L11: Algebraic Path Problems with applications to Internet Routing Lectures 1 and 2

Timothy G. Griffin
timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2018

Shortest paths example, $\mathrm{sp}=\left(\mathbb{N}^{\infty}\right.$, min $\left.,+, \infty, 0\right)$

The adjacency matrix

$\mathbf{A}=$| 1 |
| :--- |
| 2 |
| 3 |
| 4 |
| 5 |\(\left[\begin{array}{ccccc}1 \& 2 \& 3 \& 4 \& 5

\infty \& 2 \& 1 \& 6 \& \infty

2 \& \infty \& 5 \& \infty \& 4

1 \& 5 \& \infty \& 4 \& 3

6 \& \infty \& 4 \& \infty \& \infty

\infty \& 4 \& 3 \& \infty \& \infty\end{array}\right]\)

Shortest paths solution

$$
\mathbf{A}^{*}=\begin{aligned}
& 1 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{llll}
1 & 3 & 4 & 5 \\
0 & 2 & 1 & 5 \\
2 & 4 \\
1 & 3 & 7 & 4 \\
5 & 7 & 4 & 4 \\
4 & 4 & 3 & 7 \\
4 & 0
\end{array}\right]
$$

solves this global optimality problem:

$$
\mathbf{A}^{*}(i, j)=\min _{p \in \pi(i, j)} w(p)
$$

where $\pi(i, j)$ is the set of all paths from i to j.

Widest paths example, $\mathrm{bw}=\left(\mathbb{N}^{\infty}, \max , \min , 0, \infty\right)$

solves this global optimality problem:

$$
\mathbf{A}^{*}(i, j)=\max _{p \in \pi(i, j)} w(p)
$$

where $w(p)$ is now the minimal edge weight in p.

Unfamiliar example, $\left(2^{\{a, b, c\}}, \cup, \cap,\{ \},\{a, b, c\}\right)$

We want \mathbf{A}^{*} to solve this global optimality problem:

$$
\mathbf{A}^{*}(i, j)=\bigcup_{p \in \pi(i, j)} w(p),
$$

where $w(p)$ is now the intersection of all edge weights in p.

For $x \in\{a, b, c\}$, interpret $x \in \mathbf{A}^{*}(i, j)$ to mean that there is at least one path from i to j with x in every arc weight along the path.

$$
\mathbf{A}^{*}(4,1)=\{a, b\} \quad \mathbf{A}^{*}(4,5)=\{b\}
$$

Another unfamiliar example, $\left(2^{\{a, b, c\}}, \cap, \cup\right)$

We want matrix \mathbf{R} to solve this global optimality problem:

$$
\mathbf{A}^{*}(i, j)=\bigcap_{p \in \pi(i, j)} w(p)
$$

where $w(p)$ is now the union of all edge weights in p.

For $x \in\{a, b, c\}$, interpret $x \in \mathbf{A}^{*}(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

$$
\mathbf{A}^{*}(4,1)=\{b\} \quad \mathbf{A}^{*}(4,5)=\{b\} \quad \mathbf{A}^{*}(5,1)=\{ \}
$$

Semirings (generalise $(\mathbb{R},+, \times, 0,1)$)

name	S	\oplus,	\otimes	$\overline{0}$	$\overline{1}$	possible routing use
sp	\mathbb{N}^{∞}	\min	+	∞	0	minimum-weight routing
bw	\mathbb{N}^{∞}	\max	\min	0	∞	greatest-capacity routing
rel	$[0,1]$	\max	\times	0	1	most-reliable routing
use	$\{0,1\}$	\max	\min	0	1	usable-path routing
	2^{W}	\cup	\cap	$\}$	W	shared link attributes?
	2^{W}	\cap	\cup	W	$\}$	shared path attributes?

A wee bit of notation!

Symbol Interpretation

\mathbb{N}	Natural numbers (starting with zero)
\mathbb{N}^{∞}	Natural numbers, plus infinity
$\overline{0}$	Identity for \oplus
$\overline{1}$	Identity for \otimes

Recommended (on reserve in CL library)

Graphs, Dioids and Semirings

New Models and Algorithms

Semiring axioms ...

