L11: Algebraic Path Problems with applications to Internet Routing Lectures 1 and 2

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2018

	4		★ E ★ ★ E ★ _ E	~ ~ ~
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with application of the second sec	E	T.G.Griffin©2018	1 / 36

Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +, \infty, \mathbf{0})$

The adjacency matrix

	1	2	3	4	5	
1	∞	2	1	6	∞	-
2	2	∞	5	∞	4	
3	1	5	∞	4	3	
4	6	∞	4	∞	∞	
5	\sim	4	3	∞	∞	_

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Shortest paths solution

			1	2	3	4	5	
		1 [0	2	1	5	4	٦
		2	2	0	3	7	4	
A *	=	3	1	3	0	4	3	
		4	5	7	4	0	7	
		5	4	4	3	7	0	

solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \min_{\mathbf{p} \in \pi(i, j)} \mathbf{w}(\mathbf{p}),$$

where $\pi(i, j)$ is the set of all paths from *i* to *j*.

```
・ロト ・回ト ・ヨト ・ヨト
                                                                                               500
tgg22 (cl.cam.ac.uk)
                           L11: Algebraic Path Problems with applica
                                                                            T.G.Griffin © 2018
                                                                                               3 / 36
```

Widest paths example, $bw = (\mathbb{N}^{\infty}, max, min, 0, \infty)$

			1	2	3	4	5	
		1 [∞	4	4	6	4	-
		2	4	∞	5	4	4	
A *	=	3	4	5	∞	4	4	
		4	6	4	4	∞	4	
		5	4	4	4	4	∞	

solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \max_{\mathbf{p} \in \pi(i, j)} \mathbf{w}(\mathbf{p}),$$

(日)

where w(p) is now the minimal edge weight in p.

Sar

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap, \{\}, \{a, b, c\})$

We want **A*** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcup_{\boldsymbol{p} \in \pi(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that there is at least one path from *i* to *j* with *x* in every arc weight along the path.

$$A^*(4, 1) = \{a, b\}$$
 $A^*(4, 5) = \{b\}$

tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	T.G.Griffin©201	8	5 / 36
	٠. •	 ◆ 클 → < 클 → 	Ð.	୬୧୯

Another unfamiliar example, $(2^{\{a, b, c\}}, \cap, \cup)$

We want matrix **R** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcap_{\mathbf{p} \in \pi(i, j)} \mathbf{w}(\mathbf{p}),$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that every path from *i* to *j* has at least one arc with weight containing *x*.

< 同 > < 三 > < 三 >

Sar

Semirings (generalise $(\mathbb{R}, +, \times, 0, 1)$)

name	S	\oplus ,	\otimes	$\overline{0}$	1	possible routing use
sp	\mathbb{N}_∞	min	+	∞	0	minimum-weight routing
bw	\mathbb{N}_∞	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1	usable-path routing
	2 ^{<i>W</i>}	\cup	\cap	{}	W	shared link attributes?
	2 ^{<i>W</i>}	\cap	\cup	W	{}	shared path attributes?

A wee bit of notation!

Symbol	Interpretati	on			
\mathbb{N}	Natural nur	nbers (starting with zero)			
\mathbb{N}_∞	Natural nur	nbers, plus infinity			
0	Identity for \oplus				
1	Identity for \otimes				
taa22 (cl	cam ac uk)	L11: Algebraic Path Problems with applica	TG Griffin©2018	7/36	

Recommended (on reserve in CL library)

DQ (~

Semiring axioms ...

We will look at all of the axioms of semirings, but the most important are

			596
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	T.G.Griffin©2018	9 / 36

Distributivity, illustrated

Should distributivity hold in Internet Routing?

L11: Algebraic Path Problems with applica

Widest shortest-paths

tgg22 (cl.cam.ac.uk)

- Metric of the form (*d*, *b*), where *d* is distance (min, +) and *b* is capacity (max, min).
- Metrics are compared lexicographically, with distance considered first.
- Such things are found in the vast literature on Quality-of-Service (QoS) metrics for Internet routing.

