L11: Algebraic Path Problems with applications to Internet Routing Lecture 13 Reduction Redux

Timothy G. Griffin
timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2018

Recall : Reduced semigroup.

Here I have made equality explicit.
If $(S,=, \bullet)$ is semigroup and $r \in S \rightarrow S$, then define

$$
\operatorname{reduce}((S,=, \bullet), r) \equiv\left(S_{r},=, \bullet_{r}\right)
$$

where

$$
\begin{aligned}
S_{r} & \equiv\{s \in S \mid r(s)=s\} \\
x \bullet r y & \equiv r(x \bullet y)
\end{aligned}
$$

General vs classical reductions

Both require $\mathbb{R} \mathbb{P}(S, r)$.

General Reduction (note quantification over S_{r})

$$
\mathbb{R} \mathbb{A}((S, \bullet), r) \equiv \forall x, y, z \in S_{r}, r(x \bullet r(y \bullet z))=r(r(x \bullet y) \bullet z)
$$

Classical reduction (all quantification over S)

$$
\begin{aligned}
& \mathbb{R L} \mathbb{C}((S, \bullet), r) \equiv \forall x, y \in S, r(r(x) \bullet y)=r(x \bullet y) \\
& \mathbb{R} \mathbb{R} \mathbb{C}((S, \bullet), r) \equiv \forall x, y \in S, r(x \bullet r(y))=r(x \bullet y)
\end{aligned}
$$

Example of a non-classical reduction?

Recall our "hack" from Lecture 9:
We redefined the multiplication \otimes of

$$
\operatorname{AddZero}(\infty,(\mathbb{N}, \min ,+) \overrightarrow{\times} \operatorname{epaths}(V))
$$

as follows:

$$
\begin{aligned}
x \otimes^{\prime} \operatorname{inr}(\infty) & =\operatorname{inr}(\infty) \\
\operatorname{inr}(\infty) \otimes^{\prime} x & =\operatorname{inr}(\infty) \\
\operatorname{inl}\left(d_{1}, X\right) \otimes^{\prime} \operatorname{inl}\left(d_{1}, Y\right) & =\left\{\begin{array}{cl}
\operatorname{inr}(\infty) & \text { if } X \widetilde{\odot} Y=\{ \} \\
\operatorname{inl}\left(d_{1}+d_{2}, X \widetilde{\odot} Y\right) & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Ah, can we do this as a reduction?

Example of a non-classical reduction?

Define r as

$$
\begin{aligned}
r(\operatorname{inr}(\infty)) & \equiv \operatorname{inr}(\infty) \\
r(\operatorname{inrl}(d, X) & \equiv\left\{\begin{array}{cl}
\operatorname{inr}(\infty) & \text { if } X=\{ \} \\
\operatorname{inl}(d, X) & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Lets look at reduce $(\operatorname{AddZero}(\infty,(\mathbb{N}, \min ,+) \vec{x} \operatorname{epaths}(V)), r)$

The additive component:

$$
\begin{aligned}
S_{r} & \equiv\left(\left(\mathbb{N} \times \mathcal{P}_{\text {fin }}(\operatorname{elem}(V))\right) \uplus\{\infty\}\right)_{r} \\
\oplus_{r} & \equiv\left((\min \overrightarrow{\times} \cup)_{\infty}^{\text {id }}\right)_{r}
\end{aligned}
$$

Example of a non-classical reduction?

Let's construct a violation of

$$
\mathbb{R} \mathbb{L} \mathbb{C}((S, \oplus), r) \equiv \forall x, y \in S, r(r(x) \oplus y)=r(x \oplus y)
$$

Suppose $d<d^{\prime}$ and $X \neq\{ \}$, then let

$$
\begin{aligned}
x & \equiv \operatorname{inl}(d,\{ \}) \\
y & \equiv \operatorname{inl}\left(d^{\prime}, \xrightarrow[X]{X}\right) \\
\bar{\infty} & \equiv \operatorname{inr}(\infty)
\end{aligned}
$$

then

$$
\begin{aligned}
& \text { lhs } \equiv r(r(x) \oplus y)=r(\bar{\infty} \oplus y)=r(y)=y \\
& \text { rhs } \equiv r(x \oplus y)=r(x)=\bar{\infty}
\end{aligned}
$$

This gives us an example that violates associativity:

$$
\left(x \oplus_{r} \bar{\infty}\right) \oplus_{r} y \neq x \oplus_{r}\left(\bar{\infty} \oplus_{r} y\right)
$$

Example of a non-classical reduction?

