L11: Algebraic Path Problems with applications to Internet Routing Lectures 1 and 2

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2018

Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$

The adjacency matrix

Shortest paths solution

$$\mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 5 & 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in \pi(i, j)} w(\boldsymbol{p}),$$

where $\pi(i, j)$ is the set of all paths from i to j.

Widest paths example, $bw = (\mathbb{N}^{\infty}, max, min, 0, \infty)$

$$\mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \infty & 4 & 4 & 6 & 4 \\ 2 & 4 & \infty & 5 & 4 & 4 \\ 4 & 5 & \infty & 4 & 4 \\ 6 & 4 & 4 & \infty & 4 \\ 5 & 4 & 4 & 4 & 4 & \infty \end{bmatrix}$$

solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \max_{\boldsymbol{p} \in \pi(i, j)} w(\boldsymbol{p}),$$

where w(p) is now the minimal edge weight in p.

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap, \{\}, \{a, b, c\})$

We want **A*** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcup_{\boldsymbol{p} \in \pi(i, j)} w(\boldsymbol{p}),$$

where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that there is at least one path from i to j with x in every arc weight along the path.

$$A^*(4, 1) = \{a, b\}$$
 $A^*(4, 5) = \{b\}$

Another unfamiliar example, $(2^{\{a, b, c\}}, \cap, \cup)$

We want matrix **R** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcap_{\boldsymbol{p} \in \pi(i, j)} w(\boldsymbol{p}),$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

$$A^*(4, 1) = \{b\}$$
 $A^*(4, 5) = \{b\}$ $A^*(5, 1) = \{\}$

Semirings (generalise $(\mathbb{R}, +, \times, 0, 1)$)

name	S	⊕,	\otimes	$\overline{0}$	1	possible routing use
sp	M_{∞}	min	+	∞	0	minimum-weight routing
bw	M_{∞}	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1	usable-path routing
	2^W	\cup	\cap	{}	W	shared link attributes?
	2^W	\cap	\cup	W	{}	shared path attributes?

A wee bit of notation!

Symbol	Interpretation
N	Natural numbers (starting with zero)
M_{∞}	Natural numbers, plus infinity
0	Identity for ⊕
1	Identity for \otimes

Recommended (on reserve in CL library)

Semiring axioms ...

We will look at all of the axioms of semirings, but the most important are

distributivity

$$\mathbb{L}\mathbb{D} : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

$$\mathbb{RD}$$
 : $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

Distributivity, illustrated

$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

j makes the choice = i makes the choice

Should distributivity hold in Internet Routing?

- j prefers long path though one of its customers (not the shorter path through a competitor)
- given two routes from a provider, i prefers the one with a shorter path
- More on inter-domain routing in the Internet later in the term ...

Widest shortest-paths

- Metric of the form (d, b), where d is distance (min, +) and b is capacity (max, min).
- Metrics are compared lexicographically, with distance considered first.
- Such things are found in the vast literature on Quality-of-Service (QoS) metrics for Internet routing.

Widest shortest-paths

Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and Bellman-Ford

But what about the paths themselves?

Four optimal paths of weight (3, 10).

```
\begin{array}{lll} \textbf{P}_{optimal}(0,2) & = & \{(0,1,2), \ (0,1,4,2)\} \\ \textbf{P}_{optimal}(2,0) & = & \{(2,1,0), \ (2,4,1,0)\} \end{array}
```

There are standard ways to extend Bellman-Ford and Dijkstra to compute paths (or the associated <u>next hops</u>).

Do these extended algorithms find all optimal paths?

Surprise!

