L11: Algebraic Path Problems with applications to Internet Routing Lecture 8
 Two versions of distributed Bellman-Ford: Distance Vector and Path Vector

Timothy G. Griffin

```
timothy.griffin@cl.cam.ac.uk
            Computer Laboratory University of Cambridge, UK
```

Michaelmas Term, 2018

Our basic iterative algorithm for solving equation $\mathbf{L}=\mathbf{A} \triangleright \mathbf{L} \oplus \mathbf{B}$

$$
\begin{aligned}
\mathbf{A} \triangleright^{\langle 0\rangle} \mathbf{B} & =\mathbf{B} \\
\mathbf{A} \triangleright^{\langle k+1\rangle} \mathbf{B} & =\mathbf{A} \triangleright\left(\mathbf{A} \triangleright^{\langle k\rangle} \mathbf{B}\right) \oplus \mathbf{B}
\end{aligned}
$$

A closer look ...

$$
\left(\mathbf{A} \triangleright^{\langle k+1\rangle} \mathbf{B}\right)(i, d)=\mathbf{B}(i, d) \oplus \bigoplus_{(i, u) \in E} \mathbf{A}(i, u) \triangleright\left(\mathbf{A} \triangleright^{\langle k\rangle} \mathbf{B}\right)(u, d)
$$

This is the basis of distributed Bellman-Ford algorithms (as in RIP and BGP) - a node i computes routes to a destination d by applying its "policies" $\mathbf{A}\left(i, _\right)$to the routes learned from its immediate neighbors.

What if we start iteration in an arbitrary state?

Suppose that we have solved (via iteration) the equation

$$
\mathbf{L}_{\text {old }}=\mathbf{A}_{\text {old }} \triangleright \mathbf{L}_{\text {old }} \oplus \mathbf{B}_{\text {old }}
$$

and then there is a change in the toplopy from $\mathbf{A}_{\text {old }}, \mathbf{B}_{\text {old }}$ to $\mathbf{A}_{\text {new }}, \mathbf{B}_{\text {new }}$ and then the iteration continues starting at the "stale" state $\mathbf{L}_{\text {old }}$.

$$
\begin{aligned}
\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle 0\rangle} \mathbf{B}_{\text {new }} & =\mathbf{L}_{\text {old }} \\
\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle k+1\rangle} \mathbf{B}_{\text {new }} & =\mathbf{A}_{\text {new }} \triangleright\left(\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle k\rangle} \mathbf{B}_{\text {new }}\right) \oplus \mathbf{B}_{\text {new }}
\end{aligned}
$$

This represents a simplified (synchronous) model of what happens in the (asynchronous) real-world of routing - routing protocols "iterate forever" while the topology changes.

What if we start iteration in an arbitrary state?

Theorem

For $1 \leqslant k$,

$$
\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle k\rangle} \mathbf{B}_{\text {new }}=\left(\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle k\rangle} \mathbf{B}_{\text {new }}\right) \oplus\left(\mathbf{A}_{\text {new }} \triangleright^{\langle k-1\rangle} \mathbf{B}_{\text {new }}\right)
$$

If the new system is q-stable and $q<k$, then

$$
\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle k\rangle} \mathbf{B}_{\text {new }}=\left(\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle\langle \rangle} \mathbf{B}_{\text {new }}\right) \oplus\left(\mathbf{A}_{\text {new }} \triangleright^{*} \mathbf{B}_{\text {new }}\right)
$$

Big problem

Why should $\mathbf{A}_{\text {new }} \triangleright^{*} \mathbf{B}_{\text {new }}$ win?

RIP-like ("distance vector") example (see RFC 1058)

Adjacency matrix $\mathbf{A}_{\text {old }}$
0
1
2
3 $\left[\begin{array}{cccc}0 & 1 & 2 & 3 \\ \infty & 1 & 1 & \infty \\ 1 & \infty & 1 & 1 \\ 1 & 1 & \infty & 10 \\ \infty & 1 & 10 & \infty\end{array}\right]$

Using AddZero $(\infty,(\mathbb{N}$, min, +$))$ but ignoring inl and inr

RIP-like example - counting to convergence (2)

The solution $\mathbf{A}_{\text {old }}^{*}$

The solution $\mathbf{A}_{\text {new }}^{*}$
0
1
2
3 $\left[\begin{array}{cccc}0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 11 \\ 1 & 0 & 1 & 11 \\ 1 & 1 & 0 & 10 \\ 11 & 11 & 10 & 0\end{array}\right]$

RIP-like example - counting to convergence (3)

The scenario: we arrived at state $\mathbf{A}_{\text {old }}^{*}$, but then links $\{(1,3),(3,1)\}$ fail. So we start iterating using the new matrix $\mathbf{A}_{\text {new }}$.

Let \mathbf{N}_{K} represent $\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle k\rangle}$ I starting in state $\mathbf{A}_{\text {old }}^{*}$.

