L11: Algebraic Path Problems with applications to Internet Routing Lecture 14

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2018

◆□▶◆□▶◆≣▶ ■ り९℃

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica T.G.Griffin©2018

Routing vs. Forwarding

- Inspired by the the Locator/ID split work
 - See Locator/ID Separation Protocol (LISP)
- Let's make a distinction between infrastructure nodes V and destinations *D*.
- Assume $V \cap D = \{\}$
- M is a $V \times D$ mapping matrix
 - ▶ $\mathbf{M}(\mathbf{v}, \mathbf{d}) \neq \infty$ means that destination (identifier) \mathbf{d} is somehow attached to node (locator) v

Simple example of forwarding = routing + mapping

matrix	solves
A *	$L = (A \otimes L) \oplus I$
A*M	$F = (A \otimes F) \oplus M$

$$\mathbf{M} = \begin{bmatrix} d_1 & d_2 \\ 1 & \infty & \infty \\ 2 & 3 & \infty \\ \infty & \infty & \infty \\ 4 & \infty & 1 \\ 5 & 2 & 3 \end{bmatrix}$$

Mapping matrix

$$\mathbf{F} = \begin{array}{c} d_1 & d_2 \\ 1 & 5 & 6 \\ 2 & 3 & 7 \\ 5 & 5 & 5 \\ 4 & 9 & 1 \\ 5 & 2 & 3 \end{array}$$

Forwarding matrix (paths implicit)

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2018

3 / 12

More Interesting Example: "Hot-Potato" Idiom — find attachment that is closest

$$\mathbf{M} = \begin{bmatrix} d_1 & d_2 \\ 1 & \infty & \infty \\ 2 & (0,3) & \infty \\ \infty & \infty \\ \infty & \infty \\ \infty & (0,1) \\ 5 & (0,2) & (0,3) \end{bmatrix}$$

Mapping matrix

$$\mathbf{F} = \begin{bmatrix} d_1 & d_2 \\ 1 & (2,3) & (4,3) \\ 2 & (0,3) & (4,3) \\ 3 & (3,2) & (3,3) \\ 4 & (7,2) & (0,1) \\ 5 & (0,2) & (0,3) \end{bmatrix}$$

Forwarding matrix

General Case

Give G = (V, E)

A $|V| \times |V|$ (left) routing matrix **L** solves an equation of the form

$$L = (A \otimes L) \oplus I,$$

over semiring S.

D is the set of destinations.

A $|V| \times |D|$ forwarding matrix is defined as

$$F = L \triangleright M$$
,

over some structure $(N, \Box, \triangleright)$, where $\triangleright \in S \rightarrow (N \rightarrow N)$.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2018

5 / 12

forwading = path finding + mapping

Does this make sense?

$$F(i, d) = (L \triangleright M)(i, d) = \square_{q \in V} L(i, q) \triangleright M(q, d).$$

- Once again we are leaving paths implicit in the construction.
- Routing paths are best paths to egress nodes, selected with respect to □-minimality.
- —-minimality can be very different from selection involved in path finding.

When we are lucky ...

matrix	solves
A *	$L = (A \otimes L) \oplus I$
A * ⊳ M	$F = (A \triangleright F) \square M$

When does this happen?

When $(N, \Box, \triangleright)$ is a (left) semi-module over the semiring S^a .

^aA model of Internet routing using semi-modules. John N. Billings and Timothy G. Griffin. RelMiCS11/AKA6 2009

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2018

7 / 12

(left) Semi-modules

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring.

A (left) semi-module over S

Is a structure $(N, \Box, \triangleright, \overline{0}_N)$, where

- $(N, \Box, \overline{0}_N)$ is a commutative monoid
- \triangleright is a function $\triangleright \in S \rightarrow (N \rightarrow N)$
- $\bullet (a \otimes b) \rhd m = a \rhd (b \rhd m)$
- $\overline{0} > m = \overline{0}_N$
- $s \triangleright \overline{0}_N = \overline{0}_N$
- \bullet $\overline{1} > m = m$

and distributivity holds,

 $SMLD : s \triangleright (m \square n) = (s \triangleright m) \square (s \triangleright n)$

