L11: Algebraic Path Problems with applications to Internet Routing Lecture 6 CAS Part II

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2018

Distributivity?

Theorem: If \oplus_{s} is commutative and selective, then
$\mathbb{L D}\left(\left(S, \oplus_{S}, \otimes_{S}\right) \overrightarrow{\times}\left(T, \oplus_{T}, \otimes_{T}\right)\right) \Leftrightarrow$
$\mathbb{L D}\left(S, \oplus_{S}, \otimes_{S}\right) \wedge \mathbb{L} \mathbb{D}\left(T, \oplus_{T}, \otimes_{T}\right) \wedge\left(\mathbb{L} \mathbb{C}\left(S, \otimes_{S}\right) \vee \mathbb{L K}\left(T, \otimes_{T}\right)\right)$
$\mathbb{R D D}\left(\left(S, \oplus_{S}, \otimes_{S}\right) \overrightarrow{\times}\left(T, \oplus_{T}, \otimes_{T}\right)\right) \Leftrightarrow$ $\mathbb{R D}\left(S, \oplus_{S}, \otimes_{S}\right) \wedge \mathbb{R} \mathbb{D}\left(T, \oplus_{T}, \otimes_{T}\right) \wedge\left(\mathbb{R} \mathbb{C}\left(S, \otimes_{S}\right) \vee \mathbb{R} \mathbb{K}\left(T, \otimes_{T}\right)\right)$

Left and Right Cancellative

$$
\begin{aligned}
& \mathbb{L C}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a=c \bullet b \Rightarrow a=b \\
& \mathbb{R C}(X, \bullet) \equiv \forall a, b, c \in X, a \bullet c=b \bullet c \Rightarrow a=b
\end{aligned}
$$

Left and Right Constant

$$
\begin{aligned}
& \mathbb{L K}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a=c \bullet b \\
& \mathbb{R K}(X, \bullet) \equiv \forall a, b, c \in X, a \bullet c=b \bullet c
\end{aligned}
$$

Why bisemigroups?

But wait! How could any semiring satisfy either of these properties?

$$
\begin{aligned}
& \mathbb{L} \mathbb{C}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a=c \bullet b \Rightarrow a=b \\
& \mathbb{L} \mathbb{K}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a=c \bullet b
\end{aligned}
$$

- For $\mathbb{L C}$, note that we always have $\overline{0} \otimes a=\overline{0} \otimes b$, so $\mathbb{L} \mathbb{C}$ could only hold when $S=\{\overline{0}\}$.
- For $\mathbb{L} \mathbb{K}$, let $a=\overline{1}$ and $b=\overline{0}$ and $\mathbb{L} \mathbb{K}$ leads to the conclusion that every c is equal to $\overline{0}$ (again!).

Normally we will add a zero and/or a one as the last step(s) of constructing a semiring. Alternatively, we might want to complicate our properties so that things work for semirings. A design trade-off!

Proof of \Leftarrow for $\mathbb{L D D}$ (Very carefully ...)

Assume
(1) $\mathbb{L D}\left(S, \oplus_{S}, \otimes_{S}\right)$
(2) $\mathbb{L D}\left(T, \oplus_{T}, \otimes_{T}\right)$
(3) $\mathbb{L} \mathbb{C}\left(S, \otimes_{S}\right) \vee \mathbb{L} \mathbb{K}\left(T, \otimes_{T}\right)$
(4) $\mathbb{I P}\left(S, \oplus_{S}\right)$.

Let $\oplus \equiv \oplus_{S} \overrightarrow{\times} \oplus_{T}$ and $\otimes \equiv \otimes_{S} \times \otimes_{T}$. Suppose

$$
\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right) \in S \times T
$$

We want to show that

$$
\begin{aligned}
\mathrm{lhs} & \equiv\left(s_{1}, t_{1}\right) \otimes\left(\left(s_{2}, t_{2}\right) \oplus\left(s_{3}, t_{3}\right)\right) \\
& =\left(\left(s_{1}, t_{1}\right) \otimes\left(s_{2}, t_{2}\right)\right) \oplus\left(\left(s_{1}, t_{1}\right) \otimes\left(s_{3}, t_{3}\right)\right) \\
& \equiv \text { rhs }
\end{aligned}
$$