Four **optimal** paths of weight (3, 10)

```
\begin{array}{lcl} \textbf{P}_{optimal}(0,2) & = & \{(0,1,2), \ (0,1,4,2)\} \\ \textbf{P}_{optimal}(2,0) & = & \{(2,1,0), \ (2,4,1,0)\} \end{array}
```

Paths computed by (extended) Dijkstra

$$\begin{array}{lcl} \textbf{P}_{Dijkstra}(0,2) & = & \{(0,1,2), \ (0,1,4,2)\} \\ \textbf{P}_{Dijkstra}(2,0) & = & \{(2,4,1,0)\} \end{array}$$

Notice that 0's paths cannot both be implemented with next-hop forwarding since $\mathbf{P}_{\text{Dijkstra}}(1,2) = \{(1,4,2)\}.$

Paths computed by distributed Bellman-Ford

$$\begin{array}{lcl} \textbf{P}_{Bellman}(0,2) & = & \{(0,1,4,2)\} \\ \textbf{P}_{Bellman}(2,0) & = & \{(2,1,0),\ (2,4,1,0)\} \end{array}$$

Optimal paths from 0 to 2. Computed by Dijkstra but not by Bellman-Ford

Optimal paths from 2 to 1. Computed by Bellman-Ford but not by Dijkstra

How can we understand this (algebaically)?

The Algorithm to Algebra (A2A) method

$$\left(\begin{array}{c} \text{original metric} \\ + \\ \text{complex algorithm} \end{array}\right)
ightarrow \left(\begin{array}{c} \text{modified metric} \\ + \\ \text{matrix equations (generic algorithm)} \end{array}\right)$$

Preview

- We can add paths explicitly to the widest shortest-path semiring to obtain a new algebra.
- We will see that distributivity does not hold for this algebra.
- Why? We will see that it is because min is not cancellative! $(a \min b = a \min c \text{ does not imply that } b = c)$

Towards a non-classical theory of algebraic path finding

We need theory that can accept algebras that violate distributivity.

Global optimality

$$\mathbf{A}^*(i, j) = \bigoplus_{\mathbf{p} \in P(i, j)} \mathbf{w}(\mathbf{p}),$$

Left local optimality (distributed Bellman-Ford)

$$L = (A \otimes L) \oplus I$$
.

Right local optimality (Dijkstra's Algorithm)

$$R = (R \otimes A) \oplus I$$
.

Embrace the fact that all three notions can be distinct.

Lecture 2

- Semigroups
- A few important semigroup properties
- Semigroup and partial orders

Semigroups

Semigroup

A semigroup (S, \bullet) is a non-empty set S with a binary operation such that

AS associative $\equiv \forall a, b, c \in S, a \bullet (b \bullet c) = (a \bullet b) \bullet c$

Important Assumption — We will ignore trival semigroups

We will impicitly assume that $2 \le |S|$.

Note

Many useful binary operations are not semigroup operations. For example, (\mathbb{R}, \bullet) , where $a \bullet b \equiv (a+b)/2$.

Some Important Semigroup Properties

```
\begin{array}{lll} \mathbb{ID} & \text{identity} & \equiv & \exists \alpha \in S, \ \forall a \in S, \ a = \alpha \bullet a = a \bullet \alpha \\ \mathbb{AN} & \text{annihilator} & \equiv & \exists \omega \in S, \ \forall a \in S, \ \omega = \omega \bullet a = a \bullet \omega \\ \mathbb{CM} & \text{commutative} & \equiv & \forall a, b \in S, \ a \bullet b = b \bullet a \\ \mathbb{SL} & \text{selective} & \equiv & \forall a, b \in S, \ a \bullet b \in \{a, b\} \\ \mathbb{IP} & \text{idempotent} & \equiv & \forall a \in S, \ a \bullet a = a \end{array}
```

A semigroup with an identity is called a monoid.