T.G.Griffin(C)2018

Widest shortest-paths

Weights are globally optimal (we have a semiring)

Widest sho	ortes	st-path w	eights co	mputed l	oy Dijkstr	a and	
Bellman-F	ord						
		0	1	2	3	4	
	οΓ	$(0,\infty)$	(1, 10)	(3 , 10)	(2,5)	(2,10)]	
	1	(1,10)	$(0,\infty)$	(2,100)	(1,5)	(1,100)	
R =	2	(3, 10)	(2,100)	$(0,\infty)$	(1,100)	(1,100)	
	3	(2, 5)	(1,5)	(1,100)	$(0,\infty)$	(2,100)	
	4	(2,10)	(1,100)	(1,100)	(2,100)	$(0,\infty)$	

But what about the paths themselves?

	4	 < Ξ > < Ξ >	E
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	T.G.Griffin©2018	15 / 36

Surprise!

Four optimal paths of weight (3, 10)
$\begin{array}{rcl} \textbf{P}_{optimal}(0,2) &=& \{(0,1,2),\; (0,1,4,2)\} \\ \textbf{P}_{optimal}(2,0) &=& \{(2,1,0),\; (2,4,1,0)\} \end{array}$
Paths computed by (extended) Dijkstra
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Notice that 0's paths cannot both be implemented with next-hop forwarding since $\mathbf{P}_{\text{Dijkstra}}(1,2) = \{(1,4,2)\}.$
Paths computed by distributed Bellman-Ford
$\begin{array}{llllllllllllllllllllllllllllllllllll$

igg_{22} (cl.call.ac.uk)	tgg22	(cl.cam.ac.uk)
----------------------------	-------	----------------

nac

(日) (日) (日)

Optimal paths from 0 to 2. Computed by Dijkstra but not by Bellman-Ford

Optimal paths from 2 to 1. Computed by Bellman-Ford but not by Dijkstra

How can we understand this (algebaically)?

Towards a non-classical theory of algebraic path finding

We need theory that can accept algebras that violate distributivity.

Global optimality

$$\mathbf{A}^*(i, j) = \bigoplus_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

Left local optimality (distributed Bellman-Ford)

$$\mathsf{L} = (\mathsf{A} \otimes \mathsf{L}) \oplus \mathsf{I}.$$

Right local optimality (Dijkstra's Algorithm)

 $\mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}.$

Embrace the fact that all three notions can be distinct.

	141. Alashasis Dath Dashlama with spalis		-			-	
lggzz (cl.cam.ac.uk)	LTT: Algebraic Path Problems with application	ć	I	I.G.GII	111(C)2016	8	20/36

Lecture 2

- Semigroups
- A few important semigroup properties
- Semigroup and partial orders

	4	□▶∢@▶∢≣▶∢≣▶	E
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with application of the second sec	T.G.Griffin©2018	21 / 36

Semigroups

Note

Many useful binary operations are not semigroup operations. For example, (\mathbb{R}, \bullet) , where $a \bullet b \equiv (a + b)/2$.

Sac

Some Important Semigroup Properties

\mathbb{ID}	identity	\equiv	$\exists \alpha \in \boldsymbol{S}, \ \forall \boldsymbol{a} \in \boldsymbol{S}, \ \boldsymbol{a} = \alpha \bullet \boldsymbol{a} = \boldsymbol{a} \bullet \alpha$
\mathbb{AN}	annihilator	\equiv	$\exists \omega \in S, \ \forall a \in S, \ \omega = \omega \bullet a = a \bullet \omega$
\mathbb{CM}	commutative	\equiv	$\forall a, b \in S, \ a \bullet b = b \bullet a$
\mathbb{SL}	selective	\equiv	$\forall a, b \in S, a \bullet b \in \{a, b\}$
\mathbb{IP}	idempotent	\equiv	$\forall a \in S, a \bullet a = a$

A semigroup with an identity is called a monoid.

