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Shortest paths example, sp = (N*, min, +, 00, 0)

The adjacency matrix

1 2 3 4 5
2 4 o 2 1 6 o
2 o 5 o 4
1 5 oo 4 3
6 o 4 o o
©w 4 3 w ®
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Shortest paths solution

1 2 3 4 5

1[0215 4

2{ 20374

{— % - 3/ 13043
# 457407
s| 44370

solves this global optimality
problem:

A*(i, j) = min w(p),
pen(i, j)

where 7 (i, j) is the set of all paths
from i to j.
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Widest paths example, bw = (N*, max, min, 0, o)

AN

1 2 3 4 5
2 5 4 1o 4 4 6 4
/k 2| 4 © 5 4 4
A* = 31 4 5 o 4 4
1 1 3 3 5
ﬁ/ O 4| 6 4 4 o 4
6 4 5 4 4 4 4 o«
\é solves this global optimality
problem:

A*(i, j) = max w(p),
pen(i, f)

where w(p) is now the minimal
edge weight in p.
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Unfamiliar example, (212 ¢ U, n, {}, {a, b, ¢})

We want A* to solve this global
optimality problem:

1@ tabe} 1ol A )= | wip)
<E{bCHiP{b}>:> e
where w(p) is now the intersection
{ab} {b} of all edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that there is at least
one path from j to j with x in every arc weight along the path. J

A*(4,1)={a, b} A*(4,5)={b}
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Another unfamiliar example, (2{& ¢~ U)

We want matrix R to solve this
global optimality problem:

ta) {abgcj el A= () wp),
<E{bCHiP{b}>:> e
where w(p) is now the union of all
{ab} {b} edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that every path from i
to j has at least one arc with weight containing x. J

A*(4,1)={b} A*(4,5)={b} A*(5 1)={}
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Semirings (generalise (R, +, x,0,1))

name S @, ®
sp N* min  +
bw N®  max min
rel [0, 1] max x

use {0, 1} max min
2W

possible routing use
minimum-weight routing
greatest-capacity routing
most-reliable routing
usable-path routing
shared link attributes?
shared path attributes?

() N

ow N U

S o o o §| ol

A wee bit of notation!

Symbol Interpretation

Natural numbers (starting with zero)
Natural numbers, plus infinity
Identity for ®

Identity for ®

—~lolzZ
g

v
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Recommended (on reserve in CL library)

Path Problems in

Networks
Michel Gondran
Michel Minoux
John Baras

i A Graphs, Dioids
and Semirings

New Models and Algorithms

S'I.\ THESIS LECTURES ON
CoMMUNICATION NETWORKS

@ Springer
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Semiring axioms ...

We will look at all of the axioms of semirings, but the most important
are

distributivity

LD : a®((bdc) = (a®b)@®(a®c)
RD : (a®@b)®c = ( )
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Distributivity, illustrated

b
a
( () (0
Cc
ap (bedc) = (a®b)@®(a®c)
j makes the choice = i makes the choice
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Should distributivity hold in Internet Routing?

long path through a customer

customer provider

short path through a peer

@ j prefers long path though one of its customers (not the shorter
path through a competitor)

@ given two routes from a provider, i prefers the one with a shorter
path

@ More on inter-domain routing in the Internet later in the term ...
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Widest shortest-paths

@ Metric of the form (d, b), where d is distance (min, +) and b is
capacity (max, min).

@ Metrics are compared lexicographically, with distance considered
first.

@ Such things are found in the vast literature on Quality-of-Service
(QoS) metrics for Internet routing.
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Widest shortest-paths

(1,100) (1,100)

(0)—— (1,10) / (2,90)

h

1,5) (1,100)
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Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and
Bellman-Ford

0 1 2 3 4
(0,0) (1,10) (3,10) (2,5) (2,10)
(1,10) (0,0) (2,100) (1,5) (1,100)
3,10) (2,100) (0,00) (1,100) (1,100)
(2,5 (1,5 (1,100) (0,%0) (2,100)
(2,10) (1,100) (1,100) (2,100) (0O,0)

X0
Il

A w2 O
~—~
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But what about the paths themselves?

Four optimal paths of weight (3,10).

