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Abstract. In this paper we introduce a new class of shortest path prob-
lems, where the contribution of a link to the path length computation
depends not only on the weight of that link but also on the weights of the
links already traversed. This class of problems may be viewed as “non-
Markovian”. We consider a specific problem that belong to this class,
which is encountered in the multimedia data transmission domain. We
consider this problem under different conditions and develop algorithms.
The shortest path problem in multimedia data transmission environment
can be solved in O(n2) or O(n3) computational time.

1 Introduction

Path problems have been extensively studied by many researchers of Computer
Science and Operations Research because of its applications in many problems
in these domains. In most of these problems, one or more weights are associated
with a link representing, among other things, the cost, delay or the reliability of
that link. The objective most often is to find a least weighted path between a
specified source-destination pair. In almost all the path problems studied so far
(and discussed in the literature), the contribution of a link to the path length
computation depends only on the weight of that link and is independent of the
weights of the links already traversed. This condition is similar to a Markov chain
where the next state is dependent only on the current state and is independent of
the past states. In this paper, we introduce a new variant of the path problem. In
this variant, the contribution of a link to the path length computation depends
not only on the weight of that link but also on the weights of the links already
traversed. This class of problems may be viewed as “non-Markovian” as the
contribution of a link towards the path length depends on the current link as well
as the links traversed in the past on the path from the source to the destination.

G. Pujolle et al. (Eds.): NETWORKING 2000, LNCS 1815, pp. 859–870, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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As an example, we consider a specific problem that belongs to this class. This
problem is encountered in the multimedia data transmission domain. We consider
this problems under different conditions and develop appropriate algorithms.
The shortest path problem in multimedia data transmission environment can
be solved in O(n2) or O(n3) computational time. We also provide mathematical
programming solutions for this problem.

2 Prior Work

Shortest path problems are among the most widely studied problems in Com-
puter Science and Operations Research. Because of its wide applications in many
diverse domains, these problems have been studied for at least the last forty years
[1,4,5]. In the earliest version of the shortest path problem [1,4,5], a weight is
associated with each link of the network and the path length is computed by
summing up the weights of the links belonging to the path. In a generalization
of this version of the problem, multiple weights are associated with each link of
the network. If there are m different weights associated with each link of the
network, there are m different path lengths associated with each path. The i-th
path length, (1 ≤ i ≤ m), is obtained by summing up the i-th weights of the
links belonging to the path. This version of the shortest path problem is known
as multicriteria shortest path problem or constrained shortest path problem and is
fairly extensively studied in [6,8,12]. In view of the attention that the Quality of
Service issues have received in the networking community in recent years, study
of this version of the shortest path problem has become increasingly important
[14].

Another version of the shortest path problem that has received considerable
attention is the one where the weights associated with the links of the network
are allowed to change with time. Both centralized as well as distributed algo-
rithms for the shortest path in this scenario have been developed under various
waiting constraints in [9,10]. In yet another version of the problem, each link,
e, of the network has two weights, transit time b(e, u) and cost c(e, u), where
u is the departure time at the starting node of the link. In this version, the
problem is to find the least cost path such that the total traversal time is below
some prespecified threshold value T . A dynamic programming algorithm for the
shortest path problem with time windows and additional linear costs on node
service start times is presented in [7]. In [11] the authors consider a version of the
problem termed as the quickest path problem, where the objective is to transfer
a specified amount of data from the source to the destination with minimum
transmission time. The transmission time in this problem is dependent on both
the capacities and the traversal times of the links in the network. The shortest
path problem in multimedia data transmission environment is discussed in [3].
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3 Problem Formulation

In the classical path problem, each edge ei ∈ E of the graph G = (V, E) has a
weight wi associated with it and if there is a path P from the node v0 to vk

v0
w1→ v1

w2→ v2
w3→ . . .

wk→ vk

then the path length or the distance between the nodes v0 and vk is given by

PL(v0, vk) = w1 + w2 + · · · + wk

This model is valid as long as the weights on the links represents the cost or the
delay associated with the link. However, if the weight represents the reliability
or the bandwidth associated with the link, then addition of the link weights on
the path is not meaningful. In case, the weights represent the reliability, the
calculation once again becomes meaningful if the addition operator is replaced
by a multiplication operator. In case, the weight represents the bandwidth, the
calculation becomes meaningful if a minimum operator replaces the addition
operator. Thus a generalization of the path length will be

PL(v0, vk) = w1 ⊕ w2 ⊕ w3 ⊕ · · · ⊕ wk

where ⊕ is a suitable operator for the particular application. In [14], the authors
consider three diferent types of operators and call them additive, multiplicative,
and concave metrics respectively.

