n replaced by 0
goal (2 sybgeaTs)
1. 3k. *k

induction step: n
replaced by Suc (Suc n)

GsabeiesidexickUTE 8- sabeller - UGEEIEE M 1503

One Tricky Goal Left!

000 < ind by <
© Indthy (-/Dropbox/ACS/& - Inductive)) :

text{*All elements of this set are even.*}
I [lenma "n € Ev = 3k. n = 2*k"

apply (induct n rule: Ev.induct)

apply auto]]

lapply arith

done

PRPS—————

Ao updue [Update | [Detach | (1008

proof (prove): step 2

goal (1 subgoal) :
1. Ak. 2 * k € Ev = 3Ka. Suc (Suc (2 * k) =2 * ka

Rl ® 2 problem too

59,11 565/3266) GekickUTF 8- sabelloy UCHEIIRE WS 1503

difficult for auto

The auto method provides some support for arithmetic. However, complicated arithmetic arguments require specialised proof
methods.

The arith Proof Method

e0o ity 2
indty - [raphos/ACS/8 - nduciven :
a
text{*All elements of this set are even.*} -
- |tenma "n € Ev = 3k. n = 2¢k’ H
apply (induct n rule: Ev.induct) 3
apply auto g
lapply aritl :
done H
for hard arithmetic subgoals H
& Auto update | Update Detach | [100% +
proof (prove): step 3
goal:
No subgoals!
B+ o O Siespsamr Syt
oz i oG-t UG 1501

51

Aside: Linear Arithmetic

® A decidable class of e auto can solve simple
formulas arithmetic problems...
¢ For the operators + e arith handles logical

-—< < = i
<=and ... operators & quantifiers

* multiplication and ® Decision procedures are
d'i"j'z"" by constants: necessary for proving
x ”

arithmetic facts with
reasonable effort.
e With variations, this

class is decidable for the

main arithmetic types.

Defining Finiteness

e00 S indahy
0 ind thy (-/Dropbox/ACS/5 - Inductive))
subsection{* Proofs about finite sets *}

text{*The set of finite sets*}

inductive Finset :: "'a set = bool" where
emptyI: "Finset {}"
| insertl: "Finset A —» Finset (insert a A)"

H
£

declare Finset.intros [[introl]

make the rules available
to auto,blast s e

B v Fing | Output | Siedgehammer Symbols

6130 67773266 GsabeliesidexickUTE 8- sabeller - UGREE/322M8 1524

The empty set is finite. Adding one element to a finite set yields another finite set.

The Union of Two Finite Sets

e00 S indahy
©ind thy (-/Dropbox/ACS/8 - Inductive))

 [temma "[Finset A; Finset B] — Finset (A U B)"
apply [(induction A rule: Finset.induct)[]

lapply auto
done perform induction on A

@ Avtoupde (Updae | [Detach | [100%
proof (prove): step 1

goal (2 subgoals):
1. Finset B — Finset ({} U B)
~ 2. M\ a. [Finset A; Finset B — Finset (A U B); Finset B]
= Finset (insert a A U B)

O v Fing | Output | Siedgehammer Symbols

67.40 96713266 GsabelesidekickUTF-8-isabello UCIEIB22M 1525

The goals are easily proved by the properties of sets and the introduction rules.

52

The proof is far more difficult than the preceding one, illustrating advanced techniques, in particular the sledgehammer tool.

A Subset of a Finite Set

@00
© 1ndthy (-/Dropbox/ACS/& - Inductve))

lenna “[Finset A; B C A] = Finset B"
apply [(induction A arbitrary: B rule: Finset.induct)[]
apply auto

to prove that every

subset of A is finite

proof (prove): step 1
goal. (2 subgoals): as seen in the induction hypothesis
1. AB. B C {} = Finset B

2. NA a B. [Finset A; AB. B C A = Finset B; B C insert a A] = Finset B

O v Fing | Output | Siedgehammer Symbols

75,53 (1080/3190.

GsabeliesidexickUTE - sabeller - UGO/38M8 1526

None of Isabelle’s automatic proof methods (auto, blast, force) have any effect on this subgoal. Informally, we might consider case

analysis on whether aeB. This would require using proof tactics that have not been covered. Fortunately, Isabelle provides a general

A Critical Point in the Proof automated tool, sledgehammer.

@00 < lndhy (modified)
2 Indthy (-/Dropbox/ACS/& - Inductvel)

~ [tenma “[Finset A; B C A] = Finset B
apply (induction A arbitrary: B rule: Finset.induct)

apply autd]

 Avto updme [Updute
proof (prove): step 2

goal (1 subgoal) :
1. N\AaB. [AB. B C A = Finset B; B C insert a A] —> Finset B

now what??

Gabeliesidexick UTF-8-Tsabelle

B v Fing | Output | Siedgehammer Symbols
UGS 35ive 1526

79,11 (1091/3190.

Sledgehammer calls several automated theorem provers in the background: in other words, Isabelle is still receptive to commands.

Time to TI")’ Sledgehammer' You can continue to look for a proof manually.

@00 < lndhy (modified)
1 Indthy (-/Dropbox/ACS/& - Inductvel)

lemna "[Finset A; B C A] —> Finset B"
apply (induction A arbitrary: B rule: Finset.induct)

apply auto

Provers & spass remote_vampire 23 remote_e_sine] Cisarproots Aoy | [Cancel | [Locate

Selecting the panel
(it can also be detached)

O v Fing Ouput | Sledgehammer | Symbols

79,11 (1091/3190.

Gsabeliesidexick UTF-5-sabeller - YGRS 388 1527

53

Success!

®00
© 1ndthy (-/Dropbox/ACS/& - Inductve))

~ [temna “[Finset A; B C A] = Finset B"
apply (induction A arbitrary: B rule: Finset.induct)

apply auto

this command should

Pm—————

prove the goal

Aopy | [Cancel | [Locate | [100% =

Provers ¢ spass remote_vampire 2 remate_e_sine <] O tsarproots
"z3": Try this: by (metis Finset.insertl insert subset mk disjoint insert subset inse
"spass": Try this: by (metis (full types) Finset.insertl Set.set insert insertIl inse
"e": Try this: by (metis (hide lams, no_types) Finset.insertI dual order.trans mk dis
“remote_vampire": Try this: by (metis Finset.simps Int absorb2 Int insert right ife I
“remote e sine': Try this: by (metis Collect cong Collect empty eq Collect mem eq Col
To minimize: sledgehanmer min [remote e sine, provers = e spass remote vampire z3 rem

B v Fing Ouput | Sledgehammer | Symbols
52,1 (1094/3189)

this one may return a
more compact command

| GREIE 551 1605

All of outputs are highlighted. They are live: clicking on either will insert that command into the proof script.

The Completed Proof

@00
2 Indthy (-/Dropbox/ACS/& - Inductvel)

- [tenma "[Finset A; B C A] = Finset B"
apply (induction A arbitrary: B rule: Finset.induct)

apply auto
apply (metis Finset.insertl insert subset mk disjoint_insert subset_insert) [|

done

PRPS————

f Awoupdate [Updite | | Detach | [ioan +
proof (prove): step 3
goal:
No subgoals!
© ~ ring | upat| Siedgenammer symbots
s ek T -8-sabeiy — UGREEBWS 1665

50,77 (1168/3271)

How Sledgehammer Works

Problem and

Isabelle 100s of lemmas

Vampire

Theorem provers run
in the background.
Isabelle can still be

used!

54

Notes on Sledgehammer

® First, simplify your subgoal and break it up into
the smallest possible pieces.

® |t does not directly prove the goal, but returns a
call to metis, smt, blast, auto, etc. This proof

may be horrible!

® Calling metis or smt directly is difficult unless
you know exactly which lemmas are needed.

® Many options and refinements exist.

Metis is an automatic theorem prover for first order logic, written by Joe Hurd. Sledgehammer calls high-performance theorem
provers, such as E and Vampire, using them as relevance filters to select from the thousands of lemmas available in Isabelle.
Isabelle problems are translated for these automatic theorem provers using lightweight translations, which do not preserve
soundness. For that reason, proofs found by those theorem provers may be incorrect. If that happens, the call to metis will generate
an error message or fail to terminate. It is possible to force the use of sound translations, but sledgehammer seldom finds proofs
using those.

The proof returned by Sledgehammer may be ugly and messy. Consider tidying it up, especially for submitted work!

55

Interactive Formal Verification
9: Structured Induction Proofs

Lawrence C Paulson

Computer Laboratory
University of Cambridge

Structured (Isar) Proofs

® As we've already seen:

e Structured proofs are
clearer than a series of
commands, but verbose.

e The Isar language is rich
and complex, supporting

a great many proof styles.

o But there’s more!

® Existential reasoning: naming
entities that “exist”.

e Syntax for proof by induction.

* No need to write out
induction hypotheses.

o Cases given by name;
bound variables named.

® And the same syntax works
for case analysis.

A Proof about Binary Trees

eo0o
£ BT.ahy (-/0r0pbox/ACS/10 - Structured inductions)
datatype 'a bt =
Lf
| Br'a "abt" "abt

“reflect Lf = Lf*

proof [(induction t)[]

proof (state): step 1

goal (2 subgoals):
1. reflect (reflect Lf) = Lf

O v Find | Output | Siedgehammer Symbols

12.20 274/2608)

fun reflect :: "'a bt => 'a bt" where
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lenma reflect_reflect ident: "reflect (reflect t) = t* }

2. At
[reflect (reflect t1) = t1; reflect (reflect t2) = t2]
— reflect (reflect (Br a tl t2)) = Br a t1 t2

STahy (modifed)

 Auto update [Update | | Detach | [100%

Must we copy each case
and such big contexts?

GsabeiesdexickUTE 8- sabeller UGREEENS 16,02

Inductive proofs frequently involve several subgoals, some of them with multiple assumptions and bound variables. Creating an Isar
proof skeleton from scratch would be tiresome, and the resulting proof would be quite lengthy.

56

Finding Predefined Cases

eoo STaby (modifed)
BT by (-/Dropbox/ACS/10 - Structured nduction))

fun reflect :: "'a bt => 'a bt" where
“reflect Lf = Lf*
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lenna reflect reflect ident: "reflect (reflect t) = t
proof (induction t) 3
print_cases Type a print_cases
] command!

