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Lecture 4 : Two interesting Semirings

@ Martelli’s semiring for computing minimal cut sets
@ The mini-max semiring
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Cut Sets

Let G = (V, E) be a directed graph.

@ Acutset C < E for nodes i and j is a set of arcs such there is no
path from i to j in the graph (V, E — C).
@ C is minimal if no proper subset of C is an arc cut set.
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Martelli's Semiring

Let G = (V, E) be a directed graph.

M = (5,0 ®01)

S = {(Xe22"|VU,VeX UV — U=V}
X@®Y = remove all supersets from{Uu V |Ue X, Ve Y}
X®Y = remove all supersets from X v Y

0 = {{h

1T = {

What does it do?
@ If every arc (i, j) is has weight A(i, j) = {{(/, j)}}, then A*(i, j) is
the set of all minimal arc cut sets for / and j.
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{H{G.0)}}
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Part of A*
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A Minimax Semiring

minimax = (N* min, max, oo, 0) J

17minec = 17
17maxoo = o

How can we interpret this?

A*(i, j) = min max A(u, v),
pen (i, j) (u,v)ep
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One possible interpretation of Minimax

@ Given an adjacency matrix A over minimax,

@ suppose that A(i, j)) =0 < i =,

@ suppose that A is symmetric (A(i, j) = A(j, i),

@ interpret A(/, j) as measured dissimilarity of / and j,
@ interpret A*(i, j) as inferred dissimilarity of / and j,

Many uses
@ Hierarchical clustering of large data sets
@ Classification in Machine Learning
@ Computational phylogenetics
° ..
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Dendrograms

Dendrogram

O wom < O

from Hierarchical Clustering With Prototypes via Minimax Linkage, Bien

and Tibshirani, 2011.
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A minimax graph
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The solution A* drawn as a dendrogram
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Hierarchical clustering? Why?
Suppose (Y, <, +) is a totally ordered with least element 0.

Metric

A metric for set X over (Y, <, +) is afunctionde X x X — Y such
that

o Vx,yeX, d(x,y)=0ex=y
° Vx,ye X, d(x, y) =d(y, x)
o Vx,y,ze X, d(x, y)<d(x, z)+d(z, y)

Ultrametric

An ultrametric for set X over (Y, <) is a function d € X x X — Y such
that

@ Vxe X, dx, x)=0
o Vx,ye X, d(x, y) =d(y, x)
@ Vx,y,ze X, d(x, y) <d(x, zymaxd(z, y)

v
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Fun Facts

Fact 5

If Ais an n x n symmetric minimax adjacency matrix, then A* is a finite
ultrametric for {0, 1, ..., n—1} over (N*, <)).

Fact 6

Suppose each arc weight is unique. Then the set of arcs
{(i, j) e E|A(, j) = A*(i, j)}

is @ minimum spanning tree.
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A spanning tree derived from A and A*
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