At the next level of generalization, the path length computation is based on
not the link weight itself but a function of the link weight. In this case the path
length is given by

PL(v0, vk) = f(w1) ⊕ f(w2) ⊕ f(w3) ⊕ · · · ⊕ f(wk)

where f(wi) can be any function of the link weight wi, appropriate for the
particular application.

At the next higher level of generalization each link has multiple weights asso-
ciated with it. This model realistically captures the data transmission environ-
ment where the Quality of Service (QoS) issues are of paramount importance.
The various weights associated with a link may represent among other things,
the delay, the cost, the jitter, the cell loss rate etc. In this case the path length
computation is carried out in one of the following two ways:

Case I: In this case each path has multiple path lengths associated with it. If
(wi,1, wi,2, . . . , wi,m) are m different link weights associated with the link ei, then
there are m different path lengths, [PL1(v0, vk), . . . , PLm(v0, vk)], associated
with a path between a given source node v0 and a given destination node vk,
where

PLi(v0, vk) = f(w1,i) ⊕ f(w2,i) ⊕ · · · ⊕ f(wk,i)
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This class of problems is known as the multicriteria optimization problems and
is studied in [6,8,12,14].

Case II: In this case each path has a single path length associated with it:

PL(v0, vk) = f(w1,1, . . . , w1,m) ⊕ f(w2,1, . . . , w2,m) ⊕ · · · ⊕ f(wk,1, . . . , wk,m)

It may be noted that this formulation gives rise to a single criterion optimization
problem as opposed to the multiple criteria optimization problem in Case I.

Both Case I and Case II of the previous level can be further generalized at
the next higher level. As in the previous case, each link has multiple weights
associated with them. In this level of generalization, the contribution of a link in
the path length computation depends not only on the weights associated with
that link but also on the weights of the links already traversed. In this case the
path length, [PL1(v0, vk), . . . , PLm(v0, vk)], for Case I is such that

PLi(v0, vk) = f(w1,i) ⊕ · · · ⊕ f(w1,i, · · · , wk,i).

At this level of generalization, the path length for Case II is

PL(v0, vk) = f(w1,1, . . . , w1,m) ⊕ f(w1,1, . . . , w1,m, w2,1, . . . , w2,m) ⊕ · · · ⊕
f(w1,1, . . . , w1,m, . . . , wk,1, . . . , wk,m).

We say that the edges in this category have “non-Markovian” link contribu-
tions.

4 Path Problem in Multimedia Data Transmission

The example path problem discussed in this paper belongs to this last category.
This problem is based on a multimedia data transmission model we recently pre-
sented in [3]. The model allows an active network to perform certain operations
to the data at the network nodes. These operations, such as format conversions
for distributed multimedia collaborations and lossy/lossless compressions may
change the sizes and qualities of multimedia object being transmitted. In this
paper, we use a subset of this model, where the quality is not taken into account
for path selection.

In the variant of the path problem for the multimedia data transmission,
each edge ei has two weights, δi and si associated with it, δi ≥ 0 and si ≥ 0.
These two weights are referred to as (i) the per unit delay factor and (ii) the size
factor respectively. If P is a path from the node v0 to vk,

v0
δ1,s1→ v1

δ2,s2→ v2
δ3,s3→ . . .

δk,sk→ vk.

then the path length or the total delay between the nodes v0 and vk denoted
PL(v0, vk) is given by

PL(v0, vk) = δ1 + s1δ2 + s1s2δ3 + . . . + s1 . . . sk−1δk

=
k∑

i=1

δi

i−1∏

j=1

sj with
0∏

j=1

sj = 1.
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It is clear that the path length in this case fits into the most general case
discussed in the previous paragraph with m = 2, wi,1 = δi, wi,2 = si and
f(w1,1, w1,2, w2,1, w2,2, . . . , wi,1, wi,2) = s1s2 . . . si−1δi, for all i, 1 ≤ i ≤ k, and
s0 = 1.