Note that

$$\mathbb{SL}(S, \bullet) \implies \mathbb{IP}(S, \bullet)$$

A few concrete semigroups

S	•	description	α	ω	$\mathbb{C}\mathbb{M}$	SL	\mathbb{IP}
S S S*	left	$x \operatorname{left} y = x$				*	*
S	right	x right $y = y$				*	*
S*		concatenation	ϵ				
\mathcal{S}^+		concatenation					
$\{t, f\}$	^	conjunction	t	f	*	*	*
$\{t, f\}$	\ \	disjunction	f	t	*	*	*
N	min	minimum		0	*	*	*
N	max	maximum	0		*	*	*
2 ^W	U	union	{}	W	*		*
2 ^W	\cap	intersection	W	{}	*		*
$fin(2^U)$	U	union	{}		*		*
$fin(2^U)$	\cap	intersection		{}	*		*
N	+	addition	0		*		
N	×	multiplication	1	0	*		

W a finite set, U an infinite set. For set Y, $fin(Y) \equiv \{X \in Y \mid X \text{ is finite}\}\$

A few abstract semigroups

S	•	description	α	ω	$\mathbb{C}\mathbb{M}$	SL	\mathbb{IP}
2^U	\subset	union	{}	U	*		*
2^U	\cap	intersection	U	{}	*		*
$2^{U \times U}$	\bowtie	relational join	$\mathcal{I}_{\mathcal{U}}$	{}			
$X \to X$	0	composition	$\lambda x.x$				

U an infinite set

$$X \bowtie Y \equiv \{(x, z) \in U \times U \mid \exists y \in U, (x, y) \in X \land (y, z) \in Y\}$$

 $\mathcal{I}_U \equiv \{(u, u) \mid u \in U\}$

subsemigroup

Suppose (S, \bullet) is a semigroup and $T \subseteq S$. If T is closed w.r.t \bullet (that is, $\forall x, y \in T, x \bullet y \in T$), then (T, \bullet) is a subsemigroup of S.

Order Relations

We are interested in order relations $\leq \subseteq S \times S$

Definition (Important Order Properties)

 $\mathbb{RX} \qquad \text{reflexive} \quad \equiv \quad a \leqslant a$ $\mathbb{TR} \qquad \text{transitive} \quad \equiv \quad a \leqslant b \land b \leqslant c \rightarrow a \leqslant c$ $\mathbb{AY} \quad \text{antisymmetric} \quad \equiv \quad a \leqslant b \land b \leqslant a \rightarrow a = b$ $\mathbb{TO} \qquad \text{total} \quad \equiv \quad a \leqslant b \lor b \leqslant a$

		•	preference	total
	pre-order	order	order	order
$\mathbb{R}\mathbb{X}$	*	*	*	*
\mathbb{TR}	*	*	*	*
$\mathbb{A}\mathbb{Y}$		*		*
$\mathbb{T}\mathbb{O}$			*	*

Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

$$a \leq_{\bullet}^{R} b \equiv \exists c \in S : b = a \bullet c$$

 $a \leq_{\bullet}^{L} b \equiv \exists c \in S : a = b \bullet c$

Lemma (Sanity check)

Associativity of • implies that these relations are transitive.

Proof.

Note that $a ext{ } ext{$\preceq$}^R b$ means $\exists c_1 \in S : b = a \bullet c_1$, and $b ext{$\preceq$}^R c$ means $\exists c_2 \in S : c = b \bullet c_2$. Letting $c_3 = c_1 \bullet c_2$ we have $c = b \bullet c_2 = (a \bullet c_1) \bullet c_2 = a \bullet (c_1 \bullet c_2) = a \bullet c_3$. That is, $\exists c_3 \in S : c = a \bullet c_3$, so $a ext{$\preceq$}^R c$. The proof for $ext{$\preceqL is similar.

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \bullet) is canonically ordered when $a \unlhd^R_{\bullet} c$ and $a \unlhd^L_{\bullet} c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \bullet a^{-1} = a^{-1} \bullet a = \alpha$.

Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If $a, b \in S$, then $a = \alpha_{\bullet} \bullet a = (b \bullet b^{-1}) \bullet a = b \bullet (b^{-1} \bullet a) = b \bullet c$, for $c = b^{-1} \bullet a$, so $a \leq_{\bullet}^{L} b$. In a similar way, $b \leq_{\bullet}^{R} a$. Therefore a = b.

Natural Orders

Definition (Natural orders)

Let (S, \bullet) be a semigroup.

$$a \leq_{\bullet}^{L} b \equiv a = a \bullet b$$

 $a \leq_{\bullet}^{R} b \equiv b = a \bullet b$

Lemma

If • is commutative and idempotent, then $a \leq_{\bullet}^{D} b \iff a \leq_{\bullet}^{D} b$, for $D \in \{R, L\}$.

Proof.

$$a \unlhd^{R}_{\bullet} b \iff b = a \bullet c = (a \bullet a) \bullet c = a \bullet (a \bullet c)$$

$$= a \bullet b \iff a \leqslant^{R}_{\bullet} b$$

$$a \unlhd^{L}_{\bullet} b \iff a = b \bullet c = (b \bullet b) \bullet c = b \bullet (b \bullet c)$$

$$= b \bullet a = a \bullet b \iff a \leqslant^{L}_{\bullet} b$$

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all a, $a \leq_{\bullet}^{L} \alpha$ and $\alpha \leq_{\bullet}^{R} a$
- If ω exists, then for all $a, \omega \leqslant^L_{\bullet} a$ and $a \leqslant^R_{\bullet} \omega$
- If α and ω exist, then S is bounded.

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for (min, +) we have

$$\begin{array}{ccccc}
0 & \leqslant_{\min}^{L} & a & \leqslant_{\min}^{L} & \infty \\
\infty & \leqslant_{\min}^{R} & a & \leqslant_{\min}^{R} & 0
\end{array}$$

and still say that this is bounded, even though one might argue with the terminology!

Examples of special elements

S	•	α	ω	$\leq^{\operatorname{L}}_{ullet}$	≤R •
M_{∞}	min	∞	0	\leq	≥
$M_{-\infty}$	max	0	$-\infty$	≥	<
$\mathcal{P}(\mathbf{W})$	U	{}	W	\subseteq	$ \supseteq $
$\mathcal{P}(\mathbf{W})$	\cap	W	{}	\cap	⊆

Property Management

Lemma

Let $D \in \{R, L\}$.

Proof.

Bounds

Suppose (S, \leq) is a partially ordered set.

greatest lower bound

For $a, b \in S$, the element $c \in S$ is the greatest lower bound of a and b, written c = a glb b, if it is a lower bound ($c \le a$ and $c \le b$), and for every $d \in S$ with $d \le a$ and $d \le b$, we have $d \le c$.

least upper bound

For $a, b \in S$, the element $c \in S$ is the <u>least upper bound of a and b</u>, written c = a lub b, if it is an upper bound ($a \le c$ and $b \le c$), and for every $d \in S$ with $a \le d$ and $b \le d$, we have $c \le d$.

Semi-lattices

Suppose (S, \leq) is a partially ordered set.

meet-semilattice

S is a meet-semilattice if a glb b exists for each $a, b \in S$.

join-semilattice

S is a join-semilattice if a lub b exists for each $a, b \in S$.

Fun Facts

Fact 1

Suppose (S, \bullet) is a commutative and idempotent semigroup.

- (S, \leq^L_{\bullet}) is a meet-semilattice with a glb $b = a \bullet b$.
- (S, \leq^R_{\bullet}) is a join-semilattice with a lub $b = a \bullet b$.

Fact 2

Suppose (S, \leq) is a partially ordered set.

- If (S, ≤) is a meet-semilattice, then (S, glb) is a commutative and idempotent semigroup.
- If (S, ≤) is a join-semilattice, then (S, lub) is a commutative and idempotent semigroup.

That is, semi-lattices represent the same class of structures as commutative and idempotent semigroups.