POPﬁmal(Oaz) = {( 5 Ug )7 ( Al
POPtimal(‘Z?O) = {( il )7 ( i

—_

There are standard ways to extend Bellman-Ford and Dijkstra to
compute paths (or the associated next hops).

Do these extended algorithms find all optimal paths?
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Surprise!

Four optimal paths of weight (3, 10)

Poptimal(07 2) = {(07 1 ) 2)a (07 1 ) 47 2)}
Poptimal(za O) = {(27 1, 0), (27 47 1 > O)}

Paths computed by (extended) Dijkstra

PDijkstra(072) = {(07 172)7 (07 17472)}
PDijkstra(27 0) = {(2’ 47 1 ) 0)}

Notice that O’s paths cannot both be implemented with next-hop
forwarding since Ppijsira(1,2) = {(1,4,2)}.
Paths computed by distributed Bellman-Ford

PBellman(Ovz) = {(0717472)}
Pgeaman(2,0) = {(2,1,0), (2,4,1,0)}
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Optimal paths from 0 to 2. Computed by Dijkstra but

not by Bellman-Ford K

(1,100) (1,100)

@— (1,10) :G< (2,90) —ﬁ
(

1,5) (1,100)

Ny

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2018

17/36



Optimal paths from 2 to 1. Computed by Bellman-Ford

but not by Dijkstra /@

(1,100) (1,100)

(0)+— (1,10) —(1 ) (2,90)
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How can we understand this (algebaically)?

The Algorithm to Algebra (A2A) method

original metric modified metric
+ — +
complex algorithm matrix equations (generic algorithm)
Preview

@ We can add paths explicitly to the widest shortest-path semiring to
obtain a new algebra.

@ We will see that distributivity does not hold for this algebra.

@ Why? We will see that it is because min is not cancellative!
(amin b = amin ¢ does not imply that b = ¢)
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Towards a non-classical theory of algebraic path
finding
We need theory that can accept algebras that violate distributivity.

Global optimality
A*(i, )= @D wi(p),

peP(i, )

Left local optimality (distributed Bellman-Ford)
L=(A®L) ol

Right local optimality (Dijkstra’s Algorithm)
R=(R®A @I

Embrace the fact that all three notions can be distinct.
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Lecture 2

@ Semigroups
@ A few important semigroup properties
@ Semigroup and partial orders
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Semigroups

Semigroup

A semigroup (S, e) is a non-empty set S with a binary operation such
that

AS associative = Va,b,ce S, ae(bec)=(aeb)ec

Important Assumption — We will ignore trival semigroups
We will impicitly assume that 2 <| S |.

Note

Many useful binary operations are not semigroup operations. For
example, (R,e), where ae b= (a+ b)/2.
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Some Important Semigroup Properties

D identity
AN annihilator
CM commutative
SLL selective
IP  idempotent

Jae S, Vae S, a=aea=aea
Jwe S, Vae S, w=wea=aew
Va,be S, aeb=bea

Va,be S, aebe {a, b}

Vae S, aea=a

A semigroup with an identity is called a monoid.
Note that
SL(S, o) = IP(S, )
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A few concrete semigroups

S . description a | w |CM|SL |IP
S left xlefty = x
S right | xrighty =y
S* . concatenation | €
St - | concatenation

{t, f} A conjunction | t | f | * | x | *
{t, f} | v disjunction flt ]« | x|
N min minimum 0| = *x |
N max maximum * *x | %
2w U union { * *
2w n | intersection | W | {} | * *
fin(2Y) | U union { * *
fin(2Y) | ~ | intersection | = *
N + addition 0 *
N X multiplication | 1 | 0 | «

W a finite set, U an infinite set. Forset Y, fin(Y) = {X € Y | X is finite}
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A few abstract semigroups

S e | description w |CM | SL | TP
2V |y union 0 |u
2V |~ | intersection | U |{}

2UxU | x| relational join | Zy | {}

X — X | o | composition | Ax.x

U an infinite set
XHMY={(x,2)eUxU|IyeU, (x,y)eXn(y, 2)e Y}
Zy={(u, u)|ue U}

subsemigroup

Suppose (S, o) is a semigroupand T < S. If T is closed w.r.t e (that
is,Vx,y e T,xeye T),then (T, e) is a subsemigroup of S.
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Order Relations

We are interested in order relations < <

SxS

Definition (Important Order Properties)

RX reflexive = a<a
TR transitve = a<bab<c—a<c
AY antisymmetric = a<bab<a—a=>b
TO total = a<bvb<a
partial preference total
pre-order order order order
RX * * * *
TR * * * *
AY * *
TO * *
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Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

a<dfib = 3JceS:b=aec
a<tb = 3ceS:a=bec

Lemma (Sanity check)
Associativity of e implies that these relations are transitive.