- cases: abbreviation of conclusion

Avto update | Update | [Detach | [100%

o . let "?case” = "reflect (reflect Lf) = Lf"
Built-in [
cases fix a_ t1_ t2
let "?case” = "reflect (reflect (Br a 1. t2)) =Bra

assume "Br.IH" : "reflect (reflect t1) = t1 " "reflect (reflect t2) = t2 " and
"Br.prems”

O v Fing | Output| Siedgenammer syqls

14.1 Q8772608 Gsabeieidexick UTF-8-Tsabeller U GREBEEEIS 1600

name of

induction hyps

Many induction rules have attached cases designed for use with Isar. By referring to such a case, a proof script implicitly introduces
the contexts shown above. There are placeholders for the bound variables (specific names must be given). Identifiers are
introduced to denote induction hypotheses and other premises that accompany each case. Also, the identifier ?case is introduced to
abbreviate the required instance of the induction formula.

It is possible to type the command print_cases right in your document. However, with the latest version of Isabelle, the proof
keyword is highlighted: clicking on it inserts the proof skeleton automatically!

Tase (Br a t1 t2)
instances o qm:"‘"l’"““ R list of bound variables

the goal

Proof Using Named Cases

e00 < BTy
BThy (/Dropbox/ACS/10 - Structured nduction))

lenma reflect_reflect_ident: "reflect (reflect t) = t"
proof (induction t)

case L the two cases
show 7case by simp A 5
nex of the induction

Ao updme [Update | [Detach | (1008 -
proof (chain): step 7
~ picking this:

- reflect (reflect t1) =
« reflect (reflect 2) = 12

the induction

hypotheses

GsabeliesidexickUT-5-sabeller - UGREBEEINES 1605

8~ ring | Output| siedgen
177 G37/2592)

With all these abbreviations, the induction formula does not have to be repeated in its various instances. The instances that are to
be proved are abbreviated as ?case; they (and the induction hypotheses) are automatically generated from the supplied list of
bound variables.

Observe the use of “then” with “show” in the inductive case, thereby providing the induction hypotheses to the method. In a more
complicated proof, these hypotheses can be denoted by the identifier Br. hyps.

Induction with a Context

eo0o Bty (modified)
£ BT.ahy (-/Dr0pbox/ACS/10 - Structured Inductions)

- [inductive Finset :: "'a set = bool" where Cl
emptyl: “Finset {}* -
| insertl: "Finset A — Finset (insert a A)"

dectare Finset.intros [intro] % :
a named induction rule

lema “[Finset A; B C A] — Finset B*
proof (induction A arbitrary: B rule: Finset.induct)
print_cases]

Updue | [Deuch | [1o0x +) &

an arbitrary variable
emptyl:
fix B
Tet "7case” = "Finset &*
assune "enptyl.prems” : "B C {}"
insertI:
fixA a_B

let "7case” = "Finset &
assune “insertI.hyp:
*insertI.prens

A" and “insertI.IH* : "AB. B C A = Finset 8" and

O v Find | Output | Siedgehammer Symbols

52.12 @38/260)

Gsabeiesidexick UTF-8-sabeller > UGRIBOOMS 1630

non-empty premises

An inductive definition generates an induction rule with one case (correspondingly named) for each introduction rule. This particular
proof requires the variable B to be taken as arbitrary, which means, universally quantified: it becomes an additional bound variable
in each case. This proof also carries along a further premise, BCA, instances of which are attached to both subgoals.

57

The base case would normally be just emptyI. But here, there is an additional bound variable. Note that we could have written, for

Proving the Base Case example, (emptyI C) and Isabelle would have adjusted everything to use C instead of B.

e00 5 Ty
T.thy (-/Dropbox/ACS 10 - Strucured Induction))

emptyl: “!
| insertI: "Finset A — Finset (insert a A)"

~ |dectare Finset.intros [intro] “arbitrary” variables

- |tenma *[Finset A; B C A must be given names!
~ |proof (induction geafitrary: B rule: Finset.induct)
case_(emptyI B)
thenflshow "Finset 8°

by Tk

proof (chain): step 3 “then” gives the premise

to the next step

'~ picking this:
BC{}

O v Fing | Output | Siedgehammer Symbols
35.7 @52/266% GsabeiesidexickUTE 8- sabeller - UGREBIED M 1636

Here we know B ¢ insert a A, as it is the inherited premise of this case. But do we in fact know BCA?

A Nested Case Analysis

e00 5 Ty
BT.thy (-/Dropbox/ACS/ 10 - Structured Induction))

- |lenma *[Finset A; B C A] = Finset B"
 |proof (induction A arbitrary: B rule: Finset.induct)
case (emptyl B)

then show "Finset 6" e ey
by auto arbitrary” variables must
next 3 5 ,
case (insertl A a B) (again) be given names!
show "Finset 5"

proof [fcases "8 C A")[]
case True

Boolean case analysis
on a formula

@ Ao updae [Update | [Detach | 1008
proof (state): step 9
goal (2 subgokts) :

B

— Finset &
— Finset &

B v Fing | Output | Siedgehammer Symbols
55,24 751/2660) GsabeiesidexickUTE 8- sabeller U GIEEIDS 1636

Here is an outline of the proof. If BCA, then it is trivial, as we can immediately use the induction hypothesis. If not, then we apply the
induction hypothesis to the set B-{a}. We deduce that B-{a} € Fin, and therefore B = insert a (B-{a}) € Fin.

The Complete Proof
] Ot O W SUEEIE This proof script contains many references to facts. The facts attached to the case of an inductive proof or case analysis are

denoted by the name of that case, for example, insertl, True or False. We can also refer to a theorem by enclosing the actual
theorem statement in backward quotation marks. We see this above in the proof of B-{a} c A.

B 5
+ Finset.induct) >

by auto reference to the induction
next hypothesis and premise

case (insertl 4 a §
show

Tru
with insertl show "Finset 2" 5 B
true and by auto direct quotation of a fact,
false cases yuiiign using cartouches

have Ba: "5 - {a} C A" using <3 C insert
by cuto
with False have "B = insert o (8 - {a})
by auta
with B0 insertl.TH Fis
by (metis Finset.insertl) reference to the
qed false case: 7 BCA
aed
9~ ouput QuerySiedgehammer_symbols

58

Additional Proof Structures

case (insertI A a B)
show "Finset B"
proof (cases "B C A")

case (insertI A a B)
show "Finset B"
proof (cases "B C A")

case True case True
show “Finset 8" using insertI True ——> with insertI show "Finset 8"
by auto by auto
next next
case False case False
have Ba: "B - {a} C A" using ‘B C insert a A" —3 from '8 C insert a A’ have Ba: "B - {a} C A"
by auto by auto
then have "5 = insert a (B - {a})" using False —— with False have 'B = insert a (8 - {a})"
by auto by auto

then show "Finset B"

by (metis Ba Finset.insertI insertI.IH)

from (facts)

with (facts)

——> with Ba insertI.TH shou "Finset B"
by (metis Finset.insertT)
qed

= .. using ({facts)

= then from (facts) ..

Full details, probably much more than you want at this stage, can be found in The Isabelle/Isar Reference Manual, by Makarius
Wenzel.

Viewing Available Facts

~ | next

False: - 8 C A

insertI.IH: 78 C A —
insertI.hyps: Finset A

this: B - {a} C A

LT R Type a print_facts

insertI.prems: B C insert a A

B v Fing | Output | Siedgehammer Symbols

sy (modifes) <

command!

o Auto updae [Update | | Detach | [100%

list of facts for the
insertI case (and again,

with distinct names)

Finset 78

It is unfortunately necessary to type the command print_facts right in your document.

Simply hover with the mouse over any text where you see wavy underlining.
800 - BT.thy (modified) e
B — :
by auto
case (insertI A a B)
proof (cases "B C A") [G &
[next oec Fl
case False g
have Ba: "B - {a} C
oy auto
then have 8 = dnse
by auto print_fact
wavy underlining %
means output is
available — Finset 78

59

moreover / ultimately

notepad notepad
begin begin
have 11: "factl" sorry have "factl" sorry
have 12: "fact2" sorry moreover
have 13: "fact3" sorry have "fact2" sorry
from 11 12 13 moreover
have "fact3" sorry
oops ultimately
oops

proof (chain): step 7

calculation:
= factl
picking this: « fact2
= factl = fact3
o :ecg proof (chain): step 9
= fac

These two keywords are useful when the conclusion is derived from a series of facts. The need for labels is eliminated
(assuming that there are no other references to those facts) and the overall structure becomes much clearer. Here we
also see the notepad construct, which is handy for typing in experimental proofs.

Existential Claims:“obtain

eo0o

.y /Dropbor/ACS/10 - Srctured indctons) to obtain variables
Otemma dvd_trans: satisfying given properties,
fixes a::nat
assunes ab: *a dvd h2fnd bef "b dvd c*
shows "a dvd c-
- Jproof -

obtain v|jwhere *b = /% v*
by (metis ab dvd,def)

moreover obtain w where "c = b * '
by (metis bc dvd_def)

ultinately have "c = a * (v *)"
by (sinp add: mult_assoc)

... Isabelle needs to
prove an elimination rule

proof (prove): step 2

goal (1 subgoal):
1. (Av. b =a * v = thesis) = thesis

bdvda & (3k.a=b x k)

”»

Frequently, our reasoning involves quantities (such as j above) that are known to satisfy certain properties. Here, the “divides”
premise implies the existence of a divisor, j. Proof attempts involving “obtain” can be difficult to understand, especially when they
fail. Isabelle proves a theorem having the general form of an elimination rule, which in the premise introduces one or more bound
variables: the variables that we “obtain”.