We will look at all of the axioms of semirings, but the most important are distributivity

$$
\begin{aligned}
& \mathbb{L D}: a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c) \\
& \mathbb{R D}:(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)
\end{aligned}
$$

Distributivity, illustrated

$$
a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)
$$

j makes the choice $=i$ makes the choice

Should distributivity hold in Internet Routing?

- j prefers long path though one of its customers (not the shorter path through a competitor)
- given two routes from a provider, i prefers the one with a shorter path
- More on inter-domain routing in the Internet later in the term ...

Widest shortest-paths

- Metric of the form (d, b), where d is distance $(\min ,+)$ and b is capacity (max, min).
- Metrics are compared lexicographically, with distance considered first.
- Such things are found in the vast literature on Quality-of-Service (QoS) metrics for Internet routing.

Widest shortest-paths

Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and Bellman-Ford

$$
\mathbf{R}=\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left[\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
(0, \infty) & (1,10) & (3,10) & (2,5) & (2,10) \\
(1,10) & (0, \infty) & (2,100) & (1,5) & (1,100) \\
(3,10) & (2,100) & (0, \infty) & (1,100) & (1,100) \\
(2,5) & (1,5) & (1,100) & (0, \infty) & (2,100) \\
(2,10) & (1,100) & (1,100) & (2,100) & (0, \infty)
\end{array}\right]
$$

But what about the paths themselves?

Four optimal paths of weight $(3,10)$.

$$
\begin{aligned}
& \mathbf{P}_{\text {optimal }}(0,2)=\{(0,1,2),(0,1,4,2)\} \\
& \mathbf{P}_{\text {optimal }}(2,0)=\{(2,1,0),(2,4,1,0)\}
\end{aligned}
$$

There are standard ways to extend Bellman-Ford and Dijkstra to compute paths (or the associated next hops).

Do these extended algorithms find all optimal paths?

Surprise!

Four optimal paths of weight $(3,10)$

$$
\begin{aligned}
& \mathbf{P}_{\text {optimal }}(0,2)=\{(0,1,2),(0,1,4,2)\} \\
& \mathbf{P}_{\text {optimal }}(2,0)=\{(2,1,0),(2,4,1,0)\}
\end{aligned}
$$

Paths computed by (extended) Dijkstra

$$
\begin{aligned}
& \mathbf{P}_{\text {Dijkstra }}(0,2)=\{(0,1,2),(0,1,4,2)\} \\
& \mathbf{P}_{\text {Dijkstra }}(2,0)=\{(2,4,1,0)\}
\end{aligned}
$$

Notice that 0's paths cannot both be implemented with next-hop forwarding since $\mathbf{P}_{\text {Dijkstra }}(1,2)=\{(1,4,2)\}$.
Paths computed by distributed Bellman-Ford

$$
\begin{aligned}
\mathbf{P}_{\text {Bellman }}(0,2) & =\{(0,1,4,2)\} \\
\mathbf{P}_{\text {Bellman }}(2,0) & =\{(2,1,0),(2,4,1,0)\}
\end{aligned}
$$

Optimal paths from 0 to 2. Computed by Dijkstra but not by Bellman-Ford

Optimal paths from 2 to 1 . Computed by Bellman-Ford but not by Dijkstra

How can we understand this (algebaically)?

The Algorithm to Algebra (A2A) method
$\left(\begin{array}{c}\text { original metric } \\ + \\ \text { complex algorithm }\end{array}\right) \rightarrow\left(\begin{array}{c}\text { modified metric } \\ + \\ \text { matrix equations (generic algorithm) }\end{array}\right)$

Preview

- We can add paths explicitly to the widest shortest-path semiring to obtain a new algebra.
- We will see that distributivity does not hold for this algebra.
- Why? We will see that it is because min is not cancellative!
$(a \min b=a \min c$ does not imply that $b=c$)

Towards a non-classical theory of algebraic path finding

We need theory that can accept algebras that violate distributivity.
Global optimality

$$
\mathbf{A}^{*}(i, j)=\bigoplus_{p \in P(i, j)} w(p),
$$

Left local optimality (distributed Bellman-Ford)

$$
\mathbf{L}=(\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I} .
$$

Right local optimality (Dijkstra's Algorithm)

$$
\mathbf{R}=(\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I} .
$$

Embrace the fact that all three notions can be distinct.

