L11: Algebraic Path Problems with applications to Internet Routing Lecture 6 CAS Part II

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2018

Distributivity?

Theorem: If \bigoplus_S is commutative and selective, then

 $\mathbb{LD}((\boldsymbol{S}, \oplus_{\boldsymbol{S}}, \otimes_{\boldsymbol{S}}) \times (\boldsymbol{T}, \oplus_{\boldsymbol{T}}, \otimes_{\boldsymbol{T}})) \Leftrightarrow \\ \mathbb{LD}(\boldsymbol{S}, \oplus_{\boldsymbol{S}}, \otimes_{\boldsymbol{S}}) \wedge \mathbb{LD}(\boldsymbol{T}, \oplus_{\boldsymbol{T}}, \otimes_{\boldsymbol{T}}) \wedge (\mathbb{LC}(\boldsymbol{S}, \otimes_{\boldsymbol{S}}) \vee \mathbb{LK}(\boldsymbol{T}, \otimes_{\boldsymbol{T}}))$

 $\mathbb{RD}((S, \oplus_{S}, \otimes_{S}) \times (T, \oplus_{T}, \otimes_{T})) \Leftrightarrow \\\mathbb{RD}(S, \oplus_{S}, \otimes_{S}) \wedge \mathbb{RD}(T, \oplus_{T}, \otimes_{T}) \wedge (\mathbb{RC}(S, \otimes_{S}) \vee \mathbb{RK}(T, \otimes_{T}))$

Left and Right Cancellative

 $\mathbb{LC}(X, \bullet) \equiv \forall a, b, c \in X, \ c \bullet a = c \bullet b \Rightarrow a = b \\ \mathbb{RC}(X, \bullet) \equiv \forall a, b, c \in X, \ a \bullet c = b \bullet c \Rightarrow a = b$

Left and Right Constant

 $\mathbb{LK}(X, \bullet) \equiv \forall a, b, c \in X, \ c \bullet a = c \bullet b \\ \mathbb{RK}(X, \bullet) \equiv \forall a, b, c \in X, \ a \bullet c = b \bullet c$

Why bisemigroups?

But wait! How could any semiring satisfy either of these properties?

 $\mathbb{LC}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a = c \bullet b \Rightarrow a = b$ $\mathbb{LK}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a = c \bullet b$

- For \mathbb{LC} , note that we always have $\overline{0} \otimes a = \overline{0} \otimes b$, so \mathbb{LC} could only hold when $S = \{\overline{0}\}$.
- For $\mathbb{L}\mathbb{K}$, let $a = \overline{1}$ and $b = \overline{0}$ and $\mathbb{L}\mathbb{K}$ leads to the conclusion that every c is equal to 0 (again!).

Normally we will add a zero and/or a one as the last step(s) of constructing a semiring. Alternatively, we might want to complicate our properties so that things work for semirings. A design trade-off!

Proof of \leftarrow for \mathbb{LD} (Very carefully ...)

Assume

(1) $\mathbb{LD}(S, \oplus_S, \otimes_S)$ (2) $\mathbb{LD}(T, \oplus_T, \otimes_T)$ (3) $\mathbb{LC}(S, \otimes_S) \vee \mathbb{LK}(T, \otimes_T)$ $\mathbb{IP}(S, \oplus_S).$ (4)

Let $\oplus \equiv \oplus_S \times \oplus_T$ and $\otimes \equiv \otimes_S \times \otimes_T$. Suppose

$$(s_1, t_1), (s_2, t_2), (s_3, t_3) \in S \times T.$$

We want to show that

$$lhs \equiv (\mathbf{s}_1, t_1) \otimes ((\mathbf{s}_2, t_2) \oplus (\mathbf{s}_3, t_3)) = ((\mathbf{s}_1, t_1) \otimes (\mathbf{s}_2, t_2)) \oplus ((\mathbf{s}_1, t_1) \otimes (\mathbf{s}_3, t_3)) \equiv rhs$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Sar