The physical significance of the parameters δi and si are as follows: The
transmission delay is clearly proportional to the size of the multimedia data file
being transmitted. Therefore we consider the per unit delay factor δi and to com-
pute the total delay, we multiply δi with the size of the file being transmitted. As
a multimedia data file travels through different nodes in a network on its jour-
ney from the source to the destination, it passes through some transformation
algorithms. As a result, the size of the multimedia data file may change. The
size factor si captures this aspect of multimedia data transmission. We remark,
however, that the total delay remains proportional to the amount of data trans-
mitted along the path. Therefore, the expression for the path length (or total
delay) stated above is given for transmitting one unit of data from the source to
the destination.

4.1 Why Is This Problem Different?

The length of a path P (v0, vk) : v0→v1→v2→ . . .→vk, in the multimedia data
transmission problem, is given by PL(v0, vk) = δ1 + s1δ2 + s1s2δ3 + . . . +
s1 . . . sk−1δk. The traditional shortest path algorithms such as the Dijkstra’s
algorithm make the observation that “subpaths of shortest paths are shortest
paths” and exploits it to develop the shortest path algorithm.

In other words, to get to the destination from the source using the shortest
path, the intermediate nodes must be visited using the shortest path from the
source to the intermediate nodes. This is true because, the path length in this case
is computed as the sum of weights on the links that make up the path. In case
of multimedia data transmission problem, where the path length is not computed
as the sum of the links weights, this is no longer true. This is demonstrated with
an example shown in Figure 1. The δi and si values associated with the links of
this graph is also given in Figure 1.

With this data set the length of the path, S → C → X → D → T , is
δS,C +sS,CδC,X +sS,CsC,XδX,D +sS,CsC,XsX,DδD,T = 1+3.1+3.1.1+3.1.1.1 =
1+3+3+3 = 10 whereas the length of the path S → A → B → X → D → T is
δS,A +sS,AδA,B +sS,AsA,BδB,X +sS,AsA,BsB,XδX,D +sS,AsA,BsB,XsX,DδD,T =
1 + 1.1 + 1.1.1 + 1.1.4.1 + 1.1.4.1.1 = 1 + 1 + 1 + 4 + 4 = 11. Thus the path
S → C → X → D → T is shorter than the path S → A → B → X → D → T
in the example. However, in this example the length of the path S → C → X is
1 +3.1 = 4, which is greater than the length of the path S → A → B → X, 1 +
1.1 + 1.1.1 = 3.

On the other hand, the path length function in the multimedia data transmis-
sion problem has an interesting property and this property is utilized to establish
the following lemma.

Lemma 1. Given a weighted directed graph G = (V, E) with weight functions
(δi, si), associated with each link ei, (ei ∈ E, 1 ≤ i ≤ |E|), and the length of a



864 A. Sen et al.

S T
X

A B

C

D

(S,A) (S,C) (A,B) (B,X) (C,X) (X,D) (D,T)
Delay factor (δ) 1 1 1 1 1 1 1
Size factor (s) 1 3 1 4 1 1 1

Fig. 1. An Example Graph for MMD Transmission and the Associated Delay and Size
Factors

path P (v0, vk) : v0→v1→ . . .→vk is computed as PL(v0, vk) = δ1+s1δ2+s1s2δ3+
. . .+s1 . . . sk−1δk. Let P (v0, vk) : v0→v1→ . . .→vk be a shortest path from vertex
v0 to vertex vk and for any i, 1 ≤ i ≤ k − 1, let P (vi, vk) : vi→vi+1→ . . .→vk

be a subpath of P from vertex vi to vertex vk. Then P (vi, vk) is a shortest path
from vi to vk, 1 ≤ i ≤ k.

The proof of the lemmas and theorems in this paper are omitted for space
considerations. The proofs may be found in [13].

4.2 Path Problem in Multimedia Data Transmission
with No Reduction in Size

In this subsection, we consider a special case where the size factor, si, associated
with a link ei is greater than or equal to unity for all the links. This implies
that the data size will never reduce from its original size while passing through
a link. The more general case where the size factor, si, does not have any such
restriction (i.e., si is allowed to be less than unity) will be considered in the next
subsection.