Proof of \leftarrow for $\mathbb{L D}$

We have

$$
\begin{aligned}
\mathrm{lhs} & \equiv\left(s_{1}, t_{1}\right) \otimes\left(\left(s_{2}, t_{2}\right) \oplus\left(s_{3}, t_{3}\right)\right) \\
& =\left(s_{1}, t_{1}\right) \otimes\left(s_{2} \oplus_{S} s_{3}, t_{\mathrm{lhs}}\right) \\
& =\left(s_{1} \otimes_{S}\left(s_{2} \oplus_{S} s_{3}\right), t_{1} \otimes_{T} t_{\mathrm{lhs}}\right) \\
\mathrm{rhs} & \equiv\left(\left(s_{1}, t_{1}\right) \otimes\left(s_{2}, t_{2}\right)\right) \oplus\left(\left(s_{1}, t_{1}\right) \otimes\left(s_{3}, t_{3}\right)\right) \\
& =\left(s_{1} \otimes_{S} s_{2}, t_{1} \otimes_{T} t_{2}\right) \oplus\left(s_{1} \otimes_{S} s_{3}, t_{1} \otimes_{T} t_{3}\right) \\
& =\left(\left(s_{1} \otimes_{S} s_{2}\right) \oplus_{S}\left(s_{1} \otimes_{S} s_{3}\right), t_{\mathrm{rhs}}\right) \\
& =(1)\left(s_{1} \otimes_{S}\left(s_{2} \oplus_{S} s_{3}\right), t_{\mathrm{rhs}}\right)
\end{aligned}
$$

where t_{lhs} and t_{rhs} are determined by the appropriate case in the definition of \oplus. Finally, note that

$$
\mathrm{lhs}=\mathrm{rhs} \Leftrightarrow t_{\mathrm{rhs}}=t_{1} \otimes t_{\mathrm{lhs}}
$$

Proof by cases on $s_{2} \oplus s s_{3}$

Case 1: $s_{2}=s_{2} \oplus s s_{3}=s_{3}$. Then $t_{\mathrm{lhs}}=t_{2} \oplus T t_{3}$ and

$$
t_{1} \otimes_{T} t_{\mathrm{lhs}}=t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right)={ }_{(2)}\left(t_{1} \otimes_{T} t_{2}\right) \oplus_{T}\left(t_{1} \otimes_{T} t_{3}\right)
$$

Since $s_{2}=s_{3}$ we have $s_{1} \otimes_{S} s_{2}=s_{1} \otimes_{S} s_{3}$ and

$$
s_{1} \otimes_{S} s_{2}={ }_{(4)}\left(s_{1} \otimes_{S} s_{2}\right) \oplus_{s}\left(s_{1} \otimes_{s} s_{3}\right)={ }_{(4)} s_{1} \otimes_{S} s_{3}
$$

Therefore,

$$
t_{\mathrm{rhs}}=\left(t_{1} \otimes_{T} t_{2}\right) \oplus\left(t_{1} \otimes_{T} t_{3}\right)=t_{1} \otimes_{T} t_{\mathrm{lhs}}
$$

Case 2: $s_{2}=s_{2} \oplus s s_{3} \neq s_{3}$. Then $t_{\mathrm{lhs}}=t_{2}$ and

$$
t_{1} \otimes_{T} t_{\mathrm{lhs}}=t_{1} \otimes_{T} t_{2}
$$

Since $s_{2}=s_{2} \oplus_{S} s_{3}$ we have

$$
s_{1} \otimes_{S} s_{2}=s_{1} \otimes_{S}\left(s_{2} \oplus_{S} s_{3}\right)={ }_{(1)}\left(s_{1} \otimes_{S} s_{2}\right) \oplus_{S}\left(s_{1} \otimes_{S} s_{3}\right)
$$

Case $2.1 s_{1} \otimes_{S} s_{2} \neq s_{1} \otimes_{S} s_{3}$. Then $t_{\mathrm{rhs}}=t_{1} \otimes_{T} t_{2}=t_{1} \otimes_{T} t_{\mathrm{lhs}}$. Case $2.2 s_{1} \otimes_{S} s_{2}=s_{1} \otimes_{S} s_{3}$. Then

$$
t_{\mathrm{rhs}}=\left(t_{1} \otimes_{T} t_{2}\right) \oplus T\left(t_{1} \otimes_{T} t_{3}\right)={ }_{(2)} t_{1} \otimes_{T}\left(t_{2} \oplus T t_{3}\right)
$$

We need to consider two subcases.
Case 2.2.1: Assume $\mathbb{L} \mathbb{C}\left(S, \otimes_{S}\right)$. But $s_{1} \otimes_{S} s_{2}=s_{1} \otimes_{S} s_{3} \Rightarrow s_{2}=s_{3}$, which is a contradiction.
Case 2.2.2 : Assume $\mathbb{L} \mathbb{K}\left(T, \otimes_{T}\right)$. In this case we know

$$
\forall a, b \in X, t_{1} \otimes_{T} a=t_{1} \otimes_{T} b
$$

Letting $a=t_{2} \oplus_{T} t_{3}$ and $b=t_{2}$ we have

$$
t_{\mathrm{rhs}}=t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right)=t_{1} \otimes_{T} t_{2}=t_{1} \otimes_{T} t_{\mathrm{lhs}}
$$

Case 3: $s_{2} \neq s_{2} \oplus s s_{3}=s_{3}$. Similar to Case 2.

