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Recall:

Given categories and functors C
F

D
G

,

an adjunction F ⊣ G is specified by functions

θX ,Y↓
F X

g
−→ Y

X
g
−→ G Y

↑θ−1
X ,Y

F X
f
−→ Y

X
f
−→ G Y

(for each X ∈ C and Y ∈ D) satisfying f = f , g = g
and

F X′
F u
−→ F X

g
−→ Y

X′
u
−→ X

g
−→ G Y

F X
g
−→ Y

v
−→ Y ′

X
g
−→ G Y

G v
−→ G Y ′

L13 147



Theorem. A category C has binary products iff the
diagonal functor ∆ = ⟨idC , idC⟩ : C→ C× C has a
right adjoint.

Theorem. A category C with binary products also has
all exponentials of pairs of objects iff for all X ∈ C, the
functor (_)× X : C→ C has a right adjoint.

Both these theorems are instances of the following theorem, a very useful
characterisation of when a functor has a right adjoint (or dually, a left adjoint).
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Characterisation of right adjoints
Theorem. A functor F : C→ D has a right adjoint iff
for all D-objects Y ∈ D, there is a C-object G Y ∈ C
and a C-morphism εY : F(G Y)→ Y with the following
“universal property”:

(UP)
for all X ∈ C and g ∈ D(F X, Y)
there is a unique g ∈ C(X, G Y)
satisfying εY ◦ F(g) = g
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Characterisation of right adjoints
Theorem. A functor F : C→ D has a right adjoint iff
for all D-objects Y ∈ D, there is a C-object G Y ∈ C
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Characterisation of right adjoints
Theorem. A functor F : C→ D has a right adjoint iff
for all D-objects Y ∈ D, there is a C-object G Y ∈ C
and a C-morphism εY : F(G Y)→ Y with the following
“universal property”:

(UP)
for all X ∈ C and g ∈ D(F X, Y)
there is a unique g ∈ C(X, G Y)
satisfying εY ◦ F(g) = g

∀

Y

F X

g
∃!

G Y

X

g with

F(G Y)
εY

Y

F X

F g
g
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Proof of the Theorem—“only if” part:

Given an adjunction (F, G, θ), for each Y ∈ D we produce εY : F(G Y)→ Y
in D satisfying (UP).
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Proof of the Theorem—“only if” part:

Given an adjunction (F, G, θ), for each Y ∈ D we produce εY : F(G Y)→ Y
in D satisfying (UP).

We are given θX ,Y : D(F X, Y) ∼= C(X, G Y), natural in X and Y . Define

εY ! θ−1
G Y ,Y(idG Y) : F(G Y)→ Y

In other words εY = idG Y .
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Proof of the Theorem—“only if” part:

Given an adjunction (F, G, θ), for each Y ∈ D we produce εY : F(G Y)→ Y
in D satisfying (UP).

We are given θX ,Y : D(F X, Y) ∼= C(X, G Y), natural in X and Y . Define

εY ! θ−1
G Y ,Y(idG Y) : F(G Y)→ Y

In other words εY = idG Y .

Given any

{

g : F X → Y in D

f : X → G Y in C
, by naturality of θ we have

F X
g
−→ Y

X
g
−→ G Y

and
εY ◦ F f : F X

F f
−→ F(G Y)

idG Y−−→ Y

f : X
f
−→ G Y

idG Y−−→ G Y

Hence g = εY ◦ F g and g = εY ◦ F f ⇒ g = f .

Thus we do indeed have (UP).
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Proof of the Theorem—“if” part:

We are given F : C→ D and for each Y ∈ D a C-object G Y and C-morphism
εY : F(G Y)→ Y satisfying (UP). We have to

1. extend Y 0→ G Y to a functor G : D→ C

2. construct a natural isomorphism
θ : HomD ◦ (Fop× idD) ∼= HomC ◦ (idCop × G)
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Proof of the Theorem—“if” part:

We are given F : C→ D and for each Y ∈ D a C-object G Y and C-morphism
εY : F(G Y)→ Y satisfying (UP). We have to

1. extend Y 0→ G Y to a functor G : D→ C

For each D-morphism g : Y ′ → Y we get F(G Y ′)
εY ′−→ Y ′

g
−→ Y and can apply

(UP) to get
G g ! g ◦ εY ′ : G Y ′ → G Y

The uniqueness part of (UP) implies

G id = id and G(g′ ◦ g) = G g′ ◦G g

so that we get a functor G : D→ C. "
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Proof of the Theorem—“if” part:

We are given F : C→ D and for each Y ∈ D a C-object G Y and C-morphism
εY : F(G Y)→ Y satisfying (UP). We have to

2. construct a natural isomorphism
θ : HomD ◦ (Fop× idD) ∼= HomC ◦ (idCop × G)

Since for all g : F X → Y there is a unique f : X → G Y with g = εY ◦ F f ,

f 0→ f ! εY ◦ F f

determines a bijection C(X, G Y) ∼= C(F X, Y); and it is natural in X & Y
because

G v ◦ f ◦ u ! εY ′ ◦ F(G v ◦ f ◦ u)

= (εY ′ ◦ F(G v)) ◦ F f ◦ F u since F is a functor

= (v ◦ εY) ◦ F f ◦ F u by definition of G v

= v ◦ f ◦ F u by definition of f

So we can take θ to be the inverse of this natural isomorphism. "
L13 151



Dual of the Theorem:

G : C← D has a left adjoint iff for all X ∈ C there are
F X ∈ D and ηX ∈ C(X, G(F X)) with the universal
property:

for all Y ∈ D and f ∈ C(X, G Y)
there is a unique f ∈ D(F X, Y)
satisfying G f ◦ ηX = f
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Dual of the Theorem:

G : C← D has a left adjoint iff for all X ∈ C there are
F X ∈ D and ηX ∈ C(X, G(F X)) with the universal
property:

for all Y ∈ D and f ∈ C(X, G Y)
there is a unique f ∈ D(F X, Y)
satisfying G f ◦ ηX = f

E.g. we can conclude that the forgetful functor U : Mon→ Set has a left
adjoint F : Set→Mon, because of the universal property of

F Σ ! (List Σ, @, nil) and ηΣ : Σ→ List Σ

noted in Lecture 3.
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Why are adjoint functors
important/useful?

Their universal property (UP) usually embodies some
useful mathematical construction

(e.g. “freely generated structures are left adjoints for forgetting-stucture”)

and pins it down uniquely up to isomorphism.
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