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Routing vs. Forwarding

@ Inspired by the the Locator/ID split work
» See Locator/ID Separation Protocol (LISP)

@ Let’'s make a distinction between infrastructure nodes V and
destinations D.

@ Assume Vn D= {}

@ Mis a V x D mapping matrix

» M(v, d) + oo means that destination (identifier) d is somehow
attached to node (locator) v
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Simple example of forwarding = routing + mapping
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Forwarding matrix (paths implicit)
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More Interesting Example
attachment that is closest
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: “Hot-Potato” Idiom — find
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General Case

Give G= (V,E)
A V| x | V] (left) routing matrix L solves an equation of the form

L=(A®L)®l,

over semiring S.

D is the set of destinations.

A |V| x |D| forwarding matrix is defined as

F=L>M,

over some structure (N, O, >), where > € S — (N — N).
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forwading = path finding + mapping

Does this make sense?
F(,7 d) = (L > M)(’? d) = quVL(i7 q) > M(q7 d)

@ Once again we are leaving paths implicit in the construction.

@ Routing paths are best paths to egress nodes, selected with
respect to O-minimality.

@ O-minimality can be very different from selection involved in path
finding.
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When we are lucky ...

matrix | solves
A* L=(A®L)®l
A*>M | F=(A>F)oM

When does this happen?
When (N, O, ) is a (left) semi-module over the semiring S2.

2A model of Internet routing using semi-modules. John N. Billings and
Timothy G. Griffin. ReIMiCS11/AKA6 2009
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(left) Semi-modules
° (S, @ ®, 0, 1)is asemiring.

A (left) semi-module over S

Is a structure (N, 0, >, Oy), where
@ (N, o, Oy) is a commutative monoid
@ >isafuncton>e S — (N— N)
@ (a®b)>m=ar> (b m)
@ 0> m=0p
@ S>> 6/\/ = 6N
e1>m=m
and distributivity holds,

SMLD : st (moOn) ( (
SMRD : (s@t)>m = (s>m)o(t>m)
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Example : Hot-Potato

S idempotent and selective

S = (87 @37 ®S)
T = (T7 S ®T)
Dig € S—>(SxT)—>(SxT)
S1 Dt (S2, 1) = (S1®s S2, 1)

Hot(S, T) = (Sx T, X, D),

where X is the (left-to-right) lexicographic product of ®g and @7.
Define >y, on matrices

(L>np M) (i, d) = Xgqev L(i, ) >t M(q, d)
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Example of hot-potato routing
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Example : Cold-Potato

@7 selective
S = (87 6_)37 ®S)
T = (T,®r1, ®71)
Dig € S—>(SxT)—>(SxT)
S1 Dt (S2, 1) = (S1®s 82, 1)

Cold(S, T) = (Sx T, X, >ty),

where X is the (right-to-left) lexicographic product of @5 and ®7.
Define >, on matrices

(L>ep M)(i, d) = Xgev L/, q) > M(gq, d)
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Example of cold-potato routing
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