L11: Algebraic Path Problems with applications to Internet Routing Lecture 10

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2018

Minimal sets

Let \leq be a partial order on S.

$$\min_{\leq}(X) \equiv \{x \in X \mid \forall y \in X, \ \neg(y < x)\}$$

Define

$$\mathcal{P}_{\mathrm{fin}}(\mathcal{S},\leqslant)\equiv\{X\subseteq\mathcal{S}\mid X \text{ finite and } \min_{\leqslant}(X)=X\}.$$

and

$$A \cup_{\min}^{\leqslant} B \equiv \min_{\leqslant} (A \cup B)$$

Is $(\mathcal{P}_{fin}(S, \leq), \cup_{min}^{\leq})$ a semigroup?

Is there something more general we can investigate?

If (S, \bullet) is semigroup and $r \in S \to S$, then define

$$reduce((S, \bullet), r) \equiv (S_r, \bullet_r)$$

where

$$S_r \equiv \{s \in S \mid r(s) = s\}$$

 $x \bullet_r y \equiv r(x \bullet y)$

Does S_r make sense? Think of r(x) as representing a canonical form for the element x. In that case we want

$$\mathbb{RIP}(S, r) \equiv \forall x \in S, r(r(x)) = r(x)$$

Call such an r a reduction on S.

Reduced semigroup?

What about associativity?

lhs =
$$X \bullet_r (Y \bullet_r Z) = r(X \bullet r(Y \bullet Z))$$

rhs = $(X \bullet_r Y) \bullet_r Z = r(r(X \bullet Y) \bullet Z)$

So we want

$$\begin{array}{rcl} \mathbb{RIP}(S,\ r) & \equiv & \forall x \in S,\ r(r(x)) = r(x) \\ \mathbb{RAS}((S,\ \bullet),\ r) & \equiv & \forall x,y,z \in S,\ r(x \bullet r(y \bullet z)) = r(r(x \bullet y) \bullet z) \end{array}$$

Classical Reductions

Wongseelashote 1979

If (S, \bullet) is a semiring and r is a function from $S \to S$, then r is a (classical) <u>reduction</u> if we have

$$\begin{array}{rcl} \mathbb{RIP}(S,\ r) &\equiv& \forall x \in S,\ r(r(x)) = r(x) \\ \mathbb{RLC}((S,\ \bullet),\ r) &\equiv& \forall x,y \in S,\ r(r(x)\ \bullet\ y) = r(x\ \bullet\ y) \\ \mathbb{RRC}((S,\ \bullet),\ r) &\equiv& \forall x,y \in S,\ r(x\ \bullet\ r(y)) = r(x\ \bullet\ y) \end{array}$$

Note that $\mathbb{RLC}((S, \bullet), r)$ and $\mathbb{RRC}((S, \bullet), r)$ imply $\mathbb{RAS}((S, \bullet), r)$.

New Topic!

Properties needed for (S, \oplus, F) to obtain (left) local optima?

Dijkstra's Algorithm requires inflationary

INF
$$\forall a \in S, f \in F : a \leq f(a)$$

Distributed Bellman-Ford (path-vector version) requires <u>strict</u> <u>inflationary</u>

SINF
$$\forall a \in S, F \in F : a \neq \overline{0} \implies a < f(a)$$

Sobrinho's encoding of the Gao/Rexford rules for BGP

Additive component uses min with

- 0 is the type of a downstream route,
- 1 is the type of a peer route, and
- 2 is the type of an upstream route.
- $\bullet \infty$ is the type of no route.

Sobrinho's encoding ...

Multiplicative component

\otimes	0		2	
0	0	∞	∞	∞
1	1	∞	∞	∞
2	2	2	2	∞
∞	∞	∞	∞	∞

• This is INF, but not associative:

а	b	С	$a\otimes(b\otimes c)$	$(a \otimes b) \otimes c$
2	0	1	∞	2
2	0	2	∞	2
2	1	1	∞	2
2	1	2	∞	2

- Models just the "local preference" component of BGP.
- Can we improve on this with structures of the form (S, \oplus, F) ?

