Lecture 13

Recall:

Given categories and functors $C \bigoplus_{G} D$, an adjunction $F \dashv G$ is specified by functions

(for each $X \in \mathbb{C}$ and $Y \in \mathbb{D}$) satisfying $\overline{\overline{f}} = f$, $\overline{\overline{g}} = g$ and

$$\frac{F X' \xrightarrow{F u} F X \xrightarrow{g} Y}{X' \xrightarrow{u} X \xrightarrow{\overline{g}} G Y} \qquad \begin{array}{c} F X \xrightarrow{g} Y \xrightarrow{v} Y' \\ \hline X' \xrightarrow{u} X \xrightarrow{\overline{g}} G Y \end{array} \qquad \begin{array}{c} F X \xrightarrow{g} Y \xrightarrow{v} Y' \\ \hline X \xrightarrow{\overline{g}} G Y \xrightarrow{G v} G Y' \end{array}$$

Theorem. A category C has binary products iff the diagonal functor $\Delta = \langle id_C, id_C \rangle : C \to C \times C$ has a right adjoint.

Theorem. A category C with binary products also has all exponentials of pairs of objects iff for all $X \in C$, the functor $(_) \times X : C \to C$ has a right adjoint.

Both these theorems are instances of the following theorem, a very useful characterisation of when a functor has a right adjoint (or dually, a left adjoint).

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{C} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

> (UP) for all $X \in C$ and $g \in D(FX, Y)$ there is a unique $\overline{g} \in C(X, GY)$ satisfying $\varepsilon_Y \circ F(\overline{g}) = g$

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{C} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

> (UP) for all $X \in C$ and $g \in D(FX, Y)$ there is a unique $\overline{g} \in C(X, GY)$ satisfying $\varepsilon_Y \circ F(\overline{g}) = g$

$$\forall \qquad g \qquad g \qquad F \qquad X$$

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{C} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

(UP) for all
$$X \in C$$
 and $g \in D(FX, Y)$
there is a unique $\overline{g} \in C(X, GY)$
satisfying $\varepsilon_Y \circ F(\overline{g}) = g$

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{C} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

(UP) for all $X \in C$ and $g \in D(FX, Y)$ there is a unique $\overline{g} \in C(X, GY)$ satisfying $\varepsilon_Y \circ F(\overline{g}) = g$

Proof of the <u>Theorem</u>—"only if" part:

Given an adjunction (F, G, θ) , for each $Y \in D$ we produce $\varepsilon_Y : F(GY) \to Y$ in **D** satisfying (UP).

Proof of the <u>Theorem</u>—"only if" part:

Given an adjunction (F, G, θ) , for each $Y \in D$ we produce $\varepsilon_Y : F(GY) \to Y$ in **D** satisfying (UP).

We are given $\theta_{X,Y} : \mathsf{D}(FX,Y) \cong \mathsf{C}(X,GY)$, natural in X and Y. Define

$$\varepsilon_Y \triangleq heta_{GY,Y}^{-1}(\operatorname{id}_{GY}): F(GY) \to Y$$

In other words $\varepsilon_{\gamma} = \overline{\mathrm{id}_{G\gamma}}$.

Proof of the <u>Theorem</u>—"only if" part:

Given an adjunction (F, G, θ) , for each $Y \in D$ we produce $\varepsilon_Y : F(GY) \to Y$ in **D** satisfying (UP).

We are given $\theta_{X,Y} : \mathsf{D}(FX,Y) \cong \mathsf{C}(X,GY)$, natural in X and Y. Define

$$\varepsilon_Y \triangleq \theta_{GY,Y}^{-1}(\operatorname{id}_{GY}): F(GY) \to Y$$

In other words $\varepsilon_{\gamma} = \overline{\mathrm{id}_{G\gamma}}$.

Given any
$$\begin{cases} g: F X \to Y & \text{in } \mathbf{D} \\ f: X \to G Y & \text{in } \mathbf{C} \end{cases}$$
 by naturality of θ we have
$$\frac{F X \xrightarrow{g} Y}{X \xrightarrow{\overline{g}} G Y} \text{ and } \frac{\varepsilon_Y \circ F f: F X \xrightarrow{F f} F(G Y) \xrightarrow{\overline{\operatorname{id}}_{G Y}} Y}{f: X \xrightarrow{f} G Y \xrightarrow{\operatorname{id}}_{G Y} G Y} \end{cases}$$

Hence $g = \varepsilon_Y \circ F \overline{g}$ and $g = \varepsilon_Y \circ F f \Rightarrow \overline{g} = f$.

