L11: Algebraic Path Problems with applications to Internet Routing Lecture 14

Timothy G. Griffin
timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2018

Routing vs. Forwarding

- Inspired by the the Locator/ID split work
- See Locator/ID Separation Protocol (LISP)
- Let's make a distinction between infrastructure nodes V and destinations D.
- Assume $V \cap D=\{ \}$
- \mathbf{M} is a $V \times D$ mapping matrix
- $\mathbf{M}(v, d) \neq \infty$ means that destination (identifier) d is somehow attached to node (locator) v

Simple example of forwarding $=$ routing + mapping

$$
\mathbf{M}=\begin{gathered}
d_{1} \\
1 \\
1 \\
2 \\
3 \\
4 \\
5
\end{gathered}\left[\begin{array}{cc}
d_{2} \\
\infty & \infty \\
3 & \infty \\
\infty & \infty \\
\infty & 1 \\
2 & 3
\end{array}\right]
$$

Mapping matrix
$\left.\mathbf{F}=\begin{array}{cc}d_{1} & d_{2} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 & 6 \\ 3 & 7 \\ 5 & 5 \\ 9 & 1 \\ 2 & 3\end{array}\right]$
Forwarding matrix (paths implicit)

More Interesting Example : "Hot-Potato" Idiom — find attachment that is closest

$\mathbf{M}=$| 1 |
| :--- |
| 1 |
| 2 |
| 3 |
| 5 |\(\left[\begin{array}{cc}d_{1} \& d_{2}

\infty \& \infty

(0,3) \& \infty

\infty \& \infty

\infty \& (0,1)

(0,2) \& (0,3)\end{array}\right]\)

Mapping matrix

$$
\mathbf{F}=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cc}
(2,3) & (4,3) \\
(0,3) & (4,3) \\
(3,2) & (3,3) \\
(7,2) & (0,1) \\
(0,2) & (0,3)
\end{array}\right]
$$

Forwarding matrix

General Case

Give $G=(V, E)$
A $|V| \times|V|$ (left) routing matrix \mathbf{L} solves an equation of the form

$$
\mathbf{L}=(\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I},
$$

over semiring S.

D is the set of destinations.
A $|V| \times|D|$ forwarding matrix is defined as

$$
\mathbf{F}=\mathbf{L} \triangleright \mathbf{M},
$$

over some structure $(N, \square, \triangleright)$, where $\triangleright \in S \rightarrow(N \rightarrow N)$.

forwading $=$ path finding + mapping

Does this make sense?

$$
\mathbf{F}(i, d)=(\mathbf{L} \triangleright \mathbf{M})(i, d)=\square_{q \in V} \mathbf{L}(i, q) \triangleright \mathbf{M}(q, d) .
$$

- Once again we are leaving paths implicit in the construction.
- Routing paths are best paths to egress nodes, selected with respect to \square-minimality.
- \square-minimality can be very different from selection involved in path finding.

When we are lucky ...

matrix	solves
\mathbf{A}^{*}	$\mathbf{L}=(\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I}$
$\mathbf{A}^{*} \triangleright \mathbf{M}$	$\mathbf{F}=(\mathbf{A} \triangleright \mathbf{F}) \square \mathbf{M}$

When does this happen?

When $(N, \square, \triangleright)$ is a (left) semi-module over the semiring S^{a}.
${ }^{a}$ A model of Internet routing using semi-modules. John N. Billings and Timothy G. Griffin. RelMiCS11/AKA6 2009

(left) Semi-modules

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring.