	4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with application of the second sec	T.G.Griffin©2018	23 / 36

A few concrete semigroups

S	•	description	α	ω	\mathbb{CM}	SL	\mathbb{IP}
S	left	x left $y = x$				*	*
S	right	x right $y = y$				*	*
S^*	•	concatenation	ϵ				
\mathcal{S}^+	•	concatenation					
$\{t, f\}$	\wedge	conjunction	t	f	*	*	*
$\{t, f\}$	\vee	disjunction	f	t	*	*	*
\mathbb{N}	min	minimum		0	*	*	*
\mathbb{N}	max	maximum	0		*	*	*
2 ^{<i>W</i>}	\cup	union	{}	W	*		*
2 ^{<i>W</i>}	\cap	intersection	W	{}	*		*
$fin(2^U)$	\cup	union	{}		*		*
$fin(2^U)$	\cap	intersection		{}	*		*
\mathbb{N}	+	addition	0		*		
\mathbb{N}	×	multiplication	1	0	*		

W a finite set, *U* an infinite set. For set *Y*, fin(*Y*) = $\{X \in Y \mid X \text{ is finite}\}$

A few abstract semigroups

S	•	description	α	ω	\mathbb{CM}	SL	\mathbb{IP}
2 ⁰	U	union	{}	U	*		*
2 ^{<i>U</i>}	\cap	intersection	U	{}	*		*
$2^{U \times U}$	\bowtie	relational join	ΊU	{}			
$X \to X$	0	composition	λ χ.χ				

U an infinite set

 $X \bowtie Y \equiv \{(x, z) \in U \times U \mid \exists y \in U, (x, y) \in X \land (y, z) \in Y\}$ $\mathcal{I}_U \equiv \{(u, u) \mid u \in U\}$

subsemigroup

Suppose (S, \bullet) is a semigroup and $T \subseteq S$. If T is closed w.r.t \bullet (that is, $\forall x, y \in T, x \bullet y \in T$), then (T, \bullet) is a subsemigroup of S.

tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	e		T.G.Griffi	in©2018	3	25 / 36
	4		• •	<	< ≣ >	æ	9 Q (?

Order Relations

We are interested in order relations $\leq \subseteq S \times S$

Definition (Important Order Properties)

$\mathbb{R}\mathbb{X}$	reflexive	≡	a≤a
\mathbb{TR}	transitive	≡	$a \leq b \land b \leq c \rightarrow a \leq c$
AY	antisymmetric	≡	$a \leqslant b \land b \leqslant a \rightarrow a = b$
\mathbb{TO}	total	≡	$a \leq b \lor b \leq a$

		partial	preference	total
	pre-order	order	order	order
$\mathbb{R}\mathbb{X}$	*	*	*	*
\mathbb{TR}	*	*	*	*
AY		*		*
\mathbb{TO}			*	*

Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

 $a \leq^{R}_{\bullet} b \equiv \exists c \in S : b = a \bullet c$ $a \leq^{L}_{\bullet} b \equiv \exists c \in S : a = b \bullet c$

Lemma (Sanity check) Associativity of • implies that these relations are transitive.

Proof.	
Note that $a \trianglelefteq_{\bullet}^{R} b$ means $\exists c_{1} \in S : b = a \bullet c_{1}$, and $b \trianglelefteq_{\bullet}^{R} c$ means	
$\exists c_2 \in S : c = b \bullet c_2$. Letting $c_3 = c_1 \bullet c_2$ we have	
$c = b \bullet c_2 = (a \bullet c_1) \bullet c_2 = a \bullet (c_1 \bullet c_2) = a \bullet c_3$. That is,	
$\exists c_3 \in S : c = a \bullet c_3$, so $a \leq_{\bullet}^R c$. The proof for \leq_{\bullet}^L is similar.	

<</th> □ <</th> 글 <</th> ⊇ <</th> <</th> ⊇ <</th> <</th> <</th> ⊇ <</th> <</th>

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \bullet) is canonically ordered when $a \trianglelefteq_{\bullet}^{R} c$ and $a \trianglelefteq_{\bullet}^{L} c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \bullet a^{-1} = a^{-1} \bullet a = \alpha$.