Proof.

Note that a < bmeans 3c; € S: b= aecy, and b <F ¢ means
dco e S:c=becy. Letting c3 = ¢1 o ¢, we have
C=beco,=(aeci)ec, =ae(ciecCy) =aecs. Thatis,

Jeze S:c = aecs, s0 a< c. The proof for <t is similar.
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, e) is canonically ordered when a <ff ¢
and a <! c are partial orders.

Definition (Groups)

A monoid is a group if for every a e S there exists a a~' € S such that
aea'=alea=na.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2018 28/36



Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.

lfa, be S, thena=a.ea=(beb'Yea=be (b 'ea)=Dbec,for
c=b"ea soa<kb. Inasimilar way, b <7 a. Thereforea=b. [

v
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Natural Orders
Definition (Natural orders)
Let (S, o) be a semigroup.

I
|
\V}
°
(ey

Lemma

If » is commutative and idempotent, then a<P b — a <P b, for
De (R, L).

Proof.

a<fib «— b=aec=(aea)ec=ae(asc)
— aeb <— a<fb

adtb <= a=bec=(beb)ec=be(bec)
= bea=aeb < a<tp
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Special elements and natural orders
Lemma (Natural Bounds)
@ Ifa exists, then forall a, a <t o and o <P a
o Ifw exists, then for all a, w <t aand a <P w
@ If o and w exist, then S is bounded.

w <t a <t oa
aé?aéfw

Remark (Thanks to lljitsch van Beijnum)
Note that this means for (min, +) we have

0 <t a <t o'e)

\rBin \rﬁin
% <min a <min 0

and still say that this is bounded, even though one might argue with the

terminology!
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Examples of special elements

S . al w [<L<R
N min | oo | O < | =
N |max| 0 | -0 | = | <
PW) v |[{}| W] c |2
PW)l n |W] {} | 2| <
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Property Management

Lemma

LetDe {R, L}.

Q@ IP(S, ») — RX(S, <P

Q CM(S, o) — AY(S, <P)

Q AS(S, o) — TR(S, <P)

Q CM(S, o) — (SL(S, o) < TO(S, <P))

Proof.
Q@ a<la <= a=aeg
Q@ a<tbabs<sla < a—aebrb=bea— a=>b

Q@ a<tbrb<lc <= a=aebrab=bec =— a=ae(bec)=
(aeb)ec=aec — a<tc

Q a—aebvb=aeb «— a<tbvb<lta

O]

v
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Bounds

Suppose (S, <) is a partially ordered set.

greatest lower bound

For a, be S, the element ¢ € S is the greatest lower bound of a and b,
written ¢ = a glb b, if it is a lower bound (¢ < aand ¢ < b), and for
every d e Swithd < aand d < b, we have d < c.

least upper bound

For a, b e S, the element ¢ € S is the least upper bound of g and b,
written ¢ = alub b, if it is an upper bound (a < ¢ and b < ¢), and for
every d e Switha< d and b < d, we have ¢ < d.
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Semi-lattices

Suppose (S, <) is a partially ordered set.

meet-semilattice
S is a meet-semilattice if a glb b exists for each a, be S.

join-semilattice

S is a join-semilattice if a lub b exists for each a, be S.
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Fun Facts

Fact 1

Suppose (S, o) is a commutative and idempotent semigroup.
o (S, <) is a meet-semilattice with aglb b = a e b.
e (S, <F)is ajoin-semilattice with alub b = a e b.

Fact 2
Suppose (S, <) is a partially ordered set.

@ If (S, <) is a meet-semilattice, then (S, glb) is a commutative and
idempotent semigroup.

@ If (S, <) is ajoin-semilattice, then (S, lub) is a commutative and
idempotent semigroup.

That is, semi-lattices represent the same class of structures as
commutative and idempotent semigroups.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2018 36/36