A (left) semi-module over S

Is a structure ($N, \square, \triangleright, \overline{0}_{N}$), where

- ($N, \square, \overline{0}_{N}$) is a commutative monoid
- \triangleright is a function $\triangleright \in S \rightarrow(N \rightarrow N)$
- $(a \otimes b) \triangleright m=a \triangleright(b \triangleright m)$
- $\overline{0} \triangleright m=\overline{0}_{N}$
- $s \triangleright \overline{0}_{N}=\overline{0}_{N}$
- $\overline{1} \triangleright m=m$
and distributivity holds,

$$
\begin{aligned}
& \mathbb{S M L \mathbb { D }}: \\
& \mathbb{S M R \mathbb { D }}: \\
& :(s \oplus(m \triangleright n)=(s \triangleright m) \square(s \triangleright n) \\
& (s \oplus t) \triangleright m=(s \triangleright m) \square(t \triangleright m)
\end{aligned}
$$

Example : Hot-Potato

S idempotent and selective

$$
\begin{aligned}
S & =\left(S, \oplus_{S}, \otimes_{S}\right) \\
T & =\left(T, \oplus_{T}, \otimes_{T}\right) \\
\triangleright_{\mathrm{fst}} & \in S \rightarrow(S \times T) \rightarrow(S \times T) \\
s_{1} \triangleright_{\mathrm{fst}}\left(s_{2}, t\right) & =\left(s_{1} \otimes_{S} s_{2}, t\right)
\end{aligned}
$$

$$
\operatorname{Hot}(S, T)=\left(S \times T, \overrightarrow{\times}, \triangleright_{\mathrm{fst}}\right)
$$

where \vec{x} is the (left-to-right) lexicographic product of \oplus_{S} and \oplus_{T}.
Define $\triangleright_{h p}$ on matrices

$$
\left(\mathbf{L} \triangleright_{\mathrm{hp}} \mathbf{M}\right)(i, d)=\vec{x}_{q \in V} \mathbf{L}(i, q) \triangleright_{\mathrm{fst}} \mathbf{M}(q, d)
$$

Example of hot-potato routing

matrix	solves
\mathbf{A}^{*}	$\mathbf{L}=(\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I}$
$\mathbf{A}^{*} \triangleright_{\mathrm{hp}} \mathbf{M}$	$\mathbf{F}=\left(\mathbf{A} \triangleright_{\mathrm{hp}} \mathbf{F}\right) \overrightarrow{\times} \mathbf{M}$

$\mathbf{M}=$| 1 |
| :--- |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |\(\left[\begin{array}{cc}d_{1} \& d_{2}

\infty \& \infty

(0,3) \& \infty

\infty \& \infty

\infty \& (0,1)

(0,2) \& (0,3)\end{array}\right]\)

Mapping matrix

$$
\mathbf{F}=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cc}
(2,3) & (4,3) \\
(0,3) & (4,3) \\
(3,2) & (3,3) \\
(7,2) & (0,1) \\
(0,2) & (0,3)
\end{array}\right]
$$

Routing matrix

Example : Cold-Potato

\oplus_{T} selective

$$
\begin{aligned}
S & =\left(S, \oplus_{S}, \otimes_{S}\right) \\
T & =\left(T, \oplus_{T}, \otimes_{T}\right) \\
\triangleright_{\mathrm{fst}} & \in S \rightarrow(S \times T) \rightarrow(S \times T) \\
s_{1} \triangleright_{\mathrm{fst}}\left(s_{2}, t\right) & =\left(s_{1} \otimes_{S} s_{2}, t\right)
\end{aligned}
$$

$$
\operatorname{Cold}(S, T)=\left(S \times T, \overleftarrow{\times}, \triangleright_{\mathrm{fst}}\right)
$$

where \overleftarrow{x} is the (right-to-left) lexicographic product of $\oplus s$ and $\oplus T$.
Define $\triangleright_{\mathrm{cp}}$ on matrices

$$
\left(\mathbf{L} \triangleright_{\mathrm{cp}} \mathbf{M}\right)(i, d)=\overleftarrow{x}_{q \in V} \mathbf{L}(i, q) \triangleright_{\mathrm{fst}} \mathbf{M}(q, d)
$$

Example of cold-potato routing

Mapping matrix

$$
\mathbf{F}=\begin{array}{cc}
d_{1} & d_{2} \\
1 \\
2 \\
3 \\
4 \\
5
\end{array}\left[\begin{array}{cc}
(4,2) & (5,1) \\
(4,2) & (9,1) \\
(3,2) & (4,1) \\
(7,2) & (0,1) \\
(0,2) & (7,1)
\end{array}\right]
$$

Routing matrix