Cases via “consider”

o0 e BT.thy (modified)
IedE:S ¢ X D0 R@ CEEE BX & O |e»
© 8.ty (-Dropbox Teach/ACS/3 - Structurd induction))

fix 11 int

consider (even) "i mod 2 = 0" | (odd) "i mod 2 = 1"
using not_mod_2_eq®sag 1 by blast
then have "is_nice i"
0| proof cases
case even

then show 74ffosts [two named cases
next

case odd
then show ?thesis Sorry
qed

 Proof state @ Auto update | Update Search:
proof (prove)
using this:

imd2=6

goal (1 subgoal) :

1. is_nice 1

O~ Ouput Query Sledgehammer Symbols
146,17 (3298/4882) Input/output complete (isabelle,isabelle,UTF-8-Isabelle) - 1o UG

v 100%

8/804M8 12:51

This even generalises “obtain”, as the separate cases can introduce bound variables. See the Isabelle/Isar reference manual.

60

’

Chaining Facts:“moreover’

e00 - BTy (modied) ")
6.ty -/ Dropbos/ACS/ 10 - Structured inducton/) o

©[temma dvd_trans: o

fixes a::nat moreover retains the M

assumes ab: SRIGVAIRS and be, result as a calculation H

shows *a dvd c” 5

- [proot - H

obtain v where H

by (met £

noreove! g

by (metis bc dvd_def) -

ultinately have "c = af (v *)" i

s0c) H

by (simp add: mult ¥

o Ao updse [Update | [Detach | (1008 v

calculation: b =a * v
proof (state): step 4

I~ this:
bmaty we now have the
o @ e key property of v

O v Fing | Output | Stedgehammer Symbols

116,11 2681/3891) Gl 357w 1550

Delivering Facts:“ultimately”

e00 <8y o
©ftemna dvd_trans: B
ixes a::nat -
assunes ab: "a dvd b* and bc: b dvd c* H
shows "a dvd c" H

- |oroof - H
obtain v where "b g

by (netis ab dvd_def) o
moreover obtain w where "C = b * u* £

by (metis bc dvd_def) &

ve Fl

Updae | [Deuch | [100% v

™ Auto update

calculation: :
b=aty calculation holds
pEobuy previous results
proof (chain): step 7

mately gives them

to the next step

= picking this:
ohooo

cc=brw

O v Fing | Output | Stedgehammer Symbols
11615 2748/3899)

The Finished Proof

e00 . E
-O|lemma dvd_trans: o
fixes nat M
assunes ab: “a dvd b* and bc: "b dvd c* £
shows "a dvd c* 3
proof - H
obtain v where "b = a * v* .

by (metis ab dvd_def) £
moreover obtain w where b * " L

by (metis bc dvd_def) [| i
ultimately have "c = a * (v * w)"

by (simp add: mult_assoc)
then show ?thesis
by (rule dvdI)

qed

O v Find Oupu Sledgehammer Symbols
11727 @735/4179) Gsabeies ek UTF

isabelle’ UCHRED VB 1635

61

e00
1 ET.thy (-/Dropbox/ACS/ 10 - Srucured ndo
©O[tenna dvd_trans:
fixes a::nat % o
assunes *a dvd b" b dvd c” assms” is the list of
shows *a dvd c* assumptions
proof -
from assms obtain v wfjwhere "b = a * v "
by (metis dvd_def)
then have "c = a * (v *)"
by (simp add: mult_assoc)
then show 7thesis .
qed

- BTty modifed)

Any proof can be written in a variety of different ways. The concluding step is surprising. The mysterious .. symbol
A Simpler Proof

denotes the default proof step, which in this case happens to be a rule called dvdI. This rule exactly matches the given
premise and conclusion. In practice, however, default proof steps are seldom used.

cton)

“. .7 is the default
proof step (here, dvdI)
Updsee | | owach | [160x =

- using this:
“advdb

can obtain multiple
“bdvd c

vars, facts in one step
goal (1 subgoal):

1. (Avw. [b=a*v;c=b*w = thesis) = thesis

O v Fing | Output | Siedgehammer Symbols
13624 2967741500 Gsabeliesdexick UTF-8-Tsabellr

GR35 1640

Here we see a three-way case distinction. Local blocks have many other uses.
Advanced Proof Structures

©00 o gy
© 1.y - Dropbox/ACS/10 - Srctured incton))
notepad

begin

have "P v Q v R* sorry
moreover {assune "P" have "S" Sorry}
moreover {assure "Q" have "S" sorry}

moreover {assune "R have "S" sorry}
ultimatelyfhave "S" by blast local proof blocks
end 3
@ Ao pdste _Updie | | Oach | [ioox +
calculation: these facts are
“Evave available to blast
cP—=s

c0=S
SR=S
proof (chain): step 21

B v Fing | Output | Siedgehammer Symbols
175,15 Gs21/4611) inout/output compiete Gsabeieidexick UTF-8-sabeller > UGREREDOVS 1720

62

Interactive Formal Verification
| 0: Operational Semantics

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Overview

® The operational semantics of programming
languages can be given inductively.

¢ Type checking

¢ Expression evaluation

¢ Command execution, including concurrency

® Properties of the semantics are frequently proved
by induction.

® Running example: an abstract WHILE-language

Language Syntax

typedecl loc

(*an unspecified type of locations: addresses of variables*)

type_synonym val = nat

(*values, here just natural numbers*)

‘type_synonym state = "loc = val"

‘type_synonym aexp

‘state = val”

type_synonym bexp = "state = bool"

(

arithmetic and boolean expressions are not modelled explicitly here
they are just functions on states *)

datatype
com = SKIP
| Assign loc aexp (infixr ":==" 80)
| semi com com (infixr ";" 70)
| Cond bexp com com ("IF _ THEN _ ELSE _" [0, 90, 90] 91)
| While bexp com ("WHILE _ Do _" [0, 911 90)

For simplicity, this example does not specify arithmetic or boolean expressions in any detail. Although this approach is unrealistic, it
allows us to illustrate key aspects of formalised proofs about programming language semantics.

63

A Big-Step Semantics

(skip, s) — s (z:=a,s) — s[r:=a s

(co,s) — 5" (c1,8") — &

(coic1,8) — &

bs (co.s) — &' —bs (c1,8) — &'
(if b then ¢ else c1,s) — s (if b then ¢ else ¢;,s) — s’

—bs bs (c,s) —s” (while bdoc,s") —s

(while b do ¢,s) — s (while b do ¢, s) — s’

In a big step semantics, the transition {c,s) — s’means, executing the command c starting in the state s can terminate in state s’.
Nothing is said about intermediate stages of the computation. Additionally

Formalised Language Semantics

a predicate with special syntax

© Comahy ¢-/Dropbox/

inductivg

a
evalc :: "lcom, state,state] = bool" (“(_,_)/ ~ _" [0,0,60] 60) g
where H
Skip: (SKIP,s) - 5" B
| Assign: "(x i== a,5) - s(x i=a 8" 5
| Semis "(c0,8) 5T = (c1,8') ' = (cO; cl,)~ st

| IfTrue: "b s — (co,s) ' = (IF b THEN cO ELSE cl, s) E
| Iffalse: "-b s — (c1,5) ~ s’ = (IF b THEN cO ELSE cl, s) ~ 5'"

cowonu mms popns

| WhileFalse: "-b s — (WHILE b DO c
| WhileTrue: "bs — (c,5) ~ s'*
= (WHILE b DO c, s)

=

Tlemmas evalc.intros [intro] (*use those rules in automatic proofs®)

declare as introduction rules

for auto and blast

5 v oupu

In the previous lecture, we used a related declaration, inductive_set. There is no intrinsic difference between a set and a one-
argument predicate. However, formal semantics generally requires a predicate three or four arguments, and the corresponding set
of triples is a little more difficult to work with. Attaching special syntax, as shown above, also requires the use of a predicate.
Therefore, formalised semantic definitions will generally use inductive.

A Non-Termination Proof

(while true do c,s) /4 s’

This formula is not provable by induction!

. (c, s) Sy Vc'. ¢ # (while true do ¢’)

The inductive version considers
all possible commands

64

A Formal Proof of Looping

eo0o - 7 subgoals, one for each
o Comih -/Drophos/ACS/5~ Opratonl Semanics D 3 e
=+ C # WHILE (As. True) DO c1" 'U|e Of the dEﬁnltlon

Lemna while never: ~u
apply [finduct rule: evalc.induct)[] N

apply auto Most are trivial,
by distinctness ZEBEETENNICS

As. SKIP # WHILE As. True DO c1
Ax as. x i=a # WHILE Xs. True DO cl
Ac® s s'* clas'.

[(€0,5) ~ 5"; CO # WHILE Xs. True DO cl; (cla,s'*) ~ s'; cla # WHILE As. True DO c1]

= <0 ; Cla # WHILE As. True DO c1
* 4. Ab s co s’ cla.
[5 (cO,5) ~ 5'; €O # WHILE As. True DO c1]
= IF b THEN cO ELSE Cla # WHILE As. True DO cl
- 5. Absclas' co.

[~ b s; (cla,s) ~ s'; cla # WHILE As. True DO c1]
= IF b THEN CO ELSE cla # WHILE)s. True DO c1 i
. Ab's C. - bs = WHILE b DO C # WHILE As. True 00 c1 trivial for another reason
- 7. Abscs't st
[5; (C,S) ~ S'*; C # WHILE As. True DO CLWHILE b DO C,5°") ~ 5';
WHILE b DO ¢ # WHILE As. True DO c1]

—> WHILE b DO c # WHILE As. True DO cl

B v Fing | Output | Siedgehammer Symbols
58,34 (1831/3537 GsabeiesidexickUTE 8- sabeller - UGREIBSOVS 1654

Done!

@00 - Comthy (modified)

 Comh (-/Dropbox/ACS/9 - Oper
tenna while never: ~ u = ¢ # WHILE (As. True) DO cl*
apply (induct rule: evalc. induct)
japply auto[]
@ Avtoupdaie (_Upde | [Detach | [100%
proof (prove): step 2
goal:
No subgoals!
© ~ ring | Ouiput| Sidaehammer Symbols
5511 asi2r3537) bl ek T -8-sabeiy UGBS 1655

This really is a trivial proof. | timed this call to auto and it needed only 6 ms.

A New Principle:
Rule Inversion

® When (skip, s)— s’ we know s =5’

® When (if b then co else c1, s)— s” we know
e band {co,s)— s’ 0.
e —band {ci,s)—>s’

® This sort of case analysis is easy in Isabelle.

