L11: Algebraic Path Problems
with applications to Internet Routing
Lecture 10

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2018

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin(©2018 1/15

Minimal sets

Let < be a partial order on S.
mgin(X) ={xeX|VyelX, =(y<x)}
Define
Pin(S, <) ={X < S| X finite and mgin(X) = X}.

and
AUS. B = ming(Au B)

Is (Psn(S, <), US

~in) @ semigroup? J
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|s there something more general we can investigate?

If (S, o) is semigroup and r e S — S, then define
reduce((S, o), r) = (S, o)

where
Sy

X.ry

{se S|r(s) =s}
I’(Xoy)

Does S, make sense? Think of r(x) as representing a canonical form
for the element x. In that case we want

RIP(S, r) = Vxe S, r(r(x)) =r(x)

Call such an r a reduction on S.
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Reduced semigroup?

What about associativity?

lhs = Xxe,(ye,2) =r(xer(yez)
ths = (Xe y)e,z =r(r(xey)ez)
So we want
RIP(S, r) Vx e S, r(r(x)) =r(x)

RAS((S, o), r) VX,y,z€ S, r(xer(yez) =r(r(xey)ez)
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Classical Reductions

Wongseelashote 1979

If (S, e) is a semiring and r is a function from S — S, then ris a
(classical) reduction if we have

RIP(S, r) = Vxe S, r(r(x)) =r(x)
RLC((S, »), r) = VYx,ye S, r(r(x)ey)=r(xey)
RRC((S, o), r) = Vx,ye S, r(xer(y))=r(xey)

Note that RLC((S, e), r) and RRC((S, e), r) imply RAS((S, e), r).

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin(©2018 5/15

New Topic!

Properties needed for (S, @, F) to obtain (left) local optima?

Dijkstra’s Algorithm requires inflationary
INF VaeS, feF : a<f(a)

Distributed Bellman-Ford (path-vector version) requires strict
inflationary

SINF VaeS, FeF : a=0 = a< f(a)

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin(©2018 6/15



Sobrinho’s encoding of the Gao/Rexford rules for BGP

Additive component uses min with
@ 0 is the type of a downstream route,
@ 1 is the type of a peer route, and
@ 2 is the type of an upstream route.
@ oo is the type of no route.
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Sobrinho’s encoding ...
Multiplicative component

X
0
1

2
00

SN = oo
N8 8=
N8 8
8 8 8 8|8

@ This is INF, but not associative:
ab c ap(b®c) (a®b)®c

2 0 1 00 2
2 0 2 00 2
2 1 1 o0 2
2 1 2 00 2

@ Models just the “local preference” component of BGP.
@ Can we improve on this with structures of the form (S, @, F)?
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Stratified Shortest-Paths Metrics

Metrics

(s, d) or o

@ s = oo is astratum level in {0,1, 2,..., m—1},
@ dis a “shortest-paths” distance,
@ Routing metrics are compared lexicographically

(31, d1) < (82, dg) — (31 < 32) \Y (31 = So A d1 < dg)
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Stratified Shortest-Paths Policies

Labels have form (f, d)
(f, d)> (s, d) = (f(s), d+d)
(f, d) > ()

00)

where i )
00) ITS = 00
& 9= { (s, ) (otherwise)

Yes, a reduction!
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Constraint on Policies

(f, d)

@ Either fis inflationary and 0 < d,
@ or fis strictly inflationary and 0 < d.

Why?
(SINF(S) v (INF(S) A SINF(T))) —> SINF(S x T). J
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Some properties for algebraic structures of the form
(S, @, F)

property definition

D Va,be S, feF : fla®b)=f(a)®f(b)

C Va,be S, feF : flag=f(b) = a=0>b

Cy VabeS feF : fla)y=f(b) = (a=bv f(a)=0)
K Va,be S, fe F : f(a) = f(b)

Kg Va,be S, feF : f(a)=f(b) = (f(a)=0v f(b) =0)
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All Inflationary Policy Functions for Three Strata

0 1 2| D Cyp Ky 0 1 2|D Cyp Kgp

al/0 1 2| * x m 2 1 2

b 0 1 wl*x * h| 2 1 o *
c|l0 2 2|« o|2 2 2 *
d 0 2 w| x « P2 2 *
el0 o 2 * ql2 o 2 *
fl0 0o o x * * r 2 o o] * «* *
g1 1 2] s|oo 1 2

h{1 1 o] * * t | o 1 o *
i1 2 2| u/ o 2 2 *
j|1 2 of » « V| o 2 o *
ki1 o 2 * W| o o 2 *
|1 oo owof =« * X |00 oo ool * *
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Both D and Cj

This makes combined algebra distributive!

X = == =0 T

8888 888NN

SN2 200000
88 8 M N = ==
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Homework 2. Due 16 November.

Problem 1
Show that (Psn(S, <), US:,) is a classical reduction.
Problem 2

If (S, @, ®) is semiringand r e S — S. Construct (S;, ®r, ®,) as
Q S ={seS|r(s)=s}

Q x®ry=r(xoy)

Q x®y=r(x®y)

Find conditions on (S, @, ®) that ensure that we have constructed a
semiring.

Problem 3

In lecture 9 we “hacked up” an algebraic structure to implement
shortest elementary (loop free) paths. Can you use reductions to
improve this construction?

v
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