Thus we do indeed have (UP).

Proof of the <u>Theorem</u>—"if" part:

We are given $F : \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D}$ a \mathbb{C} -object GY and \mathbb{C} -morphism $\varepsilon_Y : F(GY) \to Y$ satisfying (UP). We have to

- 1. extend $Y \mapsto G Y$ to a functor $G : D \to C$
- 2. construct a natural isomorphism $\theta : \operatorname{Hom}_{D} \circ (F^{\operatorname{op}} \times \operatorname{id}_{D}) \cong \operatorname{Hom}_{C} \circ (\operatorname{id}_{C^{\operatorname{op}}} \times G)$

Proof of the <u>Theorem</u>—"if" part:

We are given $F : \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D}$ a \mathbb{C} -object GY and \mathbb{C} -morphism $\varepsilon_Y : F(GY) \to Y$ satisfying (UP). We have to

1. extend $Y \mapsto GY$ to a functor $G : D \to C$

For each **D**-morphism $g: Y' \to Y$ we get $F(GY') \xrightarrow{\varepsilon_{Y'}} Y' \xrightarrow{g} Y$ and can apply (UP) to get

$$Gg \triangleq \overline{g \circ \varepsilon_{Y'}} : GY' \to GY$$

The uniqueness part of (UP) implies

$$G$$
 id = id and $G(g' \circ g) = Gg' \circ Gg$

so that we get a functor $G: D \to C$. \Box

Proof of the <u>Theorem</u>—"if" part:

We are given $F : \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D}$ a \mathbb{C} -object GY and \mathbb{C} -morphism $\varepsilon_Y : F(GY) \to Y$ satisfying (UP). We have to

2. construct a natural isomorphism $\theta : \operatorname{Hom}_{\mathsf{D}} \circ (F^{\operatorname{op}} \times \operatorname{id}_{\mathsf{D}}) \cong \operatorname{Hom}_{\mathsf{C}} \circ (\operatorname{id}_{\mathsf{C}^{\operatorname{op}}} \times G)$

Since for all $g: F X \to Y$ there is a unique $f: X \to G Y$ with $g = \varepsilon_Y \circ F f$,

$$f\mapsto \overline{f}\triangleq \varepsilon_Y\circ Ff$$

determines a bijection $C(X, GY) \cong C(FX, Y)$; and it is natural in X & Y because

$$\overline{G v \circ f \circ u} \triangleq \varepsilon_{Y'} \circ F(G v \circ f \circ u)$$

$$= (\varepsilon_{Y'} \circ F(G v)) \circ F f \circ F u \qquad \text{since } F \text{ is a functor}$$

$$= (v \circ \varepsilon_Y) \circ F f \circ F u \qquad \text{by definition of } G v$$

$$= v \circ \overline{f} \circ F u \qquad \text{by definition of } \overline{f}$$

So we can take θ to be the inverse of this natural isomorphism. \Box

Dual of the Theorem:

 $G: C \leftarrow D$ has a left adjoint iff for all $X \in C$ there are $F X \in D$ and $\eta_X \in C(X, G(F X))$ with the universal property:

for all
$$Y \in \mathbf{D}$$
 and $f \in \mathbf{C}(X, GY)$
there is a unique $\overline{f} \in \mathbf{D}(FX, Y)$
satisfying $G \overline{f} \circ \eta_X = f$

Dual of the Theorem:

 $G: C \leftarrow D$ has a left adjoint iff for all $X \in C$ there are $F X \in D$ and $\eta_X \in C(X, G(F X))$ with the universal property:

for all
$$Y \in \mathbf{D}$$
 and $f \in \mathbf{C}(X, GY)$
there is a unique $\overline{f} \in \mathbf{D}(FX, Y)$
satisfying $G \overline{f} \circ \eta_X = f$

E.g. we can conclude that the forgetful functor $U : Mon \rightarrow Set$ has a left adjoint $F : Set \rightarrow Mon$, because of the universal property of

$$F\Sigma riangleq (ext{List}\Sigma, @, ext{nil}) ext{ and } \eta_{\Sigma}: \Sigma o ext{List}\Sigma$$

noted in Lecture 3.

Why are adjoint functors important/useful?

Their universal property (UP) usually embodies some useful mathematical construction

(e.g. "freely generated structures are left adjoints for forgetting-stucture") and pins it down uniquely up to isomorphism.