Rule inversion refers to case analysis on the form of the induction, matching the conclusions of the introduction rules (those making
up the inductive definition) with a particular pattern. It is useful when only a small percentage of the introduction rules can match the
pattern. This type of reasoning is common in informal proofs about operational semantics. It would not be useful in the inductive
definitions covered in the previous lecture, where the conclusions of the rules had little structure.

65

Rule Inversion in Isabelle

name of the new lemma PSSP wﬁ declared as an elimination
Z
rule to auto and blast

(skip, s)— s’ implies s = s’

u Com. thy 53%448_ (Isar Utoks Abbrev; Scripting)===-==-====-===--o
[(SKIP,?5) ~ 75'; 75" = 75 = 2] = 7P

the typical format of an

elimination rule

-u-:%%- *response* ALl L1 (Isar Messages Utoks Abbrev;)------------==---==-

The pattern for each rule inversion lemma appears in quotation marks. Isabelle generates a theorem and gives it the name shown.
Each theorem is also made available to Isabelle’s automatic tools.

It is possible to write elim! rather than just elim; the exclamation mark tells Isabelle to apply the lemma aggressively. However, this
must not be done with the theorem whilek: it expands an occurrence of
(while bdo c, s) — s’ and generates another formula of essentially the same form, thereby running for ever.

Rule Inversion Again

000 5 Com.thy

[5sNcclb SR I S IR S I - Y

skipE [elim]:

semif [elim]:

assignE [elim]:

ifE felim]: 0
ses whileE [elim]:

-u- Com. thy 53% 149 (Isar Utoks Abbrev; Scripting)==-==--=-==---=--o
[(2c0.0; 7c1.0,75) ~ 7s'; As''. [(2c0.0,75) ~ s''; (?c1.0,5'") ~ 75'] = 7P]
B

expresses the existence of

the intermediate state, s’

-u-:%%- *response* ALl L2 (Tsar Messages Utoks Abbrev;)---------=--==----=-

Determinacy

(c,s) =t (¢,s) = u
t=u

If a command is executed in a given state, and it

terminates, then this final state is unique.

66

Determinacy in Isabelle...

= Comiy Drpban/ACSI -

theoren con_det: *(
oty [induct arbitrary: u e evalc
apply blasts

— =t

induct)]]

:
:
]

U. (€O,S) ~ u = u =" (cl,s') ~ st
Ave (€1,57) ~ v = u = 5% (c0 ; cl,5) ~ u]

—uss

v 4. Abscos clu

[b 55 (cO,8) ~ 55 Au. (cB,5) ~+ u => u = s'; (IF b THEN cO ELSE cl,5) ~ u] = u = s'

- 5. Abscls o
[2 55 (€l,s) ~ 55 AU (€1,s) ~ u = u = 5; (IF b THEN <O ELSE cl,s) ~ u]
—u=s
6. bs; (WHILE b DO c,5) ~ u] = u=s
7 .

b si (e $75 Au. (€)5) A u = u = s''; (WHILE b DO c,5'") ~ 5';
Au. (WHILE b DO ¢,5'') ~ u = u = s'; (WHILE b DO c,s) ~- u]

B v Fing | Output | Siedgehammer Symbols
6547 (1946/3537)

Gsabeiesidexick UTF-5-sabeller UGREREEONG 1659

— . allow the other state to vary

H

The proof method blast uses introduction and elimination rules, combined with powerful search heuristics. It will not terminate until
it has solved the goal. Unlike auto and force, it does not perform simplification (rewriting) or arithmetic reasoning. These subgoals
are mostly trivial: rule inversion, which we set up previously, expresses precisely what we need: that if the given commands have
executed, then corresponding intermediate states have been reached. The induction hypothesis allow us to assume the
determinacy of the sub-commands.

Proved by Rule Inversion

@00

2 Com.hy (-/Dropbox/ACS/9 - Operations

si)
theoren com_det: *(c,s) ~ t —> (c,5) ~ U — u = t*
apply (induct arbitrary: u rule: evalc.induct)
apply blasts]

call blast multiple times
proof (prove): step 2 (here auto is very slow)

goal
No subgoals!

B v Fing | Output | Siedgehammer Symbols
66,15 1959/3537) Gsabeiesidexick UTF-5-Tsabeller > UGREBIEEIN® 1659

The proof involves a long, tedious and detailed series of rule inversions. Apart from its length, the proof is trivial. This proof needed
only 32 ms.

Semantic Equivalence

We can even define

@00

1 Comhy - Dropbon/ACS9 - peraionl Semantics) the infix syntax
text{*Two commands are equivalent if they allow the sgm€ transitions.*} 8
definition

equiv_c :: "com = com = bool" (infixl "~" 50)
[where
- "(c~c') = (¥ss'. ({c, s) ~ s') = ({c', s)~ s'))"

lenna equiv_refl:

It is trivially shown

Fe~c
'~ |by (auto simp add: equiv_c_def) to be an
Leama equiv_sym: equivalence relation

"la 2 =2~ cl"
by (auto simp add: equiv_c_def)

lenna equiv_trans:
"l~ 2= 2~ 3= cl~ 3
by (auto simp add: equiv_c_def)

B v Fing | Output | Siedgehammer Symbols
502 @206/3520) GsabeiesidexickUTF 8- sabelley - UGEEHENS 1642

67

More Semantic Equivalence!

000, o Comahy
Com.thy (-/Dropbox/ACS/5 - Operationsl Semantics))

congruence laws:

lenma equiv_semi: constructors preserve

"l = @2~ 2 = (cl; 2) ~ (')" equivalence
by (force simp add: equiv_c_def) .

lenma equiv_if:
“cl~ cl' = 2 ~ c2' => (IF b THEN cl ELSE c2) ~ (IF b THEN c1' ELSE c2')"
by (force simp add: equiv_c_def)

by: gives a one-line proof

Ao updue [Update | [Dech | (1008 -

proof (prove): step 0

goal (1 subgoal) :
1. WHILE b DO ¢ ~ IF b THEN (c ; WHILE b DO c) ELSE SKIP

O - Fing | Output Siedgehammer e

The properties shown here establish that semantic equivalence is a congruence relation with respect to the command constructors
Semi and Cond. The proofs are again trivial, providing we remember to unfold the definition of semantic equivalence, equiv_c.

Proving the analogous congruence property for While is harder, requiring rule induction with an induction formula similar to that
used for another proof about While earlier in this lecture.

Method force is similar to auto, but it is more aggressive and it will not terminate until it has proved the subgoal it was applied to.
In these examples, auto will give up too easily.

And More!!

eo0o Com.thy (modified)
2 Com.thy (-/Dropbox/ACS/9 - Operations Semantics)

o
g

lenma unfold while:
“(WHILE b DO) ~ (IF b THEN (c; WHILE b DO c) ELSE SKIP)"
by (force simp add: equiv_c_def)

lenma triv_if:
“(IF b THEN ¢ ELSE c) ~ c*
by (auto simp add: equiv_c_def)

Ao updue [Update | [Deuch | (1008 -

O - Fing | Output] siedgenammer Symbols

1121 282873517 Gsabeiesidexick UTF-5-sabeller - YGRS 1620

Somehow, force will not solve the second theorem. Sometimes you just have to try different approaches.

Note that a proof consisting of a single proof method can be written using the command “by”, which is more concise than writing
“apply” followed by “done”. It is a small matter here, but structured proofs (which we are about to discuss) typically consist of
numerous one line proofs expressed using “by”.

Intro-Rule for Equivalence

(c,8) = 8" <= (,s) — &

declared like this

; s and s’ not free. ..
c~e

5/9 - Operational Semantics /) -
formalised like this
lenma equivI [intro!):
H

“(Ass'. (C,)~ st =(ch,)~ s) = c~ ot H
by (auto simp add: equiv_c_def) H

lemma commute if:
“(IF bl THEN (IF b2 THEN cll ELSE c12) ELSE c2)
(IF b2 THEN (IF bl THEN c11 ELSE c2) ELSE (IF bl THEN c12 ELSE c2))" 2
by blast] H

used implicitly in

f Auto update | Update | | Detach | [100%

blast/auto

Giving the attribute intro! to a theorem informs Isabelle’s automatic proof methods, including auto, force and blast, that this

theorem should be used as an introduction rule. In other words, it should be used in backward-chaining mode: the conclusion of the
rule is unified with the subgoal, continuing the search from that rule’s premises. It is now unnecessary to mention this theorem when
calling those proof methods. The theorem shown can now be proved using blast alone. We do not need to refer to equivI or to the

definition of equiv_c. The approach used to prove other examples of semantic equivalence in this lecture do not terminate on this
problem in a reasonable time. The proof shown only requires 12 ms.

The exclamation mark (!) tells Isabelle to apply the rule aggressively. It is appropriate when the premise of the rule is equivalent to
the conclusion; equivalently, it is appropriate when applying the rule can never be a mistake. The weaker attribute intro should be
used for a theorem that is one of many different ways of proving its conclusion.

68

Documentation on the nominal package can be downloaded from http://isabelle.in.tum.de/nominal/

Final Remarks on Semantics " _ . .
Many examples are distributed with Isabelle. See the directory HOL/Nominal/Examples.

Other relevant publications are available from Christian Urban’s website: http://www4.in.tum.de/~urbanc/publications.html

® Smadll-step semantics can be treated similarly.

® \Variable binding is crucial in larger examples, and
should be formalised using the nominal package.

® choosing a fresh variable
* renaming bound variables consistently

® Serious proofs will be complex and difficult!

69

Interactive Formal Verification
I I: Modelling Hardware

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Outline

® General modelling techniques
® Hardware verification in higher-order logic

o Additional elements of the Isar language, for
instantiating theorems

Basic Principles of Modelling

® Define mathematical abstractions of the objects
of interest (systems, hardware, protocols,...).

® Whenever possible, use definitions — not
axioms!

® Ensure that the abstractions capture enough
detail.

e Unrealistic models have unrealistic properties.

¢ Inconsistent models will satisfy all properties.

All models involving the real world are approximate!

