Lecture 16

<u>Yoneda functor</u> $y : C \rightarrow Set^{C^{op}}$

maps each $X \in C$ to $C(_, X) : C^{op} \to Set$ and each $X \xrightarrow{f} Y$ in C to the natural transformation $C(_, X) \to C(_, Y)$ whose component at each $Z \in C$ is the function $f_* : C(Z, X) \to C(Z, Y)$ mapping g to $f \circ g$.

<u>Yoneda functor</u> $y : C \rightarrow Set^{C^{op}}$

Yoneda Lemma: there is a bijection $\operatorname{Set}^{\operatorname{C^{op}}}(yX, F) \cong F(X)$ which is natural both in $F \in \operatorname{Set}^{\operatorname{C^{op}}}$ and $X \in \mathbb{C}$.

In particular, \mathbf{y} is a <u>full and faithful</u> functor.

Hence $\mathbf{y}X \cong \mathbf{y}Y \implies X \cong Y$, i.e.

Given C-objects X, Y, to show $X \cong Y$ in C, it suffices to give bijections $C(Z, X) \cong C(Z, Y)$ in Set that are natural in $Z \in obj C$,

<u>Yoneda functor</u> $y : C \rightarrow Set^{C^{op}}$

Yoneda Lemma: there is a bijection $\operatorname{Set}^{\operatorname{C^{op}}}(yX, F) \cong F(X)$ which is natural both in $F \in \operatorname{Set}^{\operatorname{C^{op}}}$ and $X \in \mathbb{C}$.

In particular, \mathbf{y} is a <u>full and faithful</u> functor.

Hence $\mathbf{y}X \cong \mathbf{y}Y \Rightarrow X \cong Y$, i.e.

Given C-objects X, Y, to show $X \cong Y$ in C, it suffices to give bijections $C(Z, X) \cong C(Z, Y)$ in Set that are natural in $Z \in obj C$, or dually, bijections $C(X, Z) \cong C(Y, Z)$ in Set that are natural in $Z \in obj C$.

E.g. in a ccc that has binary coproducts, one can use this to show $(Y + Z) \times X \cong (Y \times X) + (Z \times X) \dots$

<u>Yoneda functor</u> $y : C \rightarrow Set^{C^{op}}$

Yoneda Lemma: there is a bijection $\operatorname{Set}^{\operatorname{C^{op}}}(yX, F) \cong F(X)$ which is natural both in $F \in \operatorname{Set}^{\operatorname{C^{op}}}$ and $X \in \mathbb{C}$.

An application of the Yoneda Lemma:

Theorem. For each small category **C**, the category **Set**^{C°P} of presheaves is cartesian closed.

Proof sketch.

Terminal object in $\mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}$ is the functor $1: \mathbf{C}^{\mathrm{op}} \rightarrow \mathbf{Set}$ given by

 $\begin{cases} 1(X) \triangleq \{0\} & \text{terminal object in Set} \\ 1(f) \triangleq id_{\{0\}} \end{cases}$

Proof sketch.

Product of $F, G \in \mathbf{Set}^{\mathbf{C}^{op}}$ is the functor $F \times G : \mathbf{C}^{op} \to \mathbf{Set}$ given by

 $\begin{cases} (F \times G)(X) \triangleq F(X) \times G(X) & \text{cartesian product of sets} \\ (F \times G)(f) \triangleq F(f) \times G(f) \end{cases}$

with projection morphisms $F \xleftarrow{\pi_1}{\leftarrow} F \times G \xrightarrow{\pi_2}{\rightarrow} G$ given by the natural transformations whose components at $X \in \mathbb{C}$ are the projection functions $F(X) \xleftarrow{\pi_1}{\leftarrow} F(X) \times G(X) \xrightarrow{\pi_2}{\rightarrow} G(X)$.

Proof sketch.

We can work out what the value of the exponential $G^F \in \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}$ at $X \in \mathbf{C}$ has to be using the Yoneda Lemma:

Proof sketch.