Proof of \Leftarrow for \mathbb{LD}

We have

$$\begin{aligned} \text{lhs} &\equiv (\mathbf{s}_1, t_1) \otimes ((\mathbf{s}_2, t_2) \oplus (\mathbf{s}_3, t_3)) \\ &= (\mathbf{s}_1, t_1) \otimes (\mathbf{s}_2 \oplus_S \mathbf{s}_3, t_{\text{lhs}}) \\ &= (\mathbf{s}_1 \otimes_S (\mathbf{s}_2 \oplus_S \mathbf{s}_3), t_1 \otimes_T t_{\text{lhs}}) \end{aligned} \\ \text{rhs} &\equiv ((\mathbf{s}_1, t_1) \otimes (\mathbf{s}_2, t_2)) \oplus ((\mathbf{s}_1, t_1) \otimes (\mathbf{s}_3, t_3)) \\ &= (\mathbf{s}_1 \otimes_S \mathbf{s}_2, t_1 \otimes_T t_2) \oplus (\mathbf{s}_1 \otimes_S \mathbf{s}_3, t_1 \otimes_T t_3) \\ &= ((\mathbf{s}_1 \otimes_S \mathbf{s}_2) \oplus_S (\mathbf{s}_1 \otimes_S \mathbf{s}_3), t_{\text{rhs}}) \\ &= (\mathbf{s}_1 \otimes_S (\mathbf{s}_2 \oplus_S \mathbf{s}_3), t_{\text{rhs}}) \end{aligned}$$

where t_{lhs} and t_{rhs} are determined by the appropriate case in the definition of \oplus . Finally, note that

 $lhs = rhs \Leftrightarrow t_{rhs} = t_1 \otimes t_{lhs}.$

Proof by cases on $s_2 \oplus_S s_3$

Case 1 : $s_2 = s_2 \oplus_S s_3 = s_3$. Then $t_{\text{lhs}} = t_2 \oplus_T t_3$ and

$$t_1 \otimes_{\mathcal{T}} t_{\text{lhs}} = t_1 \otimes_{\mathcal{T}} (t_2 \oplus_{\mathcal{T}} t_3) =_{(2)} (t_1 \otimes_{\mathcal{T}} t_2) \oplus_{\mathcal{T}} (t_1 \otimes_{\mathcal{T}} t_3).$$

Since $s_2 = s_3$ we have $s_1 \otimes_S s_2 = s_1 \otimes_S s_3$ and

$$s_1 \otimes_S s_2 =_{(4)} (s_1 \otimes_S s_2) \oplus_S (s_1 \otimes_S s_3) =_{(4)} s_1 \otimes_S s_3.$$

Therefore,

$$t_{\rm rhs} = (t_1 \otimes_{\mathcal{T}} t_2) \oplus (t_1 \otimes_{\mathcal{T}} t_3) = t_1 \otimes_{\mathcal{T}} t_{\rm lhs}.$$

Case 2 : $s_2 = s_2 \oplus_S s_3 \neq s_3$. Then $t_{lhs} = t_2$ and

$$t_1 \otimes_T t_{\text{lhs}} = t_1 \otimes_T t_2.$$

Since $s_2 = s_2 \oplus_S s_3$ we have

 $s_1 \otimes_S s_2 = s_1 \otimes_S (s_2 \oplus_S s_3) =_{(1)} (s_1 \otimes_S s_2) \oplus_S (s_1 \otimes_S s_3).$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ 釣 � @

Case 2.1 $s_1 \otimes_S s_2 \neq s_1 \otimes_S s_3$. Then $t_{rhs} = t_1 \otimes_T t_2 = t_1 \otimes_T t_{lhs}$. Case 2.2 $s_1 \otimes_S s_2 = s_1 \otimes_S s_3$. Then

 $t_{\text{rhs}} = (t_1 \otimes_{\mathcal{T}} t_2) \oplus_{\mathcal{T}} (t_1 \otimes_{\mathcal{T}} t_3) =_{(2)} t_1 \otimes_{\mathcal{T}} (t_2 \oplus_{\mathcal{T}} t_3)$

We need to consider two subcases.

