

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2018

Our basic iterative algorithm for solving equation $L = A \triangleright L \oplus B$

$$\begin{array}{rcl} \mathbf{A} \vartriangleright^{\langle \mathbf{0} \rangle} \mathbf{B} &= & \mathbf{B} \\ \mathbf{A} \vartriangleright^{\langle k+1 \rangle} \mathbf{B} &= & \mathbf{A} \vartriangleright (\mathbf{A} \vartriangleright^{\langle k \rangle} \mathbf{B}) \oplus \mathbf{B} \end{array}$$

A closer look ...

$$(\mathbf{A} \rhd^{\langle k+1 \rangle} \mathbf{B})(i, d) = \mathbf{B}(i, d) \oplus \bigoplus_{(i,u) \in E} \mathbf{A}(i, u) \rhd (\mathbf{A} \rhd^{\langle k \rangle} \mathbf{B})(u, d)$$

This is the basis of distributed Bellman-Ford algorithms (as in RIP and BGP) — a node *i* computes routes to a destination *d* by applying its "policies" $\mathbf{A}(i, _)$ to the routes learned from its immediate neighbors.

tgg22 (cl.cam.ac.uk)

What if we start iteration in an arbitrary state?

Suppose that we have solved (via iteration) the equation

$$\mathbf{L}_{old} = \mathbf{A}_{old} \vartriangleright \mathbf{L}_{old} \oplus \mathbf{B}_{old}$$

and then there is a change in the toplopy from A_{old} , B_{old} to A_{new} , B_{new} and then the iteration continues starting at the "stale" state L_{old} .

This represents a simplified (synchronous) model of what happens in the (asynchronous) real-world of routing — routing protocols "iterate forever" while the topology changes.

What if we start iteration in an arbitrary state?

э

Sar

(日)

RIP-like ("distance vector") example (see RFC 1058)

RIP-like example — counting to convergence (2)

RIP-like example — counting to convergence (3)

The scenario: we arrived at state \mathbf{A}_{old}^* , but then links $\{(1,3), (3,1)\}$ fail. So we start iterating using the new matrix \mathbf{A}_{new} .

Let $\mathbf{N}_{\mathcal{K}}$ represent $\mathbf{A}_{\text{new}} \triangleright_{\text{new}}^{\langle \mathcal{K} \rangle} \mathbf{I}$ starting in state $\mathbf{A}_{\text{old}}^*$.

	<			৩৫৫
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	8	T.G.Griffin©2018	3 7/1

RIP-like example — counting to convergence (4)

RIP-like example — counting to convergence (5)

RIP-like example — counting to infinity (1)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 1
 1</

Now let $\mathbf{N}_{\mathcal{K}}$ represent $\mathbf{A}_{new} \triangleright_{new}^{\langle \mathbf{k} \rangle} \mathbf{I}$ starting in state \mathbf{A}_{old}^* .

Sar

э.

RIP-like example — counting to infinity (2)

RIP-like example — What's going on?

Recall

$$\mathbf{A}_{\text{new}} \vartriangleright_{\text{new}}^{\langle k \rangle} \mathbf{B}_{\text{new}} = (\mathbf{A}_{\text{new}} \vartriangleright_{\text{new}}^{\langle k \rangle} \mathbf{B}_{\text{new}}) \oplus (\mathbf{A}_{\text{new}} \vartriangleright^* \mathbf{B}_{\text{new}})$$

For some *i* and *d* it may be that ...

- $(\mathbf{A}_{\text{new}} \triangleright^* \mathbf{B}_{\text{new}})(i, d)$ is arrived at very quickly
- but (A_{new} ▷^{⟨k⟩}_{new} B_{new})(*i*, *d*) may be better until a very large value of *k* is reached (counting to convergence)
- or it may always be better (counting to infinity).

Distance vector solution : define a very small ∞

In RIP: ∞ = 16

n©2018 12/1

Sar

The path vector solution

The Border Gateway Protocol (BGP)

BGP exchanges metrics **and** paths. It avoids counting to infinity by throwing away routes that have a loop in the path.

The plan ...

Starting from $(\mathbb{N}, \min, +)$ we will attempt to construct a semiring or IAME (using our lexicographic operators) that has elements of the form (d, X), where *d* is a shortest-path metric and *X* is a set of paths. Then, by successive refinements, we will arrive at a BGP-like solution.

		다 / 《문 / 《문 / 문 / 문	うくで
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with application of the second sec	T.G.Griffin©2018	13 / 1