> But r does satisfy $\mathbb{R A S}$ for \oplus and \otimes $$
\begin{array}{r}\mathbb{R A S}((S, \oplus), r) \equiv \forall x, y, z \in S_{r}, r(x \oplus r(y \oplus z))=r(r(x \oplus y) \oplus z) \\ \mathbb{R} \mathbb{A}((S, \otimes), r) \equiv \forall x, y, z \in S_{r}, r(x \otimes r(y \otimes z))=r(r(x \otimes y) \otimes z)\end{array}
$$

where

$$
\otimes \equiv\left((+\times \widetilde{\bigodot})_{\infty}^{\mathrm{ann}}\right)
$$

However, distributivity is lost!

In general, we want for all $a, b, c \in S_{r}$

$$
a \otimes_{r}\left(b \oplus_{r} c\right)=\left(a \otimes_{r} b\right) \oplus_{r}\left(a \otimes_{r} c\right)
$$

That is

$$
r(a \otimes r(b \oplus c))=r(r(a \otimes b) \oplus r(a \otimes c))
$$

Construct a counterexample:

- Ihs : Suppose $b \oplus c=b, r(b)=b$ and $r(a \otimes b)=\bar{\infty}$ becaue of a loop.
- rhs:
$r(r(a \otimes b) \oplus r(a \otimes c))=r(\bar{\infty} r(a \otimes c))=r(r(a \otimes c))=r(a \otimes c)$, and suppose $a \otimes c$ is loop-free.
- Then lhs $=$ rhs.

Fully reduced semigroup.

If $(S,=, \bullet)$ is semigroup and $r \in S \rightarrow S$, then define

$$
\text { fullReduce }((S,=, \bullet), r) \equiv\left(S,={ }^{r}, \bullet^{r}\right)
$$

where we assume $\mathbb{R} \mathbb{P}(S, r)$ and define

$$
\begin{aligned}
s=^{r} s^{\prime} & \equiv r(s)=r\left(s^{\prime}\right) \\
x \bullet r y & \equiv r((r(x) \bullet r(y))
\end{aligned}
$$

Remarks

- Easy to show that $\left(S,=^{r}\right)$ is an equivalence relation iff $\left(S_{r},=\right)$ is an equivalence relation (proof requires $\mathbb{R} \mathbb{P}(S, r)$).
- In standard programming languages (those without dependent types) it is much easier to implement fullReduce $((S,=, \bullet), r)$ than reduce $((S,=, \bullet), r)$.

Associativity?

Fact

$$
\mathbb{A} \mathbb{S}(\text { reduce }((S,=, \bullet), r)) \leftrightarrow \mathbb{A}(\text { fullReduce }((S,=, \bullet), r))
$$

Proof is rather tedious: It relies heavily on $\mathbb{R} \mathbb{P}(S, r)$ and congruences:

$$
\begin{aligned}
& \mathbb{R C O N G}(S,=, r) \equiv \equiv s_{1}, s_{2} \in S, s_{1}=s_{2} \rightarrow r\left(s_{1}\right)=r\left(s_{2}\right) \\
& \operatorname{CONG}(S,=, \bullet) \equiv \forall s_{1}, s_{2}, s_{3}, s_{4} \in S \\
&\left(s_{1}=s_{2} \wedge s_{3}=s_{4}\right) \rightarrow s_{1} \bullet s_{3}=s_{2} \bullet s_{4}
\end{aligned}
$$

