L11: Algebraic Path Problems with applications to Internet Routing Lecture 4

Timothy G. Griffin
timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2018

Lecture 4 : Two interesting Semirings

- Martelli's semiring for computing minimal cut sets
- The mini-max semiring

Cut Sets

Let $G=(V, E)$ be a directed graph.

- A cut set $C \subseteq E$ for nodes i and j is a set of arcs such there is no path from i to j in the graph $(V, E-C)$.
- C is minimal if no proper subset of C is an arc cut set.

Martelli's Semiring

Let $G=(V, E)$ be a directed graph.

$$
\begin{aligned}
\mathrm{M} & \equiv(S, \oplus, \otimes, \overline{0}, \overline{1}) \\
S & \equiv\left\{X \in 2^{2^{E}} \mid \forall U, V \in X, U \subseteq V \Longrightarrow U=V\right\}
\end{aligned}
$$

$X \oplus Y \equiv$ remove all supersets from $\{U \cup V \mid U \in X, V \in Y\}$
$X \otimes Y \equiv$ remove all supersets from $X \cup Y$
$\overline{0} \equiv\{\}\}$
$\overline{1} \equiv\}$

What does it do?

- If every $\operatorname{arc}(i, j)$ is has weight $\mathbf{A}(i, j)=\{\{(i, j)\}\}$, then $\mathbf{A}^{*}(i, j)$ is the set of all minimal arc cut sets for i and j.

A

Part of \mathbf{A}^{*}

$$
\begin{aligned}
\mathbf{A}^{*}(0, \mathbf{1})= & \{\{(0,1),(2,1)\}, \\
& \{(0,1),(0,2),(0,3)\}, \\
& \{(0,1),(0,2),(3,2)\}\}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{A}^{*}(0,2)= & \{\{(0,2),(1,2),(3,2)\}, \\
& \{(0,1),(0,2),(3,2)\}, \\
& \{(0,1),(0,2),(0,3)\}, \\
\mathbf{A}^{*}(2,0)= & \{(0,2),(0,3),(1,2)\}\},(2,0),(2),(3,0)\}, \\
& \{(1,0),(2,0),(3,0)\}, \\
& \{(1,0),(2,0),(2,3)\}, \\
& \{(2,0),(2,1),(2,3)\}\}, \\
\mathbf{A}^{*}(2,3)= & \{\{(2,0),(2,1),(2,3)\}, \\
& \{(0,3),(2,3)\}, \\
& \{(1,0),(2,0),(2,3)\}\}
\end{aligned}
$$

A Minimax Semiring

$$
\operatorname{minimax} \equiv\left(\mathbb{N}^{\infty}, \min , \max , \infty, 0\right)
$$

$$
17 \min \infty=17
$$

$$
17 \max \infty=\infty
$$

How can we interpret this?

$$
\mathbf{A}^{*}(i, j)=\min _{p \in \pi(i, j)} \max _{(u, v) \in p} \mathbf{A}(u, v),
$$

One possible interpretation of Minimax

- Given an adjacency matrix A over minimax,
- suppose that $\mathbf{A}(i, j)=0 \Leftrightarrow i=j$,
- suppose that \mathbf{A} is symmetric $(\mathbf{A}(i, j)=\mathbf{A}(j, i)$,
- interpret $\mathbf{A}(i, j)$ as measured dissimilarity of i and j,
- interpret $\mathbf{A}^{*}(i, j)$ as inferred dissimilarity of i and j,

Many uses

- Hierarchical clustering of large data sets
- Classification in Machine Learning
- Computational phylogenetics

Dendrograms

Dendrogram

from Hierarchical Clustering With Prototypes via Minimax Linkage, Bien and Tibshirani, 2011.

A minimax graph

The solution \mathbf{A}^{*} drawn as a dendrogram

Hierarchical clustering? Why?

Suppose $(Y, \leqslant,+)$ is a totally ordered with least element 0 .

Metric

A metric for set X over $(Y, \leqslant,+)$ is a function $d \in X \times X \rightarrow Y$ such that

- $\forall x, y \in X, d(x, y)=0 \Leftrightarrow x=y$
- $\forall x, y \in X, d(x, y)=d(y, x)$
- $\forall x, y, z \in X, d(x, y) \leqslant d(x, z)+d(z, y)$

Ultrametric

An ultrametric for set X over (Y, \leqslant) is a function $d \in X \times X \rightarrow Y$ such that

- $\forall x \in X, d(x, x)=0$
- $\forall x, y \in X, d(x, y)=d(y, x)$
- $\forall x, y, z \in X, d(x, y) \leqslant d(x, z) \max d(z, y)$

Fun Facts

Fact 5

If \mathbf{A} is an $n \times n$ symmetric minimax adjacency matrix, then \mathbf{A}^{*} is a finite ultrametric for $\{0,1, \ldots, n-1\}$ over $\left(\mathbb{N}^{\infty}, \leqslant\right)$).

Fact 6

Suppose each arc weight is unique. Then the set of arcs

$$
\left\{(i, j) \in E \mid \mathbf{A}(i, j)=\mathbf{A}^{*}(i, j)\right\}
$$

is a minimum spanning tree.

A spanning tree derived from \mathbf{A} and \mathbf{A}^{*}