Lecture 2

- Semigroups
- A few important semigroup properties
- Semigroup and partial orders

Semigroups

Semigroup

A semigroup (S, \bullet) is a non-empty set S with a binary operation such that

$$
\mathbb{A} \text { associative } \equiv \forall a, b, c \in S, a \bullet(b \bullet c)=(a \bullet b) \bullet c
$$

Important Assumption - We will ignore trival semigroups

 We will impicitly assume that $2 \leqslant|S|$.
Note

Many useful binary operations are not semigroup operations. For example, (\mathbb{R}, \bullet), where $a \bullet b \equiv(a+b) / 2$.

Some Important Semigroup Properties

$\mathbb{I D}$	identity	$\equiv \exists \alpha \in S, \forall a \in S, a=\alpha \bullet a=a \bullet \alpha$
$\mathbb{A} \mathbb{N}$	annihilator	$\equiv \exists \omega \in S, \forall a \in S, \omega=\omega \bullet a=a \bullet \omega$
$\mathbb{C M}$ commutative	$\equiv \forall a, b \in S, a \bullet b=b \bullet a$	
$\mathbb{S L}$	selective	$\equiv \forall a, b \in S, a \bullet b \in\{a, b\}$
$\mathbb{I P} \quad$ idempotent	$\equiv \forall a \in S, a \bullet a=a$	

A semigroup with an identity is called a monoid.
Note that

$$
\mathbb{S L}(S, \bullet) \Longrightarrow \mathbb{I P}(S, \bullet)
$$

A few concrete semigroups

S	\bullet	description	α	ω	$\mathbb{C M}$	$\mathbb{S L}$	$\mathbb{I P}$
S	left	x left $y=x$				\star	\star
S	right	x right $y=y$				\star	\star
S^{*}	\cdot	concatenation	ϵ				
S^{+}	\cdot	concatenation					
$\{t, f\}$	\wedge	conjunction	t	f	\star	\star	\star
$\{t, f\}$	\vee	disjunction	f	t	\star	\star	\star
\mathbb{N}	min	minimum		0	\star	\star	\star
\mathbb{N}	max	maximum	0		\star	\star	\star
2^{W}	\cup	union	$\}$	W	\star		\star
2^{W}	\cap	intersection	W	$\}$	\star		\star
$\operatorname{fin}\left(2^{U}\right)$	\cup	union	$\}$		\star		\star
$\operatorname{fin}\left(2^{U}\right)$	\cap	intersection		$\}$	\star		\star
\mathbb{N}	+	addition	0		\star		
\mathbb{N}	\times	multiplication	1	0	\star		

W a finite set, U an infinite set. For set $Y, \operatorname{fin}(Y) \equiv\{X \in Y \mid X$ is finite $\}$

A few abstract semigroups

S	\bullet	description	α	ω	$\mathbb{C M}$	$\mathbb{S L}$	\mathbb{P}
2^{U}	\cup	union	$\}$	U	\star		\star
2^{U}	\cap	intersection	U	$\}$	\star		\star
$2^{U \times U}$	\bowtie	relational join	\mathcal{I}_{U}	$\}$			
$X \rightarrow X$	\circ	composition	$\lambda x . X$				

U an infinite set
$X \bowtie Y \equiv\{(x, z) \in U \times U \mid \exists y \in U,(x, y) \in X \wedge(y, z) \in Y\}$ $\mathcal{I}_{U} \equiv\{(u, u) \mid u \in U\}$

subsemigroup

Suppose (S, \bullet) is a semigroup and $T \subseteq S$. If T is closed w.r.t • (that is, $\forall x, y \in T, x \bullet y \in T)$, then (T, \bullet) is a subsemigroup of S.