Beacuse of lemma 3 and the fact si ≥ 1, δi ≥ 0, we can apply a modified
version of Dijkstra’s algorithm to solve the shortest path problem in the multi-
media data transmission environment. The traditional version of the algorithm
starts from the source node and computes the shortest path to other nodes until
it finds the shortest path to the destination. In this modified version, we start
from the destination node and compute the shortest path from other nodes to
the destination nodes until it finds the shortest path from the source to the
destination node. The algorithm is given in Figure 2.

Theorem 1. If ∀i, j the delay factor δ(i, j) ≥ 0 and the size factor s(i, j) ≥ 1
then the above algorithm correctly computes the shortest path from any node
i, 1 ≤ i ≤ n − 1 to the destination node n.

Theorem 2. The complexity of the algorithm is O(n2).
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Shortest Path Algorithm for Multimedia Data Transmission Environ-
ment
Input: The directed graph G = (V, E), (V = {1, 2, . . . , n}), two n × n matrices
δ and s, the (i, j)-th entry of the matrices stores the delay factor δ and the size
factor s of the link from the node i to node j. If there is no link from the node i to
j, both δi,j and si,j is taken to be ∞. Without any loss of generality, we assume
that the node 1 is the source node and node n is the destination node.
Output: Array D(1, . . . , n), that stores the shortest path length from node i to
the destination node n for all i, 1 ≤ i ≤ n.
Comments: The algorithm starts from the destination node and in each iteration
finds the shortest path from a node i in the graph to the destination node n,
1 ≤ i ≤ n − 1 .

begin
C := {1, 2, . . . , n − 1};
for i := n − 1 downto 1 do

D[i] := δ[i, n]
repeat n − 2 times

begin
v := i ∈ C such that D[i] has the minimum value;
C := C \ {v};
for each w ∈ C do

D[w] := min(D[w], δ[w, v] + s[w, v]D[v]);
end

end

Fig. 2. Shortest Path Algorithm for Multimedia Data Transmission Environment

An example graph and the corrsonding result of the execution of the algo-
rithm on the graph is shown in Figure 3 (the source node is 1 and the destination
is 6). The shortest path length from the node 1 to node 6 is 5 and the path is
v1 → v3 → v4 → v6.

It is well known that if the path length is measured as the sum of the weights
on the links, Dijkstra’s algorithm fails to compute the shortest path betwen
the source-destination nodes, in case some of the link weights are negative. For
exactly the same reason, our modified version of the Dijkstra’s algorithm fails to
compute the shortest path if si,j < 1. An example of the case where the above
algorithm fails to compute the shortest path is shown in Figure 4. The δi and si

values associated with the links of this graph is also given in Figure 4 (a). The
result of the execution of the modified Dijkstra algorithm on this graph is shown
in Figure 4.

At the termination of the algorithm, the shortest path length between the
source node S and the destination node T is given as 6 and the path is S →
A → X → D → T (δS,A + sS,AδA,X + sS,AsA,XδX,D + sS,AsA,XsX,DδD,T = 1 +
1.2 + 1.1.2 + 1.1.1.1 = 6). However, this result is incorrect because the length
of the path S → A → X → B → C → T is δS,A + sS,AδA,X + sS,AsA,XδX,B +
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1

2

3

4

5

6

(1, 2)

(1, 1)

(1, 2)

(2, 1)

(2, 3)

(1, 3)

(3, 2)

(2, 2)

(3, 1)

(2, 2)

(a)

Nodes of the Graph
Iteration

1 2 3 4 5 6
1 ∞ ∞ ∞ 1∗ 3 0
2 ∞ 3 4 1 3∗ 0
3 ∞ 3∗ 4 1 3 0
4 7 3 4∗ 1 3 0
5 5∗ 3 4 1 3 0

(b)

Fig. 3. (a) An Example Graph for MMD transmission and (b) the Corresponding
Shortest Path Computation

S T
X

C

D

A

B

(S,A) (A,X) (X,B) (X,D) (B,X) (C,T) (D,T)
δ 1 2 1 2 2 2 1
s 1 1 0.25 1 1 1 1

(a)