Case 2.2.1: Assume $\mathbb{LC}(S, \otimes_S)$. But $s_1 \otimes_S s_2 = s_1 \otimes_S s_3 \Rightarrow s_2 = s_3$, which is a contradiction.

Case 2.2.2 : Assume $\mathbb{LK}(T, \otimes_T)$. In this case we know

 $\forall a, b \in X, t_1 \otimes_T a = t_1 \otimes_T b.$

Letting $a = t_2 \oplus_T t_3$ and $b = t_2$ we have

 $t_{\rm rhs} = t_1 \otimes_T (t_2 \oplus_T t_3) = t_1 \otimes_T t_2 = t_1 \otimes_T t_{\rm lhs}.$

Case 3 : $s_2 \neq s_2 \oplus_S s_3 = s_3$. Similar to Case 2.

Other direction, \Rightarrow (Very carefully ...)

Prove this:

 $\neg \mathbb{LD}(S, \oplus_{S}, \otimes_{S}) \lor \neg \mathbb{LD}(T, \oplus_{T}, \otimes_{T}) \lor (\neg \mathbb{LC}(S, \otimes_{S}) \land \neg \mathbb{LK}(T, \otimes_{T})) \\ \Rightarrow \neg \mathbb{LD}((S, \oplus_{S}, \otimes_{S}) \times (T, \oplus_{T}, \otimes_{T})).$

Case 1: $\neg \mathbb{LD}(S, \oplus_S, \otimes_S)$. That is

 $\exists a, b, c \in S, \ a \otimes_S (b \oplus_S c) \neq (a \otimes_S b) \oplus_S (a \otimes_S c).$

Pick any $t \in T$. Then for some $t_1, t_2, t_3 \in T$ we have

 $(a, t) \otimes ((b, t) \oplus (c, t))$ $= (a, t) \otimes (b \oplus_S c, t_1)$ $= (a, \otimes_S (b \oplus_S c), t_2)$ $\neq ((a \otimes_S b) \oplus_S (a \otimes_S c), t_3)$ $= (a \otimes_S b, t \otimes_T t) \oplus (a \otimes_S c, t \otimes_T t)$ $= ((a, t) \otimes (b, t)) \oplus ((a, t) \otimes (c, t))$

) Q (
tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems	with applica T.G.Griffin©2018	8 / 18

Case 3: $(\neg \mathbb{LC}(S, \otimes_S) \land \neg \mathbb{LK}(T, \otimes_T))$. That is

$$\exists a, b, c \in S, \ c \otimes_S a = c \otimes_S b \land a \neq b$$

and

$$\exists x, y, z \in T, \ z \otimes_T x \neq z \otimes_T y.$$

Since \bigoplus_S is selective and $a \neq b$, we have $a = a \bigoplus_S b$ or $b = a \bigoplus_S b$. Case 3.1 : Assume $a = a \bigoplus_S b \neq b$. Suppose that $t_1, t_2, t_3 \in T$. Then

