L11: Algebraic Path Problems with applications to Internet Routing Lecture 4

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2018

Lecture 4: Two interesting Semirings

- Martelli's semiring for computing minimal cut sets
- The mini-max semiring

Cut Sets

Let G = (V, E) be a directed graph.

- A cut set $C \subseteq E$ for nodes i and j is a set of arcs such there is no path from i to j in the graph (V, E C).
- C is minimal if no proper subset of C is an arc cut set.

Martelli's Semiring

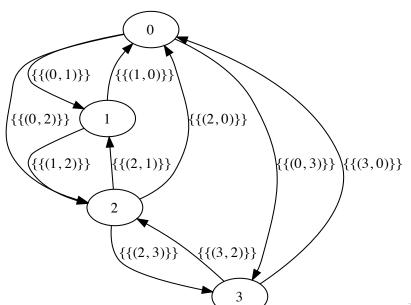
Let G = (V, E) be a directed graph.

```
\begin{array}{rcl} M &\equiv& (S,\,\oplus,\,\otimes,\,0,\,1)\\ S &\equiv& \{X\in 2^{2^E}\mid\forall\,U,\,V\in X,\,U\subseteq V\implies U=V\}\\ X\oplus Y &\equiv& \text{remove all supersets from }\{U\cup V\mid U\in X,\,\,V\in Y\}\\ X\otimes Y &\equiv& \text{remove all supersets from }X\cup Y\\ \hline \frac{\bar{0}}{1} &\equiv& \{\{\}\}\\ \hline 1 &\equiv& \{\}\end{array}
```

What does it do?

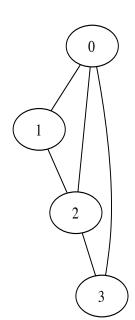
• If every arc (i, j) is has weight $\mathbf{A}(i, j) = \{\{(i, j)\}\}$, then $\mathbf{A}^*(i, j)$ is the set of all minimal arc cut sets for i and j.

A



Part of A*

$$\begin{array}{lll} \textbf{A}^*(0,\,1) &=& \{\{(0,1),(2,1)\},\\ && \{(0,1),(0,2),(0,3)\},\\ && \{(0,1),(0,2),(3,2)\}\} \\ \\ \textbf{A}^*(0,\,2) &=& \{\{(0,2),(1,2),(3,2)\},\\ && \{(0,1),(0,2),(3,2)\},\\ && \{(0,1),(0,2),(0,3)\},\\ && \{(0,2),(0,3),(1,2)\}\} \\ \textbf{A}^*(2,\,0) &=& \{\{(2,0),(2,1),(3,0)\},\\ && \{(1,0),(2,0),(2,3)\},\\ && \{(2,0),(2,1),(2,3)\}\} \\ \\ \textbf{A}^*(2,\,3) &=& \{\{(2,0),(2,1),(2,3)\},\\ && \{(0,3),(2,3)\},\\ && \{(0,3),(2,3)\},\\ && \{(1,0),(2,0),(2,3)\}\} \end{array}$$



A Minimax Semiring

$$minimax \equiv (\mathbb{N}^{\infty}, min, max, \infty, 0)$$

$$17 \min \infty = 17$$

$$17 \max \infty = \infty$$

How can we interpret this?

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in \pi(i, j)} \max_{(u, v) \in \boldsymbol{p}} \mathbf{A}(u, v),$$

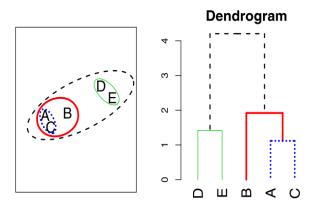
One possible interpretation of Minimax

- Given an adjacency matrix A over minimax,
- suppose that $\mathbf{A}(i, j) = 0 \Leftrightarrow i = j$,
- suppose that **A** is symmetric ($\mathbf{A}(i, j) = \mathbf{A}(j, i)$,
- interpret $\mathbf{A}(i, j)$ as <u>measured</u> dissimilarity of i and j,
- interpret $\mathbf{A}^*(i, j)$ as <u>inferred</u> dissimilarity of i and j,

Many uses

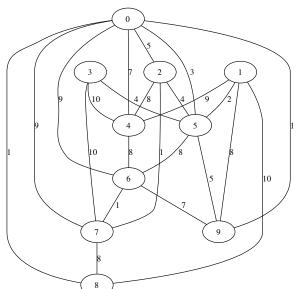
- Hierarchical clustering of large data sets
- Classification in Machine Learning
- Computational phylogenetics
- ...

Dendrograms

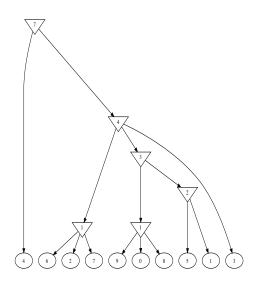


from Hierarchical Clustering With Prototypes via Minimax Linkage, Bien and Tibshirani, 2011.

A minimax graph



The solution A* drawn as a dendrogram



Hierarchical clustering? Why?

Suppose $(Y, \leq, +)$ is a totally ordered with least element 0.

Metric

A <u>metric</u> for set X over $(Y, \leq, +)$ is a function $d \in X \times X \rightarrow Y$ such that

- $\forall x, y \in X, \ d(x, y) = 0 \Leftrightarrow x = y$
- $\bullet \ \forall x,y \in X, \ d(x,\ y) = d(y,\ x)$
- $\bullet \ \forall x,y,z \in X, \ d(x,\ y) \leqslant d(x,\ z) + d(z,\ y)$

Ultrametric

An <u>ultrametric</u> for set X over (Y, \leq) is a function $d \in X \times X \rightarrow Y$ such that

- $\forall x \in X, d(x, x) = 0$
- \bullet $\forall x, y \in X, d(x, y) = d(y, x)$
- $\forall x, y, z \in X$, $d(x, y) \leq d(x, z) \max d(z, y)$

Fun Facts

Fact 5

If **A** is an $n \times n$ symmetric minimax adjacency matrix, then **A*** is a finite ultrametric for $\{0,\ 1,\ \ldots,\ n-1\}$ over $(\mathbb{N}^{\infty},\ \leqslant))$.

Fact 6

Suppose each arc weight is unique. Then the set of arcs

$$\{(i, j) \in E \mid \mathbf{A}(i, j) = \mathbf{A}^*(i, j)\}$$

is a minimum spanning tree.

A spanning tree derived from A and A*