Canonically Ordered Semigroups vs. Groups

Only a trivial group is canonically ordered. Proof. If $a, b \in S$, then $a = \alpha_{\bullet} \bullet a = (b \bullet b^{-1}) \bullet a = b \bullet (b^{-1} \bullet a) = b \bullet c$, for $c = b^{-1} \bullet a$, so $a \leq _{\bullet}^{L} b$. In a similar way, $b \leq _{\bullet}^{R} a$. Therefore a = b.

	4	 ◆ 필 ▶ < 필 ▶ 	≣ ୬ ९ ୯
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with application of the second sec	T.G.Griffin©2018	29 / 36

Natural Orders

Definition (Natural orders)

Lemma (THE BIG DIVIDE)

Let (S, \bullet) be a semigroup.

$$a \leq^{L}_{\bullet} b \equiv a = a \bullet b$$

 $a \leq^{R}_{\bullet} b \equiv b = a \bullet b$

Lemma

If • is commutative and idempotent, then $a \leq_{\bullet}^{D} b \iff a \leq_{\bullet}^{D} b$, for $D \in \{R, L\}.$

Proof. $a \trianglelefteq^R b \iff b = a \bullet c = (a \bullet a) \bullet c = a \bullet (a \bullet c)$ $= a \bullet b \iff a \leq^{R}_{\bullet} b$ $a \leq^{L}_{\bullet} b \iff a = b \bullet c = (b \bullet b) \bullet c = b \bullet (b \bullet c)$ = $b \bullet a = a \bullet b \iff a \leq ^{L}_{\bullet} b$ 30 / 36 T.G.Griffin © 2018

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all $a, a \leq {}^{L}_{\bullet} \alpha$ and $\alpha \leq {}^{R}_{\bullet} a$
- If ω exists, then for all $a, \omega \leq {}^{L}_{\bullet} a$ and $a \leq {}^{R}_{\bullet} \omega$
- If α and ω exist, then S is bounded.

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for $(\min, +)$ we have

and still say that this is bounded, even though one might argue with the terminology!

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2018

riffin©2018 31 / 36

Examples of special elements

			1	T	
S	•	α	ω	\leq^{L}_{\bullet}	\leq^{R}_{\bullet}
\mathbb{M}_∞	min	∞	0	\leqslant	\geqslant
$\mathbb{M}_{-\infty}$	max	0	$-\infty$	≥	\leq
$\mathcal{P}(W)$	U	{}	W	\subseteq	\supseteq
$\mathcal{P}(W)$	\cap	W	{}	⊇	\subseteq

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 の�?

Property Management

L11: Algebraic Path Problems with applica

Bounds

Suppose (S, \leq) is a partially ordered set.

greatest lower bound

tgg22 (cl.cam.ac.uk)

For $a, b \in S$, the element $c \in S$ is the greatest lower bound of a and b, written c = a glb b, if it is a lower bound ($c \leq a$ and $c \leq b$), and for every $d \in S$ with $d \leq a$ and $d \leq b$, we have $d \leq c$.

least upper bound

For $a, b \in S$, the element $c \in S$ is the least upper bound of a and b, written c = a lub b, if it is an upper bound ($a \leq c$ and $b \leq c$), and for every $d \in S$ with $a \leq d$ and $b \leq d$, we have $c \leq d$.

T.G.Griffin © 2018

33 / 36

500

Semi-lattices

Suppose (S, \leq) is a partially ordered set.

S is a join-semilattice if a lub b exists for each $a, b \in S$.

	4	▲ 国 ▶ ▲ 国 ▶	E
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	T.G.Griffin ©2018	35 / 36

Fun Facts

Fact 1

Suppose (S, \bullet) is a commutative and idempotent semigroup.

- (S, \leq_{\bullet}^{L}) is a meet-semilattice with a glb $b = a \bullet b$.
- (S, \leq^{R}_{\bullet}) is a join-semilattice with *a* lub $b = a \bullet b$.

Fact 2

Suppose (S, \leq) is a partially ordered set.

- If (S, ≤) is a meet-semilattice, then (S, glb) is a commutative and idempotent semigroup.
- If (S, ≤) is a join-semilattice, then (S, lub) is a commutative and idempotent semigroup.

That is, semi-lattices represent the same class of structures as commutative and idempotent semigroups.

Sac

36 / 36

3