lhs	\equiv	$(\boldsymbol{c}, t_1) \otimes ((\boldsymbol{a}, t_2) \oplus (\boldsymbol{b}, t_3))$			
	=	$(\boldsymbol{c}, t_1) \otimes (\boldsymbol{a}, t_2)$			
	=	$(\boldsymbol{c}\otimes_{\boldsymbol{S}}\boldsymbol{a},\ \boldsymbol{t}_1\otimes_{\boldsymbol{T}}\boldsymbol{t}_2)$			
rhs	\equiv	$((\boldsymbol{c}, t_1) \otimes (\boldsymbol{a}, t_2)) \oplus ((\boldsymbol{c}, t_1))$	\otimes (<i>b</i> , <i>t</i>	3))	
	=	$(c \otimes_S a, t_1 \otimes_T t_2) \oplus (c \otimes_S k)$	$b, t_1 \otimes_T$	<i>t</i> ₃)	
	=	$(c \otimes_{\mathcal{S}} a, (t_1 \otimes_{\mathcal{T}} t_2) \oplus_{\mathcal{T}} (t_1 \otimes_{\mathcal{T}} t_2))$	$(_{T} t_{3}))$		
		4		<	1 9 Q C
tgg22 (cl.cam.ac.uk)		L11: Algebraic Path Problems with applica		T.G.Griffin © 2018	9 / 18

Our job now is to select t_1, t_2, t_3 so that

$$t_{\rm lhs} \equiv t_1 \otimes_T t_2 \neq (t_1 \otimes_T t_2) \oplus_T (t_1 \otimes_T t_3) \equiv t_{\rm rhs}.$$

We don't have very much to work with! Only

$$\exists x, y, z \in T, \ z \otimes_T x \neq z \otimes_T y.$$

In addition, we can assume $\mathbb{LD}(T, \oplus_T, \otimes_T)$ (otherwise, use Case 2!), so

$$t_{\rm rhs} = t_1 \otimes_T (t_2 \oplus_T t_3).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 の��

10 / 18

We need to select t_1 , t_2 , t_3 so that

 $t_{\rm lhs} \equiv t_1 \otimes_T t_2 \neq t_1 \otimes_T (t_2 \oplus_T t_3) \equiv t_{\rm rhs}.$

Case 3.1.1: $z \otimes_T x = z \otimes_T (x \oplus_T y)$. Then letting $t_1 = z$, $t_2 = y$, and $t_3 = x$ we have

$$t_{\text{lhs}} = z \otimes_T y \neq z \otimes_T x = z \otimes_T (x \oplus_T y) = z \otimes_T (y \oplus_T x) = t_{\text{rhs}}.$$

Case 3.1.2: $z \otimes_T x \neq z \otimes_T (x \oplus_T y)$. Then letting $t_1 = z$, $t_2 = x$, and $t_3 = y$ we have

$$t_{\rm lhs} = z \otimes_T x \neq z \otimes_T (x \oplus_T y) = t_{\rm rhs}.$$

Case 3.2 : Assume $b = a \bigoplus_S b \neq a$. Suppose that $t_1, t_2, t_3 \in T$. Then

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ・ ミー のへで

We need to select t_1, t_2, t_3 so that

 $t_{\text{lhs}} \equiv t_1 \otimes_T t_3 \neq t_1 \otimes_T (t_2 \oplus_T t_3) \equiv t_{\text{rhs}}.$

Case 3.2.1: $z \otimes_T x = z \otimes_T (x \oplus_T y)$. Then Then letting $t_1 = z$, $t_2 = x$, and $t_3 = y$ we have

$$t_{\text{lhs}} = z \otimes_T y \neq z \otimes_T x = z \otimes_T (x \oplus_T y) = t_{\text{rhs}}.$$

Case 3.2.2: $z \otimes_T x \neq z \otimes_T (x \oplus_T y)$. letting $t_1 = z$, $t_2 = y$, and $t_3 = x$ we have

$$t_{\rm lhs} = z \otimes_T x \neq z \otimes_T (x \oplus_T y) = z \otimes_T (y \oplus_T x) = t_{\rm rhs}.$$

tgg22 (cl.cam.ac.uk)

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ L11: Algebraic Path Problems with applica T.G.Griffin © 2018 13/18

Computing Counter Examples

Note that from (a, b, c) such $c \otimes_S a = c \otimes_S b \wedge a \neq b$ and (x, y, z) such that $z \otimes_T x \neq z \otimes_T y$ our proof computes a counter example to LD as