Order Relations

We are interested in order relations $\leqslant \subseteq S \times S$
Definition (Important Order Properties)

$$
\begin{aligned}
& \mathbb{R} \mathbb{X} \quad \text { reflexive } \equiv a \leqslant a \\
& \mathbb{T} \quad \text { transitive } \equiv a \leqslant b \wedge b \leqslant c \rightarrow a \leqslant c \\
& \mathbb{A} \mathbb{Y} \text { antisymmetric } \equiv a \leqslant b \wedge b \leqslant a \rightarrow a=b \\
& \mathbb{T}(1) \quad \text { total } \equiv a \leqslant b \vee b \leqslant a
\end{aligned}
$$

$\left.\begin{array}{c|cccc} & \text { partial } & \text { preference } \\ \text { order }\end{array} \quad \begin{array}{c}\text { total } \\ \text { order }\end{array}\right]$

Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

$$
\begin{aligned}
& a \unlhd R b \equiv \exists c \in S: b=a \bullet c \\
& a \unlhd \cdot b \equiv \exists c \in S: a=b \bullet c
\end{aligned}
$$

Lemma (Sanity check)

Associativity of • implies that these relations are transitive.

Proof.

Note that $a \unlhd_{\cdot}^{R} b$ means $\exists c_{1} \in S: b=a \bullet c_{1}$, and $b \unlhd_{\cdot}^{R} c$ means
$\exists c_{2} \in S: c=b \bullet c_{2}$. Letting $c_{3}=c_{1} \bullet c_{2}$ we have
$c=b \bullet c_{2}=\left(a \bullet c_{1}\right) \bullet c_{2}=a \bullet\left(c_{1} \bullet c_{2}\right)=a \bullet c_{3}$. That is, $\exists c_{3} \in S: c=a \bullet c_{3}$, so $a \unlhd_{\cdot}^{R} c$. The proof for \unlhd_{6}^{L} is similar.

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \bullet) is canonically ordered when $a \unlhd_{\bullet}^{R} c$ and $a \unlhd \downarrow c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \cdot a^{-1}=\boldsymbol{a}^{-1} \cdot \boldsymbol{a}=\alpha$.

Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If $a, b \in S$, then $a=\alpha \bullet a=\left(b \bullet b^{-1}\right) \bullet a=b \bullet\left(b^{-1} \bullet a\right)=b \bullet c$, for $c=b^{-1} \bullet a$, so $a \unlhd_{\bullet}^{L} b$. In a similar way, $b \unlhd_{\bullet}^{R} a$. Therefore $a=b$.

Natural Orders

Definition (Natural orders)
Let (S, \bullet) be a semigroup.

$$
\begin{aligned}
& a \leqslant!b \equiv a=a \cdot b \\
& a \leqslant \cdot b \equiv b=a \cdot b
\end{aligned}
$$

Lemma
If \bullet is commutative and idempotent, then $a \unlhd_{\bullet}^{D} b \Longleftrightarrow a \leqslant_{\bullet}^{D} b$, for $D \in\{R, L\}$.

Proof.

$$
\begin{aligned}
a \unlhd R \cdot b & \Longleftrightarrow b=a \bullet c=(a \bullet a) \bullet c=a \bullet(a \bullet c) \\
& =a \bullet b \Longleftrightarrow a \leqslant \bullet b \\
a \unlhd \bullet b & \Longleftrightarrow a=b \bullet c=(b \bullet b) \bullet c=b \bullet(b \bullet c) \\
& =b \bullet a=a \bullet b \Longleftrightarrow a \leqslant!b
\end{aligned}
$$

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all $a, a \leqslant_{\bullet}^{L} \alpha$ and $\alpha \leqslant_{\bullet}^{R} a$
- If ω exists, then for all $a, \omega \leqslant_{\bullet}^{L}$ a and $a \leqslant_{\bullet}^{R} \omega$
- If α and ω exist, then S is bounded.

$$
\begin{array}{llll}
\omega & \leqslant L & a & \leqslant \\
\alpha & \leqslant R & a & \leqslant R \\
\bullet & \omega
\end{array}
$$

Remark (Thanks to lljitsch van Beijnum)

Note that this means for (min, +) we have

$$
\begin{array}{rlll}
0 & \leqslant & \leqslant_{\min }^{L} & a
\end{array} \leqslant_{\min }^{L} \infty
$$

and still say that this is bounded, even though one might argue with the terminology!