Nodes of the Graph
Iteration

S A X B C D T
1 ∞ ∞ ∞ ∞ 2 1∗ 0
2 ∞ ∞ 3 ∞ 2∗ 1 0
3 ∞ ∞ 3∗ 4 2 1 0
4 ∞ 5 3 4∗ 2 1 0
5 ∞ 5∗ 3 2 1 0
6 6∗ 5 3 4 2 1 o

(b)

Fig. 4. (a) An Example Graph for MMD Transmission and (b) the Corresponding
Shortest Path Computation

sS,AsA,XsX,BδB,C + sS,AsA,XsX,BsB,CδC,T = 1 + 1.2 + 1.1.1 + 1.1.(0.25).2 +
1.1.(0.25).1.2 = 5. In this case, the algorithm computes the shortest path length
incorrectly, because one of the size factors, sX,B < 1 (sX,B = 0.25).

4.3 Path Problem in Multimedia Data Transmission
with Reduction in Size

It was mentioned in the previous section that in this path problem if some size
factor si < 1, it has the same effect as a negative weighted link in a traditional
shortest path problem. The example given earlier, shows that our version of the
Dijktra’s algorithm fails to correctly compute the shortest path from the source
to the destination in this situation. In the traditional shortest path problem,
where the path length is computed as the sum of the weights on the links of
a path, there is a notion of a negative weighted cycle. A cycle is referred to as
a negative weighted cycle if the sum of the weights on the links making up the
cycle is a negative number. The multimedia data transmission problem that is
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1
2 3

4

Delay Factor δ Size Factor s

δ1,2 = d1 s1,2 = 1
δ2,3 = ε s2,3 = 1/p

δ3,2 = ε s3,2 = 1/p

δ3,4 = d2 s3,4 = 1

Fig. 5. An Example Graph with Negative Weighted Cycle and the Associated Delay
and Size Factors

presently under consideration, both the weights (the delay factor δi and size
factor si) associated with a link ei, are non-negative. However, in this problem
path length is computed in a different way. In this problem also we have a notion
of a negative weighted cycle. The implication of such a negative weighted cycle
is that the data size decreases every time it goes around such a cycle in such a
way that the total delay is also reduced every time the data goes around such a
cycle. An example of such a phenomenon is given next.

Consider the graph in Figure 5 with the nodes 1 and 4 being the source
and the destination respectively. The nodes 2 and 3 form a loop, as shown in the
figure. Now, consider the path 1 → 2 → 3 → 4. This is a no loop path between the
nodes 1 and 4. The path length of this path is d1+1.ε+1.(1/p).d2 = d1+ε+d2/p.
The length of the path from 1 to 4, if it passes through the loop 1, 2, . . . , k times
is

d1 + (1 + 1/p + . . . + 1/p2k)ε + d2/p2k+1.

Thus the path length increases by ((p + 1)/p2k+2)ε and decreases by ((p2 −
1)/p2k+3)d2 if the number of times the path goes through the loop increases from
k to k + 1. If d2 is much larger than ε, then the total decrease is much larger
than the total increase and as a result if the path goes through the loop one
more time, the path length decreases. The situation is similar to the negative
weighted cycle problem in the traditional shortest path length.

In the path problem for multimedia data transmission environment, we can
compute the shortest path between a specified source-destination pair, even with
“negative” weights (i.e., with size factor si < 1) on the links, as long as there
is no negative weighted cycles in the graph. We use a modified version of the
Bellman-Ford algorithm for this purpose.

Just like the traditional Bellman-Ford algorithm, we find the shortest path
lengths subject to the constraint that paths contain at most one link, then relax
the condition on the length of the path and find the shortest path length subject
to the constraint that paths contain at most two links and so on. Using the same
terminology and notations as in [2] we call the shortest path that uses at most
h links as the shortest (≤ h) path.

Suppose that Dh
i denotes the shortest (≤ h) path length from node i to the

destination node n, (1 ≤ i ≤ n − 1). Dh
n = 0 for all h. The algorithm is given

in Figure 6.
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Shortest Path Algorithm for Multimedia Data Transmission Environ-
ment
Input: The directed graph G = (V, E), (V = {1, 2, . . . , n}), two n × n matrices
δ and s, the (i, j)-th entry of the matices stores the delay factor δ and the size
factor s of the link from the node i to node j. If there is no link from the node i to
j, both δi,j and si,j is taken to be ∞. Without any loss of generality, we assume
that the node 1 is the source node and node n is the destination node.
Output: The shortest path length from every node in the graph to the destination
node n.
Comments: The algorithm starts from the destination node and in each iteration
finds the shortest (≤ h) path from a node i in the graph to the destination node
n, 1 ≤ i, h ≤ n − 1 .