> if $a = a \oplus_{S} b$ then if $z \otimes_T x = (z \otimes_T x) \oplus_T (z \otimes_T y)$ then ((a, z), (b, y), (c, x))else ((a, z), (b, x), (c, y))else if $z \otimes_T x = (z \otimes_T x) \oplus_T (z \otimes_T y)$ then ((a, z), (b, x), (c, y))else ((a, z), (b, y), (c, x))

14 / 18

Examples

True or counter example							
	name	S	\oplus	\otimes	\mathbb{LD}	$\mathbb{LC}(\boldsymbol{S},\otimes)$	$\mathbb{LK}(\pmb{S},\otimes)$
	min_plus	\mathbb{N}	min	+	*	*	(0,0,1)
	max_min	\mathbb{N}	max	min	*	(0 , 0 , 1)	(1 , 0 , 1)

For example, (0, 0, 1) is a counter example for $\mathbb{LC}(\mathbb{N}, min)$ since $0 \min 0 = 0 \min 1$, but $0 \neq 1$.

	4		• 7 •	< ≣>	▲≣▶	æ	500
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	8		T.G.Gri	ffin©2018	3	15 / 18

Examples

Another turn of the crank

 $\begin{array}{l} \mathbb{LD}(\max_\min \stackrel{\scriptstyle{\times}}{\times} \min_plus) \\ \Leftrightarrow \quad \mathbb{LD}(\max_\min) \land \mathbb{LD}(\min_plus) \land (\mathbb{LC}(\mathbb{N}, \min) \lor \mathbb{LK}(\mathbb{N}, +)) \\ \Leftrightarrow \quad FALSE \end{array}$

Note that the counter examples to \mathbb{LC} and \mathbb{LK} can be plugged into the proof above to produce the a counter example to \mathbb{LD} ,

 $((0,\ 0),\ (0,\ 0),\ (1,\ 1))$

and sure enough, with $\oplus = \max \vec{\times} \min$ and $\otimes = \min \times +$ we have

$$(0, 0) \otimes ((0, 0) \oplus (1, 1)) = (0, 0) \otimes (1, 1) = (0, 1)$$

but

 $((0,\ 0)\otimes(0,\ 0))\oplus((0,\ 0)\otimes(1,\ 1))=(0,\ 0)\oplus(0,\ 1)=(0,\ 0)$

T.G.Griffin © 2018

Sar

16 / 18

Another construction

Suppose that (S, \oplus_S) and (T, \oplus_T) are both commutative and idempotent semigroups. Recall that $S \oplus T$ represents the disjoint union of sets *S* and *T*. That is,

$$S \uplus T \equiv {\operatorname{inl}(s) \mid s \in S} \cup {\operatorname{inr}(t) \mid t \in T}.$$

Define the operation $\oplus \equiv \oplus_{S} + \oplus_{T}$ over $S \oplus T$ as $inl(s) \oplus inl(s') \equiv inl(s \oplus_{S} s')$ $inr(t) \oplus inr(t') \equiv inr(t \oplus_{T} t')$ $inl(s) \oplus inr(t) \equiv inl(s)$ $inr(t) \oplus inl(s) \equiv inl(s)$

Homework 1. Due 31 October.

- Show that \leq_{\oplus}^{L} is a partial order, where this is defined in the usual way as $x \leq_{\oplus}^{L} y \equiv x = x \oplus y$.
- 2 When is \leq_{\oplus}^{L} is a total order?
- **O** Does \leq_{\oplus}^{L} have a least element? A greatest element?
- Suppose now that we have two semirings, (S, ⊕_S, ⊗_S) and (T, ⊕_T, ⊗_T). We want to define a combinator that will produce a semiring

 $(\mathbf{S} \uplus \mathbf{T}, \oplus, \otimes).$

How would you define \otimes from \otimes_{S} and \otimes_{T} ?

Output the second se

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 の��