Constructing models using definitions exclusively is called the definitional approach. A purely definitional theory is guaranteed to be
consistent. Axioms are occasionally necessary in abstract models, where the behaviour is too complex to be captured by definitions.
However, a system of axioms can easily be inconsistent, which means that they imply every theorem. The most famous example of
an inconsistent theory is Frege’s, which was refuted by Russell’s paradox. A surprising number of Frege’s constructions survived
this catastrophe. Nevertheless, an inconsistent theory is almost worthless.

Useful models are abstract, eliminating unnecessary details in order to focus on the crucial points. The frictionless surfaces and
pulleys found in elementary physics problems are a well-known example of abstraction. Needless to say, the real world is not
frictionless and this particular model is useless for understanding everyday physics such as walking. But even models that introduce
friction use abstractions, such as the assumption that the force of friction is linear, which cannot account for such phenomena as
slipping on ice. Abstraction is always necessary in models of the real world, with its unimaginable complexity; it is often necessary
even in a purely mathematical context if the subject material is complicated.

70

Hardware Verification

® Pioneered by Prof. M.). ® Works hierarchically from
C. Gordon and his arithmetic units and
students, using memories right down to
successive versions of flip-flops and transistors.

the HOL system.

Crucially uses higher-
® Used to model complete order logic, modelling
hardware designs: signals as boolean-valued
functions over time.
* VIPER verification, by
Avra Cohn (1988)

* ARMS6 processor, by
Anthony Fox (2003)

The material in this lecture is based on Prof Gordon’s lecture notes for Specification and Verification I, which are still available on
the Internet at http://www.cl.cam.ac.uk/~mjcg/Lectures/SpecVer2/

Devices as Relations

a —{ Dev —c X .
b L4 A relation in a, b, c,d
g9
1 g—=>s=d
s —1 L4

The relation describes the possible
combinations of values on the ports.

Values could be bits, words, signals
(functions from time to bits), etc

The second device on the slide above is an N-type field effect transistor, which can be conceived as a switch: when the gate goes
high, the source and drain are connected. The logical implication shown next to the transistor formalises this behaviour. Note that
the connection between the source and drain is bidirectional, with no suggestion that information flows from one port to the other.

Relational Composition

al Ib two devices modelled
by two formulas

Sia, z] Sz, b]
" T b the connected ports
have the same value
Sila, z] A Sy[x, b]
“ z E , the connected ports
a— L
have some value

The diagrams are taken from Prof Gordon'’s lecture notes.
Because we model devices by relations, connecting devices together must be modelled by relational composition. Syntactically, we

specify circuits by logical terms that denote relations and we express relational composition using the existential quantifier. The
quantifier creates a local scope, thereby hiding the internal wire.

71

Specifications and Correctness

® The implementation of a device in terms of other
devices can be expressed by composition.

® The specification of the device’s intended behaviour
can be given by an abstract formula.

® Sometimes the implementation and specification
can be proved equivalent: Imp< Spec.

® The property Imp=>Spec ensures that every
behaviour of the Imp is permitted by Spec.

Impossible implementations satisfy all specifications!

The implementation describes a circuit, while the specification should be based on mathematical definitions that were established
prior to the implementation. A limitation of this approach is that impossible implementations can be expressed: in the most extreme
case, implementations that identify the values true and false. In hardware, this represents a short circuit connecting power to
ground, possibly a short circuit that only occurs when a particular combination of values appears on other wires, activating an
unfortunate series of transistors. In the real world, short circuits have catastrophic effects, while in logic, identifying true with false
allows anything to be proved. Therefore, absence of short circuits needs to be established somehow if this relational approach is to
be used safely.

For combinational circuits (those without time), both the implementation and the specification express truth tables with no concept of
a “don’t care” entry, so logical equivalence should be provable. Sequential circuits involve time, and frequently the specification
samples the clock only a specific intervals, ignoring the situation otherwise. Specifications can involve many other forms of
abstraction. In general, we cannot expect to prove logical equivalence.

Proving the logical equivalence of the implementation with the specification does not prove the absence of short circuits, but it does
prove that the short circuits coincide with inconsistencies in the specification itself. Needless to say, a correct specification should be
free of inconsistencies, but there is no way in general to guarantee this. How then do we benefit from using logic? Specifications

The Switch Model of CMOS

g

. b 4 Ptran(g, s,d) = (g = (d = s))
g

. L i Ntran(g,s,d) = (g = (d = s))

9
L+ Gndg=(9=F)
j? Pwrp=(p=T)

subsection{* Specification of (MOS primitives *}

text{* P and N transistors *}
definition
definition

text{* Power and Ground*}
definition
definition

CMOS (complementary metal oxide semiconductor) technology combines P- and N-type transistors on a chip to make gates and
other devices. The slide shows primitive concepts: the two types of transistors, ground (modelled by the value False) and power

(model by the value True). The corresponding Isabelle definitions are easily expressed. Lambda-notation is a convenient way to

express a function is argument is a triple.

Full Adder: Specification

a b

cout —{Add1— cin

sum
2 x cout + sum=a+b+cin

text{* 1-bit full adder specification *}

text{* Convert boolean to number (@ or 1) *}
definition bit_val :: where

definition

A full adder forms the sum of three one-bit inputs, yielding a two-bit result. The higher-order output bit is called “carry out”, and it will
typically be connected to the “carry in” of the next stage. Because we typically use True and False to designate hardware bit values,
the obvious conversion to 1 and 0 is necessary in order to express arithmetic properties. Even with this small step, expressing the
specification in higher-order logic is trivial. The identifier denotes the abstract relation satisfied by a full adder, namely the legal
combinations of values on the various ports.

72

Full Adder: Implementation

cout

A full adder is easily expressed at the gate level in terms of exclusive-OR (to compute the sum) and other simple gating to compute

the carry. The diagram above, again from Prof Gordon’s notes, expresses a full adder as would be implemented directly in terms of
transistors.

Full Adder in Isabelle

eo0o Adde sty (modifed)

2 Adderthy (-/Dropbox/ACS/ 11 - Hardwar

)
= [text(* 1-bit CMOS full adder implementation *}

- |definition "Add1Imp = (A(a,b,

Ntran(a,p10,p11) A
Ptran(pd, po, s)

A Gnd(p11) A
Ptran(pl,p0,cout) A Ntran(pl,cout,pll))"

text(* Verification of CMOS full adder *}

- |Lemna Add1Correct: "AddlImp(a,b,cin,s, cout) = Add1Spec(a,b,cin,s, cout)"

'~ [by (sinp add: Pur_def Gnd_def Ntran def Ptran def AddlSpec def
Add1Imp_def bit val def ex bool eq) []

(3b.P b) =m&lse) R ——

The logical formula above is a direct translation of the diagram on the previous slide. Needless to say, the translation from diagram
to formula should ideally be automatic, and better still, driven by the same tools that fabricate the actual chip.

The theorem expresses the logical equivalence between the implementation (in terms of transistors) and the specification (in terms
of arithmetic). This type of proof is trivial for reasoning tools based on BDDs or SAT solvers. Isabelle is not ideal for such proofs, and

this one requires over four seconds of CPU time. In the simplifier call, the last theorem named is crucial, because it forces a case
split on every existentially quantified wire.

An n-bit Ripple-Carry Adder

an-1 bn-t az by a1 b1 ao bo
-1 52 51 S0

(2" X cout) + s =a+ b+ cin

® Cascading several full adders yields an n-bit
adder.

® The implementation is expressed recursively.

® The specification is obvious mathematics.

73

The function bits_val converts a binary numeral (supplied in the form of a boolean valued function, £) to a non-negative
. . integer.The specification of the adder then follows the obvious arithmetic specification closely. When n=0, the specification merely
Adder Specification requires cinecout,

(2" x cout) + s = a+ b+ cin

text{* Unsigned number denoted By bitstring f(n-1)...f(@) *}
fun bits_val where

I

text{* Specification of an n-bit adder *}

definition

An (n+1)-bit adder consists of a full adder connected to an n-bit adder. Note that AdderImp n specifies an n-bit adder, and in
particular, a 0-bit adder is nothing but a wire connecting carry in to carry out.

Adder Implementation

an-1 ba-t az by a1 b1 ag by

internal wire, to be hidden
text{* Implementation gf/Gn n-bit ripple-carry adder*}

fun AdderImp whe

a zero-bit adder simply

connects the carry lines!

We are proving partial correctness only: that the implementation implies the specification. The term “partial correctness” here refers
to a limitation of the approach, namely that an inconsistent implementation (one with short circuits) can imply any specification.

Partial Correctness Proof Termination, obviously, plays no role in this circuit.
B ———_—_—_—_——— I The base case is trivial. Our task in the induction step Is shown on the slide. It is expressed in terms of predicates for the

proof (induction n arbitrary: cout)
case 0 thus 7case
by (simp add: Adderspec_def)

implementation and specification. The induction hypothesis asserts that the implementation implies the specification for n. We now
assume the implementation for n+1 and must prove the corresponding specification.

“AdderSpec n (a, b, cin, 5, c)*
: "Addllmp (a n, b n, c, s 0, cout)*
by (auto intro: Suc)

o Autopdate [Updite | | Detach | [100%

« AdderImp n (a, b, cin, s, 7cout) = AdderSpec n (a, b, cin, s, ?cout)
= AdderImp (Suc 1) (a, b, cin, s,

goal (1 subgoal)
- L An cout.
[Acout. AdderTmp n (a, b, cin, s, cout) = AdderSpec n (a, b, cin, s, cout);
AdderInp (Suc n) (a, b, cin, s, cout)
= AdderSpec (Suc n) (a, b, cin, s, cout)

B v ring | Output | Siedgehammer Symbols
415 948/571%) GsabeiesideickUTF 8- sabelley - UGIB2OVS 1627

74

By assumption, we have AdderImp (Suc n) and therefore both AdderImp n and Add1Imp. The simplest use of “obtain” would
. . . derive those assumptions, but we can skip a step and go directly to Adders by referring to the induction hypothesis.
Using the Induction Hypothesis P pasiepandg yloAdderspec nby 9 P

eo0o
2 Adderthy (-/Dropbox/ACS/ 11 - Hardware Verficaton/)

- Addesty (modified)

Lenma AdderCorrect: o

*AdderInp n (a, b, cin, s, cout) -

proof (induction n arbitrary: cout) g

case 0 thus 7case H
by (simp add: AdderSpec_def)

st
B oGl — M holds by the

where AddS: "AdderSpec n (a, b, cin, s, indunction hyp
and Addl: "AddlImp (a n, b s 1)

by (auto intro: Suc) e ehde
indunction hyp [iSms

= AdderImp n (a, b, cin, s, 7cout) — AdderSpec n (a, b, cin, s, 7cout)
= AdderImp (Suc n) (a, b, cin, s, cout)

> AdderSpec n (a, b, cin, s, cout)”

Oetach | [100%

goal (1 subgoal):

" 1 An cout.