We can work out what the value of the exponential $G^F \in \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}$ at $X \in \mathbf{C}$ has to be using the Yoneda Lemma:

$G^{F}(X) \cong \operatorname{Set}^{\mathsf{C}^{\operatorname{op}}}(\mathsf{y}X, G^{F}) \cong \operatorname{Set}^{\mathsf{C}^{\operatorname{op}}}(\mathsf{y}X \times F, G)$

We take the set $\operatorname{Set}^{\operatorname{C^{op}}}(yX \times F, G)$ to be the definition of the value of G^F at X...

Exponential objects in Set^{C°P}:

$$G^F(X) \triangleq \mathsf{Set}^{\mathsf{C}^{\mathrm{op}}}(\mathbf{y}X \times F, G)$$

Given $Y \xrightarrow{f} X$ in **C**, we have $\mathbf{y}Y \xrightarrow{\mathbf{y}f} \mathbf{y}X$ in $\mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}$ and hence $G^{F}(Y) \triangleq \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}(\mathbf{y}Y \times F, G) \xrightarrow{} \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}(\mathbf{y}X \times F, G) \triangleq G^{F}(X)$ $\theta \mapsto \theta \circ (\mathbf{y}f \times \mathrm{id}_{F})$

We define

$$G^F(f) \triangleq (\mathrm{y} f \times \mathrm{id}_F)^*$$

Have to check that these definitions make G^F ino a functor $C^{op} \rightarrow Set$.

Application morphisms in Set^{C°P}:

Given $F, G \in Set^{C^{op}}$, the application morphism

 $app: G^F \times F \to G$

is the natural transformation whose component at $X \in \mathbb{C}$ is the function

 $(G^F \times F)(X) \triangleq G^F(X) \times F(X) \triangleq \mathsf{Set}^{\mathsf{C}^{\mathsf{op}}}(yX \times F, G) \times F(X) \xrightarrow{\mathsf{app}_X} G(X)$

defined by

$$\mathtt{app}_X(heta,x) riangleq heta_X(\mathtt{id}_X,x)$$

Have to check that this is natural in X.

Currying operation in **Set**^{C°P}:

$$\left(H \times F \xrightarrow{\theta} G\right) \mapsto \left(H \xrightarrow{\operatorname{cur} \theta} G^F\right)$$

Given $H \times F \xrightarrow{\theta} G$ in $\operatorname{Set}^{\operatorname{C^{op}}}$, the component of $\operatorname{cur} \theta$ at $X \in \mathbb{C}$ $H(X) \xrightarrow{(\operatorname{cur} \theta)_X} G^F(X) \triangleq \operatorname{Set}^{\operatorname{C^{op}}}(yX \times F, G)$

is the function mapping each $z \in H(X)$ to the natural transformation $yX \times F \to G$ whose component at $Y \in C$ is the function

$$(\mathbf{y}X \times F)(Y) \triangleq \mathsf{C}(Y,X) \times F(Y) \to G(Y)$$

defined by

$$((\operatorname{cur} \theta)_X(z))_Y(f,y) \triangleq \theta_Y(H(f)(z),y)$$

Currying operation in **Set**^{C^{op}}:

$$\left(H \times F \xrightarrow{\theta} G\right) \mapsto \left(H \xrightarrow{\operatorname{cur} \theta} G^F\right)$$

$$((\operatorname{cur} \theta)_X(z))_Y(f,y) \triangleq \theta_Y(H(f)(z),y)$$

Have to check that this is natural in \mathbf{Y} ,

then that $(\operatorname{cur} \theta)_X$ is natural in X,

then that $\operatorname{cur} \theta$ is the unique morphism $H \xrightarrow{\varphi} G^F$ in $\operatorname{Set}^{C^{\operatorname{op}}}$ satisfying $\operatorname{app} \circ (\varphi \times \operatorname{id}_F) = \theta$.

So we can interpret simply typed lambda calculus in any presheaf category.

More than that, presheaf categories (usefully) model dependently-typed languages.

Next steps in basic category theory

- equivalence of categories
- limits and colimits of diagrams in categories
- ► (co)monads and their (co)algebras

Some current themes involving category theory

semantics of effects & co-effects in programming languages

(monads and comonads)

homotopy type theory

(higher-dimensional category theory)

structural aspects of networks, quantum computation/protocols, ...

(string diagrams for monoidal categories)