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Recall:
F

Given categories and functors C D,

G
an adjunction |F 4 G| is specified by functions

FX 3y L Ex Ly
BX,Y\L g TBX’Y f
X —=>GY X S GY

(for each X € C and Y € D) satisfying ? =f,g=g
and
FX S rEx 3y FX5Sy Sy

u

X' x5 Gy X356y &gy
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Theorem. A category C has binary products iff the
diagonal functor A = (idc,idc) : C — C X C has a
right adjoint.

Theorem. A category C with binary products also has
all exponentials of pairs of objects iff for all X &€ C, the
functor (_) X X : C — C has a right adjoint.

Both these theorems are instances of the following theorem, a very useful
characterisation of when a functor has a right adjoint (or dually, a left adjoint).
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Characterisation of right adjoints

Theorem. A functor F : C — D has a right adjoint iff
for all D-objects Y € D, there is a C-object GY € C
and a C-morphism ey : F(GY) — Y with the following
“universal property":

forall X € Cand g € D(FX,Y)
(UP) [there is a unique § € C(X,GY)
satisfying ey o F(g) = ¢
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Characterisation of right adjoints

Theorem. A functor F : C — D has a right adjoint iff
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Characterisation of right adjoints
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Characterisation of right adjoints

Theorem. A functor F : C — D has a right adjoint iff
for all D-objects Y € D, there is a C-object GY € C
and a C-morphism ey : F(GY) — Y with the following
“universal property":
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Proof of the Theorem—*“only if” part:

Given an adjunction (F, G, 0), for each Y € D we produce ey : F(GY) — Y
in D satisfying (UP).
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Proof of the Theorem—*“only if” part:

Given an adjunction (F, G, 0), for each Y € D we produce ey : F(GY) — Y
in D satisfying (UP).

We are given Oxy : D(FX,Y) = C(X,GY), natural in X and Y. Define

ey £ 05y y(idgy) : F(GY) = Y

In other words ey = idgy.
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Proof of the Theorem—*“only if” part:

Given an adjunction (F, G, 0), for each Y € D we produce ey : F(GY) — Y
in D satisfying (UP).

We are given Oxy : D(FX,Y) = C(X,GY), natural in X and Y. Define

ey £ 05y y(idgy) : F(GY) = Y

In other words ey = idgy.

:FX—Y inD
Given any {fc X s CY !nC' by naturality of 8 we have
: in
F i
rx %y . eYon:FX—f>P(GY)ﬂ>Y
= an :
X % GY f:xL ey gy

Hence g =eyoFgandg=¢eyoFf = g=f.
Thus we do indeed have (UP).
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Proof of the Theorem—*“if” part:
We are given F : C — D and for each Y € D a C-object GY and C-morphism
ey : F(GY) — Y satisfying (UP). We have to

1. extendY — GY to a functorG:D — C

2. construct a natural isomorphism
0 : Homp o (Pop X id[)) = Homc © (idcop X G)
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Proof of the Theorem—*“if” part:

We are given F : C — D and for each Y € D a C-object GY and C-morphism
ey : F(GY) — Y satisfying (UP). We have to

1. extendY — GY to a functorG:D — C

For each D-morphism ¢ : Y" — Y we get F(GY’) 2y 25 Y and can apply

(UP) to get
Gg=2gogy :GY — GY

The uniqueness part of (UP) implies
Gid=1id and G(g'cg) =Gg'oGg

so that we get a functor G : D — C. [
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Proof of the Theorem—*“if” part:

We are given F : C — D and for each Y € D a C-object GY and C-morphism
ey : F(GY) — Y satisfying (UP). We have to

2. construct a natural isomorphism
6 : Homp o (F°P X idp) = Homc o (idcor X G)

Since for all g: FX — Y there is a unique f : X — GY with g = eyoFf,

frof=eyoFf
determines a bijection C(X,GY) = C(F X, Y); and it is natural in X & Y

because
Gvofou2eyoF(Guvofou)
= (eyroF(Gv))oFfoFu since F is a functor
= (voey)oF foFu by definition of G v
=vofoFu by definition of f

So we can take 0 to be the inverse of this natural isomorphism. L[]
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Dual of the Theorem:

G : C < D has a left adjoint iff for all X &€ C there are
FX € D and 7x € C(X, G(F X)) with the universal

property:

forallY € D and f € C(X,GY)
there is a unique f € D(F X, Y)
satisfying G foyx = f
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Dual of the Theorem:

G : C < D has a left adjoint iff for all X &€ C there are
FX € D and 7x € C(X, G(F X)) with the universal

property:

forallY € D and f € C(X,GY)
there is a unique f € D(F X, Y)
satisfying G foyx = f

E.g. we can conclude that the forgetful functor U : Mon — Set has a left
adjoint F : Set — Mon, because of the universal property of

FX 2 (ListXL,@,nil) and gy :X — ListX

noted in Lecture 3.
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Why are adjoint functors
important/usetul?

Their universal property (UP) usually embodies some
useful mathematical construction

(e.g. “freely generated structures are left adjoints for forgetting-stucture”)

and pins it down uniquely up to isomorphism.
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