RIP-like example - counting to convergence (4)

$$
\begin{aligned}
& \mathbf{N}_{0}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 1 & 2 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 2 \\
2 & 1 & 2 & 0
\end{array}\right] \quad \mathbf{N}_{3}=\begin{array}{l}
0 \\
0
\end{array} 1 \begin{array}{l}
2 \\
0 \\
2
\end{array}\left[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 1 & 1 & 4 \\
1 & 0 & 1 & 4 \\
1 & 1 & 0 & 4 \\
11 & 11 & 10 & 0 \\
0 & 1 & 2 & 3
\end{array}\right] \\
& \mathbf{N}_{1}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{cccc}
0 & 1 & 1 & 2 \\
1 & 0 & 1 & 3 \\
1 & 1 & 0 & 2 \\
11 & 11 & 10 & 0 \\
0 & 1 & 2 & 3
\end{array}\right] \\
& \mathbf{B}_{2}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{cccc}
0 & 1 & 1 & 3 \\
1 & 0 & 1 & 3 \\
1 & 1 & 0 & 3 \\
11 & 11 & 10 & 0
\end{array}\right] \\
& \mathbf{N}_{5}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{cccc}
0 & 1 & 1 & 6 \\
1 & 0 & 1 & 6 \\
1 & 1 & 0 & 6 \\
11 & 11 & 10 & 0
\end{array}\right]
\end{aligned}
$$

RIP-like example - counting to convergence (5)

$$
\begin{aligned}
& \mathbf{N}_{6}=\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 1 & 7 \\
1 & 0 & 1 & 7 \\
1 & 1 & 0 & 7 \\
2 & 1 & 2 & 0
\end{array}\right] \\
& \mathbf{N}_{7}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{cccc}
0 & 1 & 1 & 8 \\
1 & 0 & 1 & 8 \\
1 & 1 & 0 & 8 \\
11 & 11 & 10 & 0 \\
0 & 1 & 2 & 3
\end{array}\right] \\
& \mathbf{N}_{9}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 1 & 1 & 10 \\
1 & 0 & 1 & 10 \\
1 & 1 & 0 & 10 \\
11 & 11 & 10 & 0 \\
0 & 1 & 2 & 3
\end{array}\right] \\
& \mathbf{N}_{10}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{cccc}
0 & 1 & 1 & 11 \\
1 & 0 & 1 & 11 \\
1 & 1 & 0 & 10 \\
11 & 11 & 10 & 0
\end{array}\right] \\
& \mathbf{N}_{8}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{cccc}
0 & 1 & 1 & 9 \\
1 & 0 & 1 & 9 \\
1 & 1 & 0 & 9 \\
11 & 11 & 10 & 0
\end{array}\right]
\end{aligned}
$$

RIP-like example - counting to infinity (1)

The solution $\mathbf{A}_{\text {old }}^{*}$

The solution $\mathbf{A}_{\text {new }}^{*}$
0
1
2
3 $\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 2 & 1 & 2 & 0\end{array}\right]$
0
1
2
3 $\left[\begin{array}{cccc}0 & 1 & 2 & 3 \\ 0 & 1 & 1 & \infty \\ 1 & 0 & 1 & \infty \\ 1 & 1 & 0 & \infty \\ \infty & \infty & \infty & 0\end{array}\right]$

Now let \mathbf{N}_{K} represent $\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle k\rangle}$ I starting in state $\mathbf{A}_{\text {old }}^{*}$.

RIP-like example - counting to infinity (2)

$$
\begin{aligned}
& \mathbf{N}_{0}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 1 & 2 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 2 \\
2 & 1 & 2 & 0
\end{array}\right] \\
& \mathbf{N}_{1}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{cccc}
0 & 1 & 1 & 2 \\
1 & 0 & 1 & 3 \\
1 & 1 & 0 & 2 \\
\infty & \infty & \infty & 0 \\
0 & 1 & 2 & 3
\end{array}\right] \\
& \mathbf{N}_{2}=\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{cccc}
0 & 1 & 1 & 3 \\
1 & 0 & 1 & 3 \\
1 & 1 & 0 & 3 \\
\infty & \infty & \infty & 0
\end{array}\right]
\end{aligned}
$$

RIP-like example - What's going on?

Recall

$$
\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle k\rangle} \mathbf{B}_{\text {new }}=\left(\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle k\rangle} \mathbf{B}_{\text {new }}\right) \oplus\left(\mathbf{A}_{\text {new }} \triangleright^{*} \mathbf{B}_{\text {new }}\right)
$$

For some i and d it may be that ...

- $\left(\mathbf{A}_{\text {new }} \triangleright^{*} \mathbf{B}_{\text {new }}\right)(i, d)$ is arrived at very quickly
- but $\left(\mathbf{A}_{\text {new }} \triangleright_{\text {new }}^{\langle k\rangle} \mathbf{B}_{\text {new }}\right)(i, d)$ may be better until a very large value of k is reached (counting to convergence)
- or it may always be better (counting to infinity).

Distance vector solution : define a very small ∞

- RIP: $\infty=16$

The path vector solution

The Border Gateway Protocol (BGP)

BGP exchanges metrics and paths. It avoids counting to infinity by throwing away routes that have a loop in the path.

The plan ...

Starting from ($\mathbb{N}, \min ,+$) we will attempt to construct a semiring or IAME (using our lexicographic operators) that has elements of the form (d, X), where d is a shortest-path metric and X is a set of paths. Then, by succsessive refinements, we will arrive at a BGP-like solution.