Other direction, \Rightarrow (Very carefully ...)

Prove this:

$\neg \mathbb{L D}\left(S, \oplus_{S}, \otimes_{S}\right) \vee \neg \mathbb{L D}\left(T, \oplus_{T}, \otimes_{T}\right) \vee\left(\neg \mathbb{L} \mathbb{C}\left(S, \otimes_{S}\right) \wedge \neg \mathbb{L} \mathbb{K}\left(T, \otimes_{T}\right)\right)$ $\Rightarrow \neg \mathbb{L D}\left(\left(S, \oplus_{S}, \otimes_{S}\right) \overrightarrow{\times}\left(T, \oplus_{T}, \otimes_{T}\right)\right)$.

Case 1: $\neg \mathbb{L} \mathbb{D}\left(S, \oplus_{s}, \otimes_{S}\right)$. That is

$$
\exists a, b, c \in S, a \otimes_{S}\left(b \oplus_{S} c\right) \neq\left(a \otimes_{S} b\right) \oplus_{S}\left(a \otimes_{S} c\right) .
$$

Pick any $t \in T$. Then for some $t_{1}, t_{2}, t_{3} \in T$ we have

$$
\begin{aligned}
& (a, t) \otimes((b, t) \oplus(c, t)) \\
= & (a, t) \otimes\left(b \oplus_{S} c, t_{1}\right) \\
= & \left(a, \otimes_{S}\left(b \oplus_{S} c\right), t_{2}\right) \\
\neq & \left(\left(a \otimes_{S} b\right) \oplus_{S}\left(a \otimes_{S} c\right), t_{3}\right) \\
= & \left(a \otimes_{S} b, t \otimes_{T} t\right) \oplus\left(a \otimes_{S} c, t \otimes_{T} t\right) \\
= & ((a, t) \otimes(b, t)) \oplus((a, t) \otimes(c, t))
\end{aligned}
$$

Case 2: $\neg \mathbb{L} \mathbb{D}\left(T, \oplus_{T}, \otimes_{T}\right)$. Similar.

Case 3: $\left(\neg \mathbb{L} \mathbb{C}\left(S, \otimes_{S}\right) \wedge \neg \mathbb{L K}\left(T, \otimes_{T}\right)\right)$. That is

$$
\exists a, b, c \in S, c \otimes_{S} a=c \otimes_{S} b \wedge a \neq b
$$

and

$$
\exists x, y, z \in T, z \otimes_{T} x \neq z \otimes_{T} y
$$

Since \oplus_{s} is selective and $a \neq b$, we have $a=a \oplus_{s} b$ or $b=a \oplus_{s} b$. Case 3.1: Assume $a=a \oplus_{s} b \neq b$.
Suppose that $t_{1}, t_{2}, t_{3} \in T$. Then

$$
\begin{aligned}
\text { hhs } & \equiv\left(c, t_{1}\right) \otimes\left(\left(a, t_{2}\right) \oplus\left(b, t_{3}\right)\right) \\
& =\left(c, t_{1}\right) \otimes\left(a, t_{2}\right) \\
& =\left(c \otimes_{S} a, t_{1} \otimes_{T} t_{2}\right) \\
\text { rhs } & \equiv\left(\left(c, t_{1}\right) \otimes\left(a, t_{2}\right)\right) \oplus\left(\left(c, t_{1}\right) \otimes\left(b, t_{3}\right)\right) \\
& =\left(c \otimes_{S} a, t_{1} \otimes_{T} t_{2}\right) \oplus\left(c \otimes_{S} b, t_{1} \otimes_{T} t_{3}\right) \\
& =\left(c \otimes_{S} a,\left(t_{1} \otimes_{T} t_{2}\right) \oplus T\left(t_{1} \otimes_{T} t_{3}\right)\right)
\end{aligned}
$$

Our job now is to select t_{1}, t_{2}, t_{3} so that

$$
t_{\mathrm{lhs}} \equiv t_{1} \otimes_{T} t_{2} \neq\left(t_{1} \otimes_{T} t_{2}\right) \oplus T\left(t_{1} \otimes_{T} t_{3}\right) \equiv t_{\mathrm{rhs}}
$$