Examples of special elements

S	\bullet	α	ω	$\leqslant_{\bullet}^{\mathrm{L}}$	$\leqslant \cdot$
\mathbb{N}^{∞}	\min	∞	0	\leqslant	\geqslant
$\mathbb{N}^{-\infty}$	\max	0	$-\infty$	\geqslant	\leqslant
$\mathcal{P}(W)$	\cup	$\}$	W	\subseteq	\supseteq
$\mathcal{P}(W)$	\cap	W	$\}$	\supseteq	\subseteq

Property Management

Lemma

Let $D \in\{R, L\}$.
(1) $\mathbb{P}(S, \bullet) \Longleftrightarrow \mathbb{R} \mathbb{X}\left(S, \leqslant_{\bullet}^{D}\right)$
(2) $\mathbb{C M}(S, \bullet) \Longrightarrow \mathbb{A} \mathbb{Y}\left(S, \leqslant_{\bullet}^{D}\right)$
(0) $\mathbb{A S}(S, \bullet) \Longrightarrow \mathbb{T}\left(S, \leqslant_{\bullet}\right)$
($\operatorname{CM}(S, \bullet) \Longrightarrow\left(\mathbb{S L}(S, \bullet) \Longleftrightarrow \mathbb{T O}\left(S, \leqslant_{\bullet}^{D}\right)\right)$

Proof.

(1) $a \leqslant_{\bullet}^{D} a \Longleftrightarrow a=a \cdot a$,
(2) $a \leqslant_{b}^{L} b \wedge b \leqslant_{.}^{L} a \Longleftrightarrow a=a \bullet b \wedge b=b \cdot a \Longrightarrow a=b$
(1) $a \leqslant . b \wedge b \leqslant . c \Longleftrightarrow a=a \bullet b \wedge b=b \bullet c \Longrightarrow a=a \bullet(b \bullet c)=$ $(a \cdot b) \cdot c=a \bullet c \Longrightarrow a \leqslant . c$
(9) $a=a \bullet b \vee b=a \bullet b \Longleftrightarrow a \leqslant b b \vee b \leqslant_{\bullet}^{L} a$

Bounds

Suppose (S, \leqslant) is a partially ordered set.

greatest lower bound

For $a, b \in S$, the element $c \in S$ is the greatest lower bound of a and b, written $c=a \mathrm{glb} b$, if it is a lower bound ($c \leqslant a$ and $c \leqslant b$), and for every $d \in S$ with $d \leqslant a$ and $d \leqslant b$, we have $d \leqslant c$.

least upper bound

For $a, b \in S$, the element $c \in S$ is the least upper bound of a and b, written $c=a$ lub b, if it is an upper bound ($a \leqslant c$ and $b \leqslant c$), and for every $d \in S$ with $a \leqslant d$ and $b \leqslant d$, we have $c \leqslant d$.

Semi-lattices

Suppose (S, \leqslant) is a partially ordered set.

meet-semilattice
 S is a meet-semilattice if a glb b exists for each $a, b \in S$.

join-semilattice
S is a join-semilattice if a lub b exists for each $a, b \in S$.

Fun Facts

Fact 1

Suppose (S, \bullet) is a commutative and idempotent semigroup.

- $\left(S, \leqslant_{\bullet}^{\llcorner }\right)$is a meet-semilattice with $a \mathrm{glb} b=a \bullet b$.
- $\left(S, \leqslant_{\bullet}^{\boldsymbol{R}}\right)$ is a join-semilattice with a lub $b=a \bullet b$.

Fact 2

Suppose (S, \leqslant) is a partially ordered set.

- If (S, \leqslant) is a meet-semilattice, then (S, glb) is a commutative and idempotent semigroup.
- If (S, \leqslant) is a join-semilattice, then (S, lub) is a commutative and idempotent semigroup.

That is, semi-lattices represent the same class of structures as commutative and idempotent semigroups.