 $\mathbb{SMRD} : (s \oplus t) \rhd m = (s \rhd m) \square (t \rhd m)$

Example: Hot-Potato

S idempotent and selective

$$S = (S, \oplus_{S}, \otimes_{S})$$

$$T = (T, \oplus_{T}, \otimes_{T})$$

$$\triangleright_{fst} \in S \rightarrow (S \times T) \rightarrow (S \times T)$$

$$s_{1} \triangleright_{fst} (s_{2}, t) = (s_{1} \otimes_{S} s_{2}, t)$$

$$\operatorname{Hot}(\boldsymbol{\mathcal{S}},\ \boldsymbol{\mathcal{T}}) = (\boldsymbol{\mathcal{S}}\times\boldsymbol{\mathcal{T}},\ \vec{\times},\ \triangleright_{fst}),$$

where \vec{x} is the (left-to-right) lexicographic product of \bigoplus_{S} and \bigoplus_{T} .

Define ⊳_{hp} on matrices

$$(\mathbf{L} \rhd_{\mathrm{hp}} \mathbf{M})(i, d) = \vec{\times}_{q \in V} \mathbf{L}(i, q) \rhd_{\mathrm{fst}} \mathbf{M}(q, d)$$

(ロ > ←昼 > ← ≧ > ← ≧ → りへの

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2018

9/12

Example of hot-potato routing

matrix	solves
\mathbf{A}^*	$L = (A \otimes L) \oplus I$
$\mathbf{A}^* \rhd_{hp} \mathbf{M}$	$\mathbf{F} = (\mathbf{A} \rhd_{hp} \mathbf{F}) \vec{\times} \mathbf{M}$

$$\mathbf{M} = \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} \begin{bmatrix} \infty & \infty \\ (0,3) & \infty \\ \infty & \infty \\ \infty & (0,1) \\ (0,2) & (0,3) \end{array}$$

Mapping matrix

$$\mathbf{F} = \begin{array}{c} d_1 & d_2 \\ 1 & (2,3) & (4,3) \\ 2 & (0,3) & (4,3) \\ 3 & (3,2) & (3,3) \\ 4 & (7,2) & (0,1) \\ 5 & (0,2) & (0,3) \end{array}$$

Routing matrix

Example: Cold-Potato

$\oplus_{\mathcal{T}}$ selective

$$\begin{array}{rcl} \mathcal{S} & = & (\mathcal{S}, \oplus_{\mathcal{S}}, \otimes_{\mathcal{S}}) \\ \mathcal{T} & = & (\mathcal{T}, \oplus_{\mathcal{T}}, \otimes_{\mathcal{T}}) \\ \rhd_{\mathrm{fst}} & \in & \mathcal{S} \to (\mathcal{S} \times \mathcal{T}) \to (\mathcal{S} \times \mathcal{T}) \\ \mathcal{S}_{1} \rhd_{\mathrm{fst}} (\mathcal{S}_{2}, t) & = & (\mathcal{S}_{1} \otimes_{\mathcal{S}} \mathcal{S}_{2}, t) \end{array}$$

$$Cold(S, T) = (S \times T, \times, \triangleright_{fst}),$$

where $\stackrel{\leftarrow}{\times}$ is the (right-to-left) lexicographic product of \bigoplus_S and \bigoplus_T .

Define \triangleright_{cp} on matrices

$$(\mathbf{L} \rhd_{\mathrm{cp}} \mathbf{M})(i, d) = \stackrel{\leftarrow}{\times}_{q \in V} \mathbf{L}(i, q) \rhd_{\mathrm{fst}} \mathbf{M}(q, d)$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2018

11 / 12

Example of cold-potato routing

matrix	solves
A *	$L = (A \otimes L) \oplus I$
$A^* \rhd_{cp} M$	$\mathbf{F} = (\mathbf{A} \rhd_{cp} \mathbf{F}) \stackrel{\leftarrow}{\times} \mathbf{M}$

Mapping matrix

$$\mathbf{F} = \begin{bmatrix} d_1 & d_2 \\ 1 & (4,2) & (5,1) \\ 2 & (4,2) & (9,1) \\ 3 & (3,2) & (4,1) \\ 4 & (7,2) & (0,1) \\ 5 & (0,2) & (7,1) \end{bmatrix}$$

Routing matrix