We don't have very much to work with! Only

$$
\exists x, y, z \in T, z \otimes_{T} x \neq z \otimes_{T} y
$$

In addition, we can assume $\mathbb{L} \mathbb{D}\left(T, \oplus_{T}, \otimes_{T}\right)$ (otherwise, use Case 2!), so

$$
t_{\mathrm{rhs}}=t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right) .
$$

We need to select t_{1}, t_{2}, t_{3} so that

$$
t_{\mathrm{lhs}} \equiv t_{1} \otimes_{T} t_{2} \neq t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right) \equiv t_{\mathrm{rhs}}
$$

Case 3.1.1: $z \otimes_{T} x=z \otimes_{T}\left(x \oplus_{T} y\right)$. Then letting $t_{1}=z, t_{2}=y$, and $t_{3}=x$ we have

$$
t_{\mathrm{lhs}}=z \otimes_{T} y \neq z \otimes_{T} x=z \otimes_{T}\left(x \oplus_{T} y\right)=z \otimes_{T}\left(y \oplus_{T} x\right)=t_{\mathrm{rhs}} .
$$

Case 3.1.2: $z \otimes_{T} x \neq z \otimes_{T}\left(x \oplus_{T} y\right)$. Then letting $t_{1}=z, t_{2}=x$, and $t_{3}=y$ we have

$$
t_{\mathrm{lhs}}=z \otimes_{T} x \neq z \otimes_{T}\left(x \oplus_{T} y\right)=t_{\mathrm{rhs}}
$$

Case 3.2 : Assume $b=a \oplus_{s} b \neq a$. Suppose that $t_{1}, t_{2}, t_{3} \in T$. Then

$$
\begin{aligned}
\text { lhs } & \equiv\left(c, t_{1}\right) \otimes\left(\left(a, t_{2}\right) \oplus\left(b, t_{3}\right)\right) \\
& =\left(c, t_{1}\right) \otimes\left(b, t_{3}\right) \\
& =\left(c \otimes_{S} b, t_{1} \otimes_{T} t_{3}\right) \\
\text { rhs } & \equiv\left(\left(c, t_{1}\right) \otimes\left(a, t_{2}\right)\right) \oplus\left(\left(c, t_{1}\right) \otimes\left(b, t_{3}\right)\right) \\
& =\left(c \otimes_{S} a, t_{1} \otimes_{T} t_{2}\right) \oplus\left(c \otimes_{S} b, t_{1} \otimes_{T} t_{3}\right) \\
& =\left(c \otimes_{S} b,\left(t_{1} \otimes_{T} t_{2}\right) \oplus_{T}\left(t_{1} \otimes_{T} t_{3}\right)\right) \\
& =\left(c \otimes_{S} b, t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right)\right)
\end{aligned}
$$

We need to select t_{1}, t_{2}, t_{3} so that

$$
t_{\mathrm{lhs}} \equiv t_{1} \otimes_{T} t_{3} \neq t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right) \equiv t_{\mathrm{rhs}}
$$

Case 3.2.1: $z \otimes_{T} x=z \otimes_{T}\left(x \oplus_{T} y\right)$. Then Then letting $t_{1}=z, t_{2}=x$, and $t_{3}=y$ we have

$$
t_{\mathrm{lhs}}=z \otimes_{T} y \neq z \otimes_{T} x=z \otimes_{T}(x \oplus T y)=t_{\mathrm{rhs}}
$$

Case 3.2.2: $z \otimes_{T} x \neq z \otimes_{T}\left(x \oplus_{T} y\right)$. letting $t_{1}=z, t_{2}=y$, and $t_{3}=x$ we have

$$
t_{\mathrm{lhs}}=z \otimes_{T} x \neq z \otimes_{T}\left(x \oplus_{T} y\right)=z \otimes_{T}\left(y \oplus_{T} x\right)=t_{\mathrm{rhs}} .
$$

Computing Counter Examples

Note that from (a, b, c) such $c \otimes_{S} a=c \otimes_{S} b \wedge a \neq b$ and (x, y, z) such that $z \otimes_{T} x \neq z \otimes_{T} y$ our proof computes a counter example to LD as

$$
\begin{aligned}
& \text { if } a=a \oplus_{S} b \\
& \text { then if } z \otimes_{T} x=\left(z \otimes_{T} x\right) \oplus_{T}\left(z \otimes_{T} y\right) \\
& \quad \text { then }((a, z),(b, y),(c, x)) \\
& \quad \text { else }((a, z),(b, x),(c, y)) \\
& \text { else if } z \otimes_{T} x=\left(z \otimes_{T} x\right) \oplus_{T}\left(z \otimes_{T} y\right) \\
& \quad \text { then }((a, z),(b, x),(c, y)) \\
& \quad \text { else }((a, z),(b, y),(c, x))
\end{aligned}
$$