[Acout. AdderImp n (a, b, cin, s, cout) —> AdderSpec n (a, b, cin, s, cout);
AdderInp (Suc n) (a, b, cin, s, cout)]

= AdderSpec (Suc n) (a, b, cin, s, cout)

O v Fing | Output | Siedgehammer Symbols
415 @o48/5714)

Gsabeiesidexick UTF-5-sabeller UGBV 1627

This equation is suggested by earlier attempts to prove the induction step directly. The proof involves using the correctness of a full
. . adder to replace Add1Imp by Add1Spec, then unfolding the latter to get the sum ¢ + a n + b n. The precise form of the left-hand
A Tiresome Calculation

side has been chosen to match a term that will appear in the main proof. This kind of reasoning is tedious even with the help of Isar.
i = Better support for arithmetic could make this proof almost automatic.
| e haas: masdrspac 1 a, b, cin 5.

- Addesthy (modified)

by (auto intro: Suc)

v have "bit_val (s n) * (2~ n) + bit_val cout * (2 *2 "~ n)
T A SR BB
by (simp add: a)
S
i !
using Addl by (simp add: Add1Correct Add1Spec_def)
mmwmmwmmaMmh,WJQEMMMMMMME
™ Auto update | Update. Detach. 00 v
calculation:
bit_val (s n) * 2~ n + bit_val t)=

*@*24n) =
(bit_val c + (bit val (a n) + bit val (b 1)) * 2~
proof (chain): step 16

I~ picking this:
bit_val (s n) * 2~ n + bit_val cout * (2 ¥ 2~ 1) =
(bit_val c + (bit val (a n) + bit val (b n))) * 2~ n

B~ Fing | Output | Siedgehammer Symbols
95,10 G /5714

Gsabeiesidexick UTF-8-sabeller > UGRITIROVS 1629

We end up with a fairly simple structure. Note that we could have used it Add1Correct earlier in the proof, obtaining
Partial Correctness is Proved! Addl: "add1spec ...” directly.

@00
2 Adderthy (-/Dropbox/ACS/ 11 - Hardware Verficaton/)

- Addesthy (modified)

text(* Partial correctness of ripple-carry adder for all n by induction *)
Lenma AdderCorrect:

AdderImp n (a, b, cin, s, cout) = AdderSpec n (a, b, cin, s, cout)
proof (induction n arbitrary: cout)

case @ thus 7case 2 ;
by (simp add: AdderSpec_def) implementation =
rext specification
cose (Suc n)

- | then obtain ¢
where AddS: "AdderSpec n (a, b, cin, s,)"
and Addl: "AddlImp (a n, bn, c, s n, cout)®
by (auto intro: Suc)
have "bit_val (s n) * (2% n) + bit.val cout * (2% 2% n) =

To repeat: we have proved that every possible configuration involving the connectors to our circuit satisfies the

specification of an n-bit adder. Tools based on BDDs or SAT solvers can prove instances of this result for fixed values of n, but
not in the general case.

(bit_val (s 1) + (bit_val cout *2)) * (2~ n)®
by (simp add: »)
- | also have *... = (bitval c + (bit val (a n) + bitval (b)) *
@~ n"
using Add1 by (sinp add: AddlCorrect Addispec_def)
tinallyflshow *AdderSpec (Suc n) (a, b, cin, s, cout)* using Adds

by (simp add: AdderSpec_def ps)
qed

O v Find Oupu Siedgehammer Symbols

95,10 Ga0A/5714) Gsabeiesidexick T -8-sabeller > UGRBIREIRS 1630

75

Proving Equivalence

o
- (3c. Adderspec n (a, b, cin, s, <) & AddiSpec (a n, b n, c, s n, cout))® g
appLy (auto Binp add: AdderSpec def AddlSpec def ex bool eq bit val def) H
@ Avtoupasie | Updne | [Oeuach | [100%
goal (16 subgoals):
“ 1. fan; bn;sn; - cout; cin; bitsval s n = Suc (2% n + (bits val an + bits val b n)]

— False

' 2.[an; bn;sn; - cout; - cin; bitsval s n =2~ n + (bits_val a n + bits_val b n)]
— False

3. [an;bn; s n; - cout; cing

bits val s n = Suc (2 * n + bits val an + (2~ n + bits val b n))]
— False

- 4. fan;bn o0 - cout; - cin;

bits val s n =2 " n + bits val a n + (2% n + bits val b n)]

— False

* 5. [an; ~bn;sn; cout; cin
2% 2" n+bits val s n = Suc (bits_val a n + bits_val b n)]
> False
' 6.[an; ~bn;sn;cout; ~cin; 2% 2~ n + bits_val s n = bits_val a n + bits_val b n]

O v Fing | Output | Siedgehammer Symbols

14415 5042/5799) GsabeiesidexickUTE 8- sabeller - YGRS 1635

e00 - Addesty (mocified) : q 2
2 Ader hy (-/Dropbox/ACS/ 11.- Hardware Verfication)) just need to prove this...
Lenna AdderSpec_Suc:
“AdderSpec (Suc n) (a, b, cin, s, cout) =

To prove that the specification implies the implementation would yield their exact equivalence. It would also guarantee the lack of
short circuits in the implementation, as the specification is obviously correct.

The verification requires the lemma shown above, which resembles the recursive case of AdderImp. We might expect its proof to
be straightforward. Unfortunately, the obvious proof attempt leaves us with 16 subgoals. A bit of thought informs us that these cases

represent impossible combinations of bits. These arithmetic equations cannot hold. But how can we prove this theorem with
reasonable effort?

A Crucial Lemma

800, - Addesthy (modified)
2 Adderthy (-/Dropbox/ACS/ 11 - Hardware Verficaton/)
- [temna bits_val_less: "bitsval f n < 2°n"

by (induction n, auto simp add: bit_val_def) a trivial upper bound on
Lenna Adderspec_Suc: the value of a bit string

“Adderspec (Suc n) (a, b, cin, s, cout) =

- (3c. Adderspec n (a, b, cin, s, c) & AddlSpec (a n, b n, ¢, 5 n, cout))”
lusing bits_val less [of a n] bits_val less [of b n] bits val less [of s n] [|
by (sim}wdd;_AdderSpec_def Add1Spec_def ex_bool _eq bit_val def)

Lenna AdderCoTrect2: inserting three
instances of that fact

fip ipcate [Updue | [Oetach | (1005 =
- using this now the proof is trivial
“bitsvalan<2n

“bitsvalbn<2n
“bitsvalsn<2”n

goal (1 subgoal):
- 1. AdderSpec (Suc n) (a, b, cin, s, cout) =
(3c. AdderSpec n (a, b, cin, s, c) A Add1Spec (a n, b n, c, s n, cout))

B~ Fing | Output | Siedgehammer Symbols

14476 5105/5714) GsabeiesidexickUTE 8- sabeller - YGRS 1631

The crucial insight is that all of the impossible cases involve bit strings that have impossibly high values. It is trivial to prove the
obvious upper bound on an n-bit string. Less obvious is that Isabelle’s arithmetic decision procedures can dispose of the impossible
cases with the help of that upper bound. We use a couple of tricks. One is that “using” can be inserted before the “apply”
command, where it makes the given theorems available. The other trick is the keyword “o£”, which is described below.

The Opposite Implication

eo0o - Adce oy mosited)
1 Adde hy -/ DropboX/ACS 1 - Hardware Verfcaton)
enna AdderCorrect2:
- *Adderspec n (a, b, cin, s, cout) = AdderInp n (a, b, cin, s, cout)"
proof (induction n arbitrary: cout)
cose 0 thus 2case
by (sinp add: AdderSpec_def)
next
case (Suc n)
thus "AdderTup (Suc n) (a, b, cin, s, cout)* using Suc
I by (auto simp add: AdderSpec_Suc AddlCorrect) N

aed
The implementation and
v specification are equivalent!
ol

I~ using this:

« AdderSpec n (a, b, cin, s, 7cout) = AdderImp n (a, b, cin, s, ?cout)
« AdderSpec (Suc n) (a, b, cin, s, cout)
= AdderSpec n (a, b, cin, s, 7cout) —> AdderImp n (a, b, cin, s, ?cout)
= AdderSpec (Suc n) (a, b, cin, s, cout)

goal (1 subgoal):
1. AdderImp (Suc n) (a, b, cin, s, cout)

B v ring | Output | Siedgehammer Symbols

15557 (5433/5493) GsabeiesdexickUTF 8- sabelle UGN 1654

With the help of AdderSpec_Suc, the opposite direction of the logical equivalence is a trivial induction.

76

Making Instances of Theorems

o thm[of a b c]
replaces variables by terms from left to right

® thm [where x=a]
replaces the variable x by the term a

® thm [OF thm\ thma thms3]
discharges premises from left to right

® thm [simplified]
applies the simplifier to thm

® thm [attr1, attra, attrs]
applying multiple attributes

We proved AdderSpec_Suc with the help of “using”, which inserted a crucial lemma into the proof. We needed specific instances
of the lemma because Isabelle’s arithmetic decision procedures cannot make use of the general formula. Fortunately, we needed
only three instances and could express them using the keyword “o£”. This type of keyword is called an attribute. Attributes modify
theorems and sometimes declare them: we have already seen attributes like [simp] and [intro] many times.

The most useful attributes are shown on the slide. Replacing variables in a theorem by terms (which must be enclosed in quotation
marks unless they are atomic) can also be done using “where”, which replaces a named variable. in the left to right list of terms or
theorems, use an underscore (_) to leave the corresponding item unspecified. An example is bits_val less [of _ n], which
denotes bits_val ?f n < 2 "~ n.