Stratified Shortest-Paths Metrics

Metrics

$$(s, d)$$
 or ∞

- $s \neq \infty$ is a stratum level in $\{0, 1, 2, ..., m-1\}$,
- d is a "shortest-paths" distance,
- Routing metrics are compared lexicographically

$$(s_1, d_1) < (s_2, d_2) \iff (s_1 < s_2) \lor (s_1 = s_2 \land d_1 < d_2)$$

Stratified Shortest-Paths Policies

Labels have form (f, d)

$$(f, d) \rhd (s, d') \equiv \langle f(s), d + d' \rangle$$

 $(f, d) \rhd (\infty) \equiv \infty$

where

$$\langle s, t \rangle = \begin{cases} \infty & (\text{if } s = \infty) \\ (s, t) & (\text{otherwise}) \end{cases}$$

Yes, a reduction!

Constraint on Policies

- Either f is inflationary and 0 < d,
- or f is strictly inflationary and $0 \le d$.

Why?

$$(\mathbb{SINF}(\mathcal{S}) \vee (\mathbb{INF}(\mathcal{S}) \wedge \mathbb{SINF}(\mathcal{T}))) \implies \mathbb{SINF}(\mathcal{S} \times \mathcal{T}).$$

Some properties for algebraic structures of the form (S, \oplus, F)

property definition $\mathbb{D} \qquad \forall a,b \in S, \ f \in F : \ f(a \oplus b) = f(a) \oplus f(b)$ $\mathbb{C} \qquad \forall a,b \in S, \ f \in F : \ f(a) = f(b) \implies a = b$ $\mathbb{C}_{\overline{0}} \qquad \forall a,b \in S, \ f \in F : \ f(a) = f(b) \implies (a = b \lor f(a) = \overline{0})$ $\mathbb{K} \qquad \forall a,b \in S, \ f \in F : \ f(a) = f(b)$ $\mathbb{K}_{\overline{0}} \qquad \forall a,b \in S, \ f \in F : \ f(a) \neq f(b) \implies (f(a) = \overline{0} \lor f(b) = \overline{0})$

All Inflationary Policy Functions for Three Strata

	0	1	2	D	\mathbb{C}^{∞}	\mathbb{K}_{∞}		0	1	2	D	\mathbb{C}_{∞}	\mathbb{K}^{∞}
а	0	1	2	*	*		m	2	1	2			
b	0	1	∞	*	*		n	2	1	∞		*	
С	0	2	2	*			0	2	2	2	*		*
d	0	2	∞	*	*		р	2	2	∞	*		*
е	0	∞	2		*		q	2	∞	2			*
f	0	∞	∞	*	*	*	r	2	∞	∞	*	*	*
g	1	1	2	*			s	∞	1	2		*	
h	1	1	∞	*		*	t	∞	1	∞		*	*
i	1	2	2	*			u	∞	2	2			*
j	1	2	∞	*	*		v	∞	2	∞		*	*
k	1	∞	2		*		w	∞	∞	2		*	*
ı	1	∞	∞	*	*	*	x	∞	∞	∞	*	*	*

Both $\mathbb D$ and $\mathbb C_{\overline 0}$

This makes combined algebra distributive!

	0	1	2
а	0	1	2
b	0	1	∞
d	0	2	∞
f	0	∞	∞
j	1	2	∞
ı	1	∞	∞
r	2	∞	∞
X	∞	∞	∞

Homework 2. Due 16 November.

Problem 1

Show that $(\mathcal{P}_{fin}(S, \leq), \cup_{min}^{\leq})$ is a classical reduction.

Problem 2

If (S, \oplus, \otimes) is semiring and $r \in S \to S$. Construct $(S_r, \oplus_r, \otimes_r)$ as

- $S_r = \{ s \in S \mid r(s) = s \}$
- $2 x \oplus_r y = r(x \oplus y)$

Find conditions on $(\textbf{\textit{S}},\,\oplus,\,\otimes)$ that ensure that we have constructed a semiring.

Problem 3

In lecture 9 we "hacked up" an algebraic structure to implement shortest elementary (loop free) paths. Can you use reductions to improve this construction?