Examples

True or counter example

name	S	\oplus	\otimes	$\mathbb{L D}$	$\mathbb{L} \mathbb{C}(S, \otimes)$	$\mathbb{L} \mathbb{K}(S, \otimes)$
min_plus	\mathbb{N}	\min	+	\star	\star	$(0,0,1)$
\max _min	\mathbb{N}	\max	\min	\star	$(0,0,1)$	$(1,0,1)$

For example, $(0,0,1)$ is a counter example for $\mathbb{L} \mathbb{C}(\mathbb{N}, \min)$ since $0 \min 0=0 \min 1$, but $0 \neq 1$.

Let's turn the crank

$$
\begin{aligned}
& \mathbb{L D}(\text { min_plus } \overrightarrow{\times} \text { max_min }) \\
\Leftrightarrow & \mathbb{L D}\left(\min _ \text {plus }\right) \wedge \mathbb{L D}\left(\max _\min \right) \wedge(\mathbb{L} \mathbb{C}(\mathbb{N},+) \vee \mathbb{L} \mathbb{K}(\mathbb{N}, \min)) \\
\Leftrightarrow & \operatorname{TRUE}
\end{aligned}
$$

Examples

Another turn of the crank

```
    LDD(max_min }\vec{\times}\mathrm{ min_plus)
\Leftrightarrow\mathbb{LD}(\mathrm{ max_min })\wedge\mathbb{LD}(\mathrm{ min_plus ) }(\mathbb{L}\mathbb{C}(\mathbb{N},\operatorname{min})\vee\mathbb{L}\mathbb{K}(\mathbb{N},+))
FALSE
```

Note that the counter examples to $\mathbb{L C}$ and $\mathbb{L K}$ can be plugged into the proof above to produce the a counter example to $\mathbb{L D}$,

$$
((0,0),(0,0),(1,1))
$$

and sure enough, with $\oplus=\max \vec{x} \min$ and $\otimes=\min \times+$ we have

$$
(0,0) \otimes((0,0) \oplus(1,1))=(0,0) \otimes(1,1)=(0,1)
$$

but

$$
((0,0) \otimes(0,0)) \oplus((0,0) \otimes(1,1))=(0,0) \oplus(0,1)=(0,0)
$$

Another construction

Suppose that $\left(S, \oplus_{S}\right)$ and $\left(T, \oplus_{T}\right)$ are both commutative and idempotent semigroups. Recall that $S \uplus T$ represents the disjoint union of sets S and T. That is,

$$
S_{\uplus} \Psi \equiv\{\operatorname{inl}(s) \mid s \in S\} \cup\{\operatorname{inr}(t) \mid t \in T\} .
$$

Define the operation $\oplus \equiv \oplus_{s}+\oplus_{T}$ over $S \uplus T$ as

$$
\begin{aligned}
\operatorname{inl}(s) \oplus \operatorname{inl}\left(s^{\prime}\right) & \equiv \operatorname{inl}\left(s \oplus s^{\prime}\right) \\
\operatorname{inr}(t) \oplus \operatorname{inr}\left(t^{\prime}\right) & \equiv \operatorname{inr}\left(t \oplus T t^{\prime}\right) \\
\operatorname{inl}(s) \oplus \operatorname{inr}(t) & \equiv \operatorname{inl}(s) \\
\operatorname{inr}(t) \oplus \operatorname{inl}(s) & \equiv \operatorname{inl}(s)
\end{aligned}
$$

Homework 1. Due 31 October.

(1) Show that $\leqslant \underset{\oplus}{L}$ is a partial order, where this is defined in the usual way as $x \leqslant \stackrel{L}{\oplus} y \equiv x=x \oplus y$.
(2) When is \leqslant_{\oplus}^{L} is a total order?
(3) Does $\leqslant \frac{L}{\oplus}$ have a least element? A greatest element?
(4) Suppose now that we have two semirings, $\left(S, \oplus_{S}, \otimes_{S}\right)$ and $\left(T, \oplus_{T}, \otimes_{T}\right)$. We want to define a combinator that will produce a semiring

$$
(S \uplus T, \oplus, \otimes) .
$$

How would you define \otimes from \otimes_{S} and \otimes_{T} ?
(5) Can you give an informal interpretation for the resulting semiring?