Joining theorems conclusion to premise can be done in two different ways. An alternative to OF is THEN: thmi [THEN thmy] joins the
conclusion of thm1 to the premise of thm2. Thus it is equivalent to thm, [THEN thm:]. The result of such combinations can often be
simplified. Finally, we often want to apply several attributes one after another to a theorem.

See the Tutorial, section 5.15 Forward Proof: Transforming Theorems.

77

Interactive Formal Verification
I2: More Operational Semantics

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Overview

® A small-step semantics for the A-calculus, along
with a big-step semantics and steps towards
proving their equivalence.

® More techniques involving Isar.

® To conclude, brief references to other Isabelle
tools and capabilities.

Our A-calculus

® The usual variables, abstractions and applications
® But also if-expressions and integer arithmetic

® Call-by-value means that the argument is evaluated
before a function is called by B-reduction

Taken from Jeremy Siek’s AFP entry
Declarative Semantics for Functional Languages

In the pure lambda calculus, integers and arithmetic can be defined through complicated encodings. Here we have a stripped-down
functional programming language with recognisable behaviour.

78

A A-Calculus Datatype

& Lambdathy

5 Lambda.hy (/Dropbor/Teach/Semantics_Lambdar)
‘typedecl name 5 p a
P variable names (unspecified) .
datatype exp = EVar name | ENat nat | ELam name exp | EApp exp exp g
| EPrim "nat = nat = nat" exp exp | EIf exp exp exp 5
fun FV :: "exp — name set" where g
YEV (EVar x) = {x}" arithmetic ops v
| "FV (ENat n) = {} £
| "FV (ELam x) = FV e - {x}" -
| “FV (EApp el e2) = FV el U FV e2" g
| "FV (EPrim f el e2) = FV el U FV e2" o
| "FV (EIf el e2 e3) = FV el U FV e2 U FV e3" g
fun BV :: "exp = name set" where 3
"BV (EVar x) = {}" ; H
| "BV (ENat n) = {}" free and bound variables
| "BV (ELam x) = BV e U {x}" in a A-expression
| "BV (EApp el e2) = BV el U BV e2"
| "BV (EPrim f el e2) = BV el U BV e2"
| "BV (EIf el e2 e3) = BV el U BV e2 U BV e3"
B v Output Query Sledgehammer Symbols
ene & SmaliStepLam.thy
0 SmalSteptam.thy (~/Dropbo/Teach/Semantics_Lambdal) B

text{*This substitution function is not capture avoiding, so v must be closed.*}
fun subst :: "name = exp = exp = exp" where
“subst x v (EVar y) = (if x = y then v else EVar y)*

| "subst x v (ENat n) = ENat n"

| “subst x v (ELam y e) = (if x = y then ELam y e else ELam y (subst x v e))*

| "subst x v (EApp el e2) = EApp (subst x v el) (subst x v e2)"

| “subst x v (EPrim f el e2) = EPrim f (subst x v el) (subst x v e2)"

| "subst x v (EIf el e2 e3) = EIf (subst x v el) (subst x v e2) (subst x v e3)"

‘text{*Normal forms (under CBV) include lambda-abstractions*}
inductive normal :: "exp = bool" where

nat: "normal (ENat n)" A-abstractions are
| lam: "normal (ELam x e)" not reduced
declare normal.intros [iff]

text{*Values are normal forms having no free variables*}
abbreviation is_value :: "exp = bool" where
“is_value v = normal v A FV v = {}"

© v Output Query Sledgehammer Symbols

values are certain
-expressions

Bul sauoeus awms pPEPIS vonmuAWMOA 4 B

Small-Step Semantics of
A-Calculus

(Ax.e)v — e[v/x] f(ny,np) — evaluate f on (ny, na)

ep — ¢} e — e
ejer — ehes ejer — eiéh
ep — ¢} e — e
fler,e) = f(e],e2) fler,e) = f(er,eh)
n#0

If(0, ey, _
©-e1.e2) = > If(n, ey, €2) — e

e—e
If(e, e1, e2) — If(e’, €1, €2)

Above, nrefers to an integer constant as opposed to a general expression, while v is either an integer or a A-abstraction (both of
which are values in our language). In the top line, we see that the argument of a function is evaluated to a value before the function
is called (by substitution). A built-in function f when applied to a pair of integers will reduce to another integer.

79

Small-Step Semantics in Isabelle

eoce & SmallStepLam.thy

»SmalStepLam.thy (-/Dropbos/Teach/Semantics_Lambda))]

inductive reduce :: "exp = exp = bool" (infix "—" 55) where
"is_value v — EApp (ELam x e) v — (subst x v e)"
| el — el' — EApp el e2 — EApp el' e2"

1 1 "e2 — e2' —; EApp el e2 — EApp el e2'"

| EPrim f (ENat nl) (ENat n2) — ENat (f nl n2)"

| prim_left: "el — el' —> EPrim f el e2 — EPrim f el' e2"

| prim_right: "e2 — e2' — EPrim f el e2 — EPrim f el e2'"

| if_zero: "EIf (ENat 0) el e2 — e2"
|

|

e

if_nz: “n # © — EIf (ENat n) el e2 — el"
if_e: "e — e' — EIf e el e2 — EIf e' el e2"
declare reduce.intros [intro]

inductive multi_step :: "exp = exp = bootd~linfix "—** 55) where
ms_nil: e —* e
| ms_cons: “[el — e2; e2 —* e3] —» el —* e3"

declare multi_step.intros [introl

giving the rules to

auto and blast

B~ Output Query Sledgehammer Symbols

Bul sauoeul s OpPRPIS UonmueWmN 4 B

A small-step semantics reduces A-expressions to other A-expressions one step at a time (hence the name). Formally, we define a
reduction relation between two expressions, each of type exp.

A Big-Step Semantics

pkEnin pkEx{ pkx) pbEAxel (x,e,p)

pledn pkeln
p F f(er,e2) | evaluate f on (ny, ny)

prel(x,e.p) prelw plw/xlkelv
pEeex v

pkell 0 plke v pkFeln n#0 pke Y v

p1Ife,er,e2) Y pFv2 pH1If(e,er,e2) § p v

Here environments p map variables to values, which are either integers or function closures; the latter are triples consisting of a
bound variable, expression and an environment. In other words, environments and values are mutually recursive. A big-step
semantics has fewer rules but lacks the ability to express fine points of execution. That doesn't cover problem here.

Big-Step Semantics in Isabelle

© BigStepLam.thy (~/Dropbox/Teach/ Semantics_Lambda/)

datatype bval ; .
= BNat nat values are integers
| BClos name exp "(name x bval) list" and closures
type_synonym benv = "(name x bval) list" .
environments and
fun lookup :: "('a x 'b) list = 'a = 'b option” where lookup function
“lookup [1 x = None"

| "lookup ((y,v)#1s) x = (if (x = y) then Some v else lookup 1s x)"

"benv = exp = bval = bool" ("_ I _ | _" [50,50,50] 51) where
I ENat n | BNat n"
okup o x = Some v — o I EVar x | v*
I ELam x e | BClos x e o"
o+ el | BNat nl; o+ e2 | BNat n2 ; n3 = f nl n2|
— o k- EPrim f el e2 | BNat n3"
eval_app: "[o F el § BClos x e o'; o - €2 b wi (x,w)#o' I e § v]
— o F EApp el e2 | v*
e BNat 0; o+ e2 || v2] = o - EIf e el e2 | v2"
el BNatn; n#0; oF el | vi] = ok EIf e el e2 | v1"
declare eval.intros [intro]

inductive eval

© v Output Query Sledgehammer Symbols

a
o
5

80

Rule inversion is so powerful in semantics proofs that it must be regarded as a necessity. But looping is a risk, especially if you
declare elim! (inductive_cases) or simp (inductive_simps).

Tips for Automatic Reasoning

® Declare introduction rules using intro or even
intro! if the form of the conclusion is unique.

® Use rule inversion (inductive_cases or
inductive_simps), with care.

Itisn't easy to see, but the if-rule causes a case split depending on whether the first around is zero or not. In all the other cases,

Rule Inversion for)\ Calculus only one rule matches and there is only one way the given value could have been computed.

eoe & BigStepLam.thy
2 BigStepLam thy (-/Dropbox Teach/Semantics_Lambida/) B

inductive_cases
eval_nat_invlelimt]
and eval_var_inv[elim!]:
and eval_lam_invIelim!]:
and eval_app_invIelil) - EApp el e2 | v*
and eval_prim_invlel o+ EPrim f el e2 | v*
and eval_if_invlelimil: "o b EIf e el e2 | v"

"o b ENat n § v
"o F EVar x | v"
"o+ ELam x e | v"

fthn eval_if_inv]]

1 Proof state @ Auto update Update | Search: v 100% <
70 - EIf 7e 7e1.0 7€2.0 | ?v; [?0 F 7e | BNat 0; 7o I 7€2.0 | 7v] —> 7P;
An. [?0 + 7e § BNat n; 0 < n; 20k 7e1.0 § ?v] = 7P|

— P s ~
will cause a case split!

Buwil seuoayl aws POEPIS UONEWAWNG { [

B v Output Query Sledgehammer Symbols.

As we have seen before, these complicated-looking subgoals are easy to prove with the help of rule inversion. But they are not

Determinacy of Our Semantics completely trivial and the full proof looks like this:

e ——— - theorem big_step_fun:

theoren assumes "p el v' "p+ e v'" shows "v = v'"

assumes "o - e |} v" "o e | v'" shows "v = v'" s

using assns apply (induction arbitrary: v') | using assms by (induction arbitrary: v') (blast | fastforce)+
Proof state Auto update Update | Search: v 100% °

proof (prove)
goal (7 subgoals):

Induction is performed followed by either blast or fastforce, repeatedly.