begin
for i := 1 to n-1 do

D0
i := ∞;

for i := 1 to n-1 do
D1

i := δ(i, n);
for h := 1 to n-2 do

for i := 1 to n-1 do
Dh+1

i := min1≤j≤n−1[s(i, j)Dh
j + δ(i, j)];

end

Fig. 6. Shortest Path Algorithm for Multimedia Data Transmission Environment

Theorem 3. If the graph G = (V, E) does not contain any negative weighted
cycle, then the above algorithm correctly computes the shortest path length from
any node i, 1 ≤ i ≤ n − 1 to the destination node n, even when some of the size
factors si associated with a link ei is less than 1.

Theorem 4. The complexity of the algorithm is O(n3).

An example of the result of the execution of the algorithm on the graph in
Figure 4 is shown in Table 1.

4.4 Mathematical Programming Solution to the Path Problem in
Multimedia Data Transmission

In this subsection we show that the shortest path problem for the multimedia
data transmission problem can also be solved using mathematical programming
techniques.

Given a graph G = (V, E) with weights δi and si associated with each link
ei ∈ E and two specified vertices s and t, the problem is to find a shortest (or
the least weighted) path from s to t.

In the mathematical programming formulation of the problem, we associate a
binary indicator variable xi,j with each link i, j of the directed graph G = (V, E).
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Table 1. Shortest Path Computation for the Graph in Figure 4 using modified
Bellman-Ford Algorithm

Nodes of the Graph
Iteration Number

S A X B C D T
1 ∞ ∞ ∞ ∞ 2 1 0
2 ∞ ∞ 3 4 2 1 0
3 ∞ ∞ 2 4 2 1 0
4 ∞ 4 2 4 2 1 0
5 5 4 2 4 2 1 0
6 5 4 2 4 2 1 0

By assigning a zero or a one to the variable xi,j the solution indicates whether or
not the link i, j is a part of the shortest path from the source to the destination.
We also introduce two other variables yi,j and zi,j , (1 ≤ i, j ≤ |V |). By assigning
a value to the variable yi,j (resp. zi,j), the solution indicates how much data is
entering (resp. leaving) the link (i, j).
Minimize

∑
(i,j)∈E δi,jyi,j subject to the following constraints:

1.
∑

{j|(i,j)∈E} xi,j −∑
{j|(j,i)∈E} xj,i = ri,∀i ∈ V ri = 1 if i is the source node,

ri = −1 if i is the destination node and ri = 0 if i is any other node.
2. ys,j = xs,j∀j ∈ V − {s} and (s, j) ∈ E, (s is the source node)
3.

∑
{j|(i,j)∈E} yi,j − ∑

{j|(j,i)∈E} zj,i = 0,∀i ∈ V − {s, t}
4. zi,j = si,jyi,j ,∀(i, j) ∈ E
5. zi,j ≤ Kxi,j ,∀(i, j) ∈ E where K is a large constant.

The first constraint establishes a path from the source to the destination.
As data passes through a link (i, j), its size changes by a factor si,j . This is
ensured by the constraint (iv). The delay keeps accumulating as the data file
passes through various links on its journey from the source to the destination.
This aspect is captured by the constraint (iii). The purpose of constraint (v) is
to ensure that the variable zi,j does not have a non-zero value when xi,j = 0,
i.e., when the the link (i, j) is not a part of the path from the source to the
destination. The contribution of the delay factor δi,j associated with the link
(i, j) is taken into account in the objective function of the formulation.

5 Conclusion

In this paper we introduced a new class of the shortest path problems. In this
class of path problems, the contribution of a link towards the path length depends
not only on the weight of the link itself but also on the weights of all the links
traversed before traversing the link under consideration. We considered a specific
path problem that belong to this new class. This problem is encountered in
multimedia data transmission domain. Exploiting an interesting property of the
multimedia transmission path problem, we could develop low order polynomial
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time algorithms for this problem. Additionally, we could solve this problem using
mathematical programming techniques. Other path problems that belong to this
class are currently under investigation.
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