## L11: Algebraic Path Problems with applications to Internet Routing Lecture 14

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2018

4 **A** N A **B** N A **B** N

## Routing vs. Forwarding

- Inspired by the the Locator/ID split work
  - See Locator/ID Separation Protocol (LISP)
- Let's make a distinction between <u>infrastructure</u> nodes *V* and <u>destinations</u> *D*.
- Assume  $V \cap D = \{\}$
- **M** is a  $V \times D$  mapping matrix
  - $\mathbf{M}(\mathbf{v}, d) \neq \infty$  means that destination (identifier) *d* is somehow attached to node (locator)  $\mathbf{v}$

4 **A** N A **B** N A **B** N

## Simple example of forwarding = routing + mapping



Forwarding matrix (paths implicit)

## More Interesting Example : "Hot-Potato" Idiom — find attachment that is closest



Forwarding matrix

#### **General Case**

Give G = (V, E)

A  $|V| \times |V|$  (left) routing matrix L solves an equation of the form

 $\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I},$ 

over semiring *S*.

D is the set of destinations.

A  $|V| \times |D|$  forwarding matrix is defined as

 $\mathbf{F} = \mathbf{L} \triangleright \mathbf{M},$ 

over some structure  $(N, \Box, \rhd)$ , where  $\rhd \in S \rightarrow (N \rightarrow N)$ .

## forwading = path finding + mapping

Does this make sense?

$$\mathbf{F}(i, d) = (\mathbf{L} \triangleright \mathbf{M})(i, d) = \Box_{q \in V} \mathbf{L}(i, q) \triangleright \mathbf{M}(q, d).$$

- Once again we are leaving paths implicit in the construction.
- Routing paths are best paths to egress nodes, selected with respect to □-minimality.
- —-minimality can be very different from selection involved in path finding.

4 **A** N A **B** N A **B** N

#### When we are lucky ...

| matrix      | solves                                                                |
|-------------|-----------------------------------------------------------------------|
| <b>A</b> *  | $L = (A \otimes L) \oplus I$                                          |
| $A^*  ho M$ | $\mathbf{F} = (\mathbf{A} \triangleright \mathbf{F}) \Box \mathbf{M}$ |

#### When does this happen?

When  $(N, \Box, \rhd)$  is a (left) semi-module over the semiring  $S^a$ .

<sup>a</sup>A model of Internet routing using semi-modules. John N. Billings and Timothy G. Griffin. RelMiCS11/AKA6 2009

## (left) Semi-modules

•  $(S, \oplus, \otimes, \overline{0}, \overline{1})$  is a semiring.

#### A (left) semi-module over S

Is a structure  $(N, \Box, \rhd, \overline{0}_N)$ , where

- $(N, \Box, \overline{0}_N)$  is a commutative monoid
- $\triangleright$  is a function  $\triangleright \in S \rightarrow (N \rightarrow N)$

• 
$$(a \otimes b) \rhd m = a \rhd (b \rhd m)$$

•  $\overline{0} \vartriangleright m = \overline{0}_N$ 

• 
$$s \triangleright \overline{0}_N = \overline{0}_N$$

•  $\overline{1} \triangleright m = m$ 

and distributivity holds,

$$\begin{array}{rcl} \mathbb{SMLD} & : & \boldsymbol{s} \triangleright (\boldsymbol{m} \Box \boldsymbol{n}) & = & (\boldsymbol{s} \triangleright \boldsymbol{m}) \Box (\boldsymbol{s} \triangleright \boldsymbol{n}) \\ \mathbb{SMRD} & : & (\boldsymbol{s} \oplus \boldsymbol{t}) \triangleright \boldsymbol{m} & = & (\boldsymbol{s} \triangleright \boldsymbol{m}) \Box (\boldsymbol{t} \triangleright \boldsymbol{m}) \end{array}$$

(1)

#### Example : Hot-Potato

# S idempotent and selective $S = (S, \oplus_S, \otimes_S)$ $T = (T, \oplus_T, \otimes_T)$ $\triangleright_{fst} \in S \rightarrow (S \times T) \rightarrow (S \times T)$ $s_1 \triangleright_{fst} (s_2, t) = (s_1 \otimes_S s_2, t)$

$$\operatorname{Hot}(\boldsymbol{S}, T) = (\boldsymbol{S} \times T, \ \vec{\times}, \ \rhd_{\operatorname{fst}}),$$

where  $\vec{x}$  is the (left-to-right) lexicographic product of  $\oplus_S$  and  $\oplus_T$ .

Define  $\triangleright_{hp}$  on matrices

$$(\mathbf{L} \rhd_{\mathrm{hp}} \mathbf{M})(i, d) = \vec{\times}_{q \in V} \mathbf{L}(i, q) \rhd_{\mathrm{fst}} \mathbf{M}(q, d)$$

## Example of hot-potato routing



Routing matrix

< 6 b

- B- 6-

**A**\*

 $\mathbf{A}^* \triangleright_{\mathrm{hp}} \mathbf{M}$ 

#### Example : Cold-Potato

$$\begin{array}{rcl} \bigoplus_{T} \text{ selective} \\ & S &=& (S, \oplus_{S}, \otimes_{S}) \\ & T &=& (T, \oplus_{T}, \otimes_{T}) \\ & \rhd_{\text{fst}} & \in & S \rightarrow (S \times T) \rightarrow (S \times T) \\ & s_{1} \Join_{\text{fst}} (s_{2}, t) &=& (s_{1} \otimes_{S} s_{2}, t) \end{array}$$

$$\operatorname{Cold}(\boldsymbol{S}, \boldsymbol{T}) = (\boldsymbol{S} \times \boldsymbol{T}, \overleftarrow{\times}, \vartriangleright_{\operatorname{fst}}),$$

where  $\bar{\times}$  is the (right-to-left) lexicographic product of  $\oplus_S$  and  $\oplus_T$ .

Define  $\triangleright_{cp}$  on matrices

$$(\mathbf{L} \rhd_{\rm cp} \mathbf{M})(i, d) = \overleftarrow{\times}_{q \in V} \mathbf{L}(i, q) \rhd_{\rm fst} \mathbf{M}(q, d)$$

< ロ > < 同 > < 回 > < 回 >

### Example of cold-potato routing

 $\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I}$  $\mathbf{F} = (\mathbf{A} \triangleright_{cn} \mathbf{F}) \overleftarrow{\times} \mathbf{M}$ 



Routing matrix

**A**\*

 $\mathbf{A}^* \triangleright_{\mathrm{cp}} \mathbf{M}$