1. Aonv'. ok ENatn § v' — BNatn=v'

2. Ao x v v'. [lookup o x = Some v; o EVar x 4 v'] = v = v

3. Aoxev'. oFElamxe | v’ — BClos x e 0 = V'

4. Noelnle2n2n3fv',
[0+ el § BNat n1; Av'. ok el 4 v' — BNat nl = v'; o F e2 | BNat n2;
AV'. oF e2 | v' — BNatn2=v'; n3=fnln2 of EPrim f el e2 | v'|

— BNat n3 = v’
5. Avelxeo e2wvv'.

buwil sauceul s pPRPIS UonmuBWNOG 4 O

[o+ el 4 BClos x e o'; AV'. ok el § v' — BClos x e o' = v'; o+ €2 § w;
AN obe v —w=v; (x, W o Felvy;
Av'. (x, w) # o' kel v = v=v'; o EApp el e2 | v']
== v=yv'
6. Noee2v2el v'.
f[ob el BNat 0; Av'. o e | v — BNat © = v'; o e2 | v2;

B~ Output Query Sledgehammer Symbols

81

Towards Semantic Equivalence

ece & BigStepLamthy
© BigStepLam.thy (~/Dropbox Teach/Semantics_Lambda/)

subsection <Substitution wrt environments, and its propertiesf]

‘type_synonym env = "(name x exp) list"
fun esubst :: "env = exp — exp" where
“esubst o (ENat n) = ENat n"
| “esubst o (EVar x) = (case lookup o x of None = EVar x | Some v = v)"
| “esubst o (ELam x e) = ELam x (esubst ((x,EVar x)#o))"
| “esubst o (EApp el e2) = EApp (esubst o el) (esubst o e2)"
| "esubst o (EPrim f el e2) = EPrim f (esubst o el) (esubst o e2)"
|

"esubst o (EIf el e2 e3) = EIf (esubst o el) (esubst o e2) (esubst o e3)"

definition domain :: "env - name set" where
“domain o = {x. 3v. lookup o x = Some v A v # EVar x}"
definition closed_env :: “env = bool" where
“closed_env o = (¥x v. x € domain o — lookup o x = Some v — FV v = {})"
definition equiv_env :: "env — env = bool" where
“equiv_env o o' = domain o = domain o' A (vx & domain o. lookup o x = lookup o' x)"

B v Output Query Sledgehammer Symbols

buwil sauoaul WS PDEPIS UONEWAWN0G { B

Our previous substitution function replaced a single variable, but now we need a substitution function driven by an environment.
Later we shall prove that the two notions of substitution are equivalent. Note that the domain of an environment is the set of
variables that are not mapped to themselves. A closed environment contains only closed terms (those with no free variables). Two
environments are equivalent if their domains are the same and they agree on all variables.

Big vs Small-Step Values

eoe & Bigsteplamthy
BigStepLam thy (-/Dropbox Teach;Semantics_Lambca/)
text«Relating big-step and small-step values and environments>

inductive bs_val :: "bval = exp = bool" and bs_env :: "benv = env = bool" where
bs_nat: "bs_val (BNat n) (ENat n)"
| bs_clos: "[bs_env o o'; FV (ELam x (esubst ((x,EVar x)#0') e)) = {}]
> bs_val (BClos x e o) (ELam x (esubst ((x,EVar x)#s') e))"
| bs_nil: "bs_env [1 [1"
| bs_cons: "[bs_val w v; bs_env o o'] — bs_env ((x,w)#a) ((x,v)#s")"

declare bs_val_bs_env.intros [intro!]

inductive_cases
bsenv_nil_inv[elim!]: "bs_env [] o"
and bs_env_invilelim!1: "bs_env (u # o) o'*
and bs_clos_inv[elim!]: "bs_val (BClos x e o'') v1"
and bs_nat_inv[elim!]: "bs_val (BNat n) v*

lemma bs_val_is_val: "bs_val w v —> is_value v*
by (cases w) auto

Temna Tookup_bs_env:
“[bs_env o o'; lookup o x = Some w] — 3v. lookup o' x = Some v A bs_val w v"

by (induction g arbitrary: o' x w) autol]

B v Output Query Sledgehammer Symbols.

buwil ssuoayl ams poppls uonewwnod 4 @

Because big-step values and environments are mutually recursive, we declare them simultaneously. This declares a single internal
relation, bs_val_bs_env in addition to the two relations declared explicitly. These relations connect the values (bval versus exp)
and environments (benv versus env) of the two semantic definitions.

The construction of a correct closure (second line) is rather technical, while the construction of a new environment requires the
insertion of compatible values. (Note that p and p’ have different types!)

Proving Equivalence (!?!)

 BigStepLam.thy (-/Dropbox) Teach)Semantics_Lambca/)

theorem big_small_step:
assumes "o - e | w" "bs_env g o'" "FV e C set (map fst o)"
shows “3v. esubst o' e —* v A is_value v A bs_val w v"
using assms

proof (induction arbitrary: o' rule: eval.induct)

case (eval_app 0 el x e o' 2w v o)
then obtain v1 v2
where el_vl: “esubst o' el —* vi* and clos_vl: “"bs_val (BClos x e o') vi*
and e2_v2: “esubst o'’ e2 —* v2* and “is_value v2" “"bs_val w v2"
by simp blast
then have 12: “EApp (esubst o'' el) (esubst o'' e2) —* EApp v1 (esubst o'' e2)*
“EApp v1 (esubst o' e2) —* EApp vl v2"
by (simp_all add: app_red_congl el vl app_red_cong2 e2_v2)
obtain (2 where rpp_r2: "bs_env o' ;2" and fv_vl: "FV vl = {}"

HBnd vi_lam: "vi = ELam x (esubst ((x,EVar x)#,2) e)" and cr2: “closed_env ,2"
using clos_v1 bs_env_closed by auto

then have fve: "FV (esubst ((x,EVar x)#:2) e) = FV e - domain ((x,EVar x)#02)"
using esubst_fv[of "(x,EVar x)#.,2"] by (fastforce simp: closed_env_def)

Tet 7r2 = "((x, w) # 0")"

let 7r = "((x,v2) # o2)"

hava drd dre Ueat (man ot 2¢2) = damain 20" and rre Uhe anv 7210 2rt

O~ Output Query Sledgehammer Symbols

1S poppls uonewawng 4 @

Buny

Here we see only part of one case of the induction: for function applications. The full proof is complicated, and 80 lines long. (The
original on the AFP was considerably longer than that.)

The statement assumes that expression e evaluates (with the big step semantics) to some value w under an environment rho that
assigns values to all the free variables of e. (Note that the function domain is for small-step environments.) The theorem concludes
that the evaluates (with a small step semantics) to some value v that is equivalent to w.

Because of the existential claim in the theorem, the need to check free-variable conditions and to relate the intermediate values
between the two semantic definitions, we are forced to elaborately consider each step even in the evaluation of a single function
application. Quite a few additional lemmas are needed to get to this point. They aren't shown here but can be downloaded if you are
interested.

82

Finding Structured Proofs

 Examples thy (-/Dropbox TeachSemantics_Lambda))
lemma

fixes n::nat

shows "P n A Q n"
proof (induction n)

case (Suc n)

then show ?case

eoe 5 cuampesty
© Examples.thy (~/Dropbox/ Teach/Semantics_Lambda/)
proof (induction n)
case (Suc n)
‘then show ?case
apply -
apply/(rule conjI)

you need

apply -
proof (prove) 8 Proof state @ Auto update
using this: proof (prove)

PnAQn goal (1 subgoal):
1.PnAQn = P (Sucn) AQ (Suc n)

goal (1 subgoal):
1. P (Suc n) A Q (Suc n)

Failed to apply proof methoda:
using this:
BmAaGn It's okay to fool around
with apply, but what if

el (1 bl this keeps happening)

1. P (Suc n) A Q (Suq

O v Output Query Sledgehammer Symbols

A common way to arrive at structured proofs is to look for a short sequence of apply-steps that solve the goal at hand. If successful,
you can even leave this sequence (terminated by “done”) as part of the proof, though it is better style to shorten it to a use of “by”.

Sometimes however almost everything you try produces an error message. The problem may be that you are piping facts into your
proof using then/hence/thus/using. Some proof methods (in particular, “rule” and its variants) expect these facts to match a

premise of the theorem you give to “rule”. The simplest way to deal with this situation is to type apply -, which simply inserts
those facts as new assumptions. It would be very ugly to leave - as a step in your final proof, but it is useful when exploring.

Other Facets of Isabelle

® Document preparation: you can generate LATEX
documents from your theories.

® Axiomatic type classes:a general approach to

polymorphism and overloading when there are
shared laws.

® Code generation: you can generate executable
code from the formal functional programs you
have verified.

® Locales: encapsulated contexts, ideal for
formalising abstract mathematics.

See the Tutorial, section 4.2, for an introduction to document preparation.

Locales are documented in the “Tutorial to Locales and Locale Interpretation” by Clemens Ballarin, which can be downloaded from
Isabelle’s documentation page.

Axiomatic Type Classes

e Controlled overloading of operators, including +
- x /M < and even gcd

® Can define concept hierarchies abstractly:

® Prove theorems about an operator from its
axioms

¢ Prove that a type belongs to a class, making
those theorems available

® Crucial to Isabelle’s formalisation of arithmetic

Axiomatic type classes are inspired by the type class concept in the programming language Haskell, which is based on the following
seminal paper:

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In 16th Annual Symposium on Principles of
Programming Languages, pages 60—-76. ACM Press, 1989.

A very early version was available in Isabelle by 1993:

Tobias Nipkow. Order-sorted polymorphism in Isabelle. In Gérard Huet and Gordon Plotkin, editors, Logical Environments, pages
164-188. Cambridge University Press, 1993.

More recent papers include the following:

Markus Wenzel. Type Classes and Overloading in Higher-Order Logic. In: Elsa L. Gunter and Amy P. Felty, Theorem Proving in
Higher Order Logics. Springer Lecture Notes In Computer Science 1275 (1997), 307 - 322.

83

Code Generation

Isabelle/HOL formulas can be translated to
equivalent ML and Haskell code.

Inefficient and non-executable parts of
definitions can be replaced by equivalent,
efficient terms.

Algorithms can be verified and then executed.

The method eval provides reflection: it proves
equations by execution.

See “Code generation from Isabelle/HOL theories”, by Florian Haftmann; it can be downloaded from Isabelle’s documentation page.

The End

You know my methods. Apply them!

Sherlock Holmes

84

