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ccc

Recall:

Definition. C is a cartesian closed category (ccc) if it is
a category with a terminal object, binary products and
exponentials of any pair of objects.
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Non-example of a ccc

The category Mon of monoids has a terminal object and
binary products, but is not a ccc

because of the following bijections between sets, where 1 denotes a one-element

set and the corresponding one-element monoid:

Set(1, List 1) ∼= Mon(List 1, List 1)
∼= Mon(1× List 1, List 1)

by universal property of
the free monoid List 1

on the one-element set 1

by Ex.Sh. 2, qu. 2
(1 is terminal in Mon)
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Non-example of a ccc

The category Mon of monoids has a terminal object and
binary products, but is not a ccc

because of the following bijections between sets, where 1 denotes a one-element

set and the corresponding one-element monoid:

Set(1, List 1) ∼= Mon(List 1, List 1)
∼= Mon(1× List 1, List 1)

Since Set(1, List1) is countably infinite, so is Mon(1× List 1, List1).

Since the one-element monoid is terminal in Mon, for any M ∈Mon we have
that Mon(1, M) has just one element and hence

Mon(1× List 1, List 1) ≁= Mon(1, M)

Therefore no M can be the exponential of the objects List 1 and List 1 in
Mon.
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Cartesian closed pre-order

Recall that each pre-ordered set (P,⊑) gives a category
CP. It is a ccc iff P has

! a greatest element ⊤: ∀p ∈ P, p ⊑ ⊤
! binary meets p∧ q:
∀r ∈ P, r ⊑ p∧ q ⇔ r ⊑ p∧ r ⊑ q

! Heyting implications p ! q:
∀r ∈ P, r ⊑ p ! q ⇔ r∧ p ⊑ q
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Cartesian closed pre-order

Recall that each pre-ordered set (P,⊑) gives a category
CP. It is a ccc iff P has

! a greatest element ⊤: ∀p ∈ P, p ⊑ ⊤
! binary meets p∧ q:
∀r ∈ P, r ⊑ p∧ q ⇔ r ⊑ p∧ r ⊑ q

! Heyting implications p ! q:
∀r ∈ P, r ⊑ p ! q ⇔ r∧ p ⊑ q

E.g. any Boolean algebra (with p ! q = ¬p∨ q).

E.g. ([0, 1],≤) with ⊤ = 1, p∧ q = min{p, q} and p ! q =

{

1 if p ≤ q

q if q < p
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Intuitionistic Propositional Logic
(IPL)

We present it in “natural deduction” style and only consider the fragment with

conjunction and implication, with the following syntax:

Formulas of IPL: ϕ, ψ, θ, . . . ::=
p, q, r, . . . propositional identifiers
true truth
ϕ& ψ conjunction
ϕ=> ψ implication

Sequents of IPL: Φ ::= ⋄ empty
Φ, φ non=empty

(so sequents are finite snoc-lists of formulas)
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IPL entailment Φ ⊢ ϕ

The intended meaning of Φ ⊢ ϕ is “the conjunction of the formulas in Φ

implies the formula ϕ”. The relation _ ⊢ _ is inductively generated by the

following rules:

Φ,ϕ ⊢ ϕ
(ax)

Φ ⊢ ϕ

Φ, ψ ⊢ ϕ
(wk)

Φ ⊢ ϕ Φ,ϕ ⊢ ψ

Φ ⊢ ψ
(cut)

Φ ⊢ true
(true)

Φ ⊢ ϕ Φ ⊢ ψ

Φ ⊢ ϕ & ψ
(&i)

Φ,ϕ ⊢ ψ

Φ ⊢ ϕ => ψ
(=>i)

Φ ⊢ ϕ & ψ

Φ ⊢ ϕ
(&e1)

Φ ⊢ ϕ & ψ

Φ ⊢ ψ
(&e2)

Φ ⊢ ϕ => ψ Φ ⊢ ϕ

Φ ⊢ ψ
(=>e)

L6 60



For example, if Φ = ⋄,ϕ=> ψ, ψ => θ, then Φ ⊢ ϕ=> θ
is provable in IPL, because:

(ax)
Φ ⊢ ψ => θ

(wk)
Φ,ϕ ⊢ ψ => θ

(ax)
⋄,ϕ => ψ ⊢ ϕ => ψ

(wk)
Φ ⊢ ϕ => ψ

(wk)
Φ,ϕ ⊢ ϕ => ψ

(ax)
Φ,ϕ ⊢ ϕ

(=>e)
Φ,ϕ ⊢ ψ

(=>e)
Φ,ϕ ⊢ θ

(=>i)
Φ ⊢ ϕ => θ
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Semantics of IPL
in a cartesian closed pre-oder (P,⊑)

Given a function M assigning a meaning to each propositional

identifier p as an element M(p) ∈ P, we can assign meanings to

IPL formula ϕ and sequents Φ as element M"ϕ#, M"Φ# ∈ P by

recursion on their structure:

M"p# = M(p)

M"true# = ⊤ greatest element

M"ϕ& ψ# = M"ϕ#∧M"ψ# binary meet

M"ϕ=> ψ# = M"ϕ# ! M"ψ# Heyting implication

M"⋄# = ⊤ greatest element

M"Φ,ϕ# = M"Φ#∧M"ϕ# binary meet
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Semantics of IPL
in a cartesian closed pre-oder (P,⊑)

Soundness Theorem. If Φ ⊢ ϕ is provable from the
rules of IPL, then M"Φ# ⊑ M"ϕ# holds in any cartesian
closed pre-order.

Proof. exercise (show that {(Φ,ϕ) | M"Φ# ⊑ M"ϕ#} is closed under the
rules defining IPL entailment and hence contains {(Φ,ϕ) | Φ ⊢ϕ})
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Example
Peirce’s Law ⋄ ⊢ ((ϕ=> ψ) =>ϕ) =>ϕ
is not provable in IPL.
(whereas the formula ((ϕ=> ψ) => ϕ) => ϕ is a classical tautology)
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Example
Peirce’s Law ⋄ ⊢ ((ϕ=> ψ) =>ϕ) =>ϕ
is not provable in IPL.
(whereas the formula ((ϕ=> ψ) => ϕ) => ϕ is a classical tautology)

For if ⋄ ⊢ ((ϕ => ψ) => ϕ) => ϕ were provable in IPL, then by the
Soundness Theorem we would have
⊤ = M"⋄# ⊑ M"((ϕ => ψ) => ϕ) => ϕ#.

But in the cartesian closed partial order ([0, 1],≤), taking
M(p) = 1/2 and M(q) = 0, we get

M"((p => q) => p) => p# = ((1/2 ! 0) ! 1/2) ! 1/2

= (0 ! 1/2) ! 1/2

= 1 ! 1/2

= 1/2

̸≥ 1
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Semantics of IPL
in a cartesian closed pre-oder (P,⊑)

Completeness Theorem. Given Φ,ϕ, if for all
cartesian closed pre-orders (P,⊑) and all interpretations
M of the propositional identifiers as elements of P, it is
the case that M"Φ# ⊑ M"ϕ# holds in P, then Φ ⊢ ϕ is
provable in IPL.
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Semantics of IPL
in a cartesian closed pre-oder (P,⊑)

Completeness Theorem. Given Φ,ϕ, if for all
cartesian closed pre-orders (P,⊑) and all interpretations
M of the propositional identifiers as elements of P, it is
the case that M"Φ# ⊑ M"ϕ# holds in P, then Φ ⊢ ϕ is
provable in IPL.

Proof. Define

P " {formulas of IPL}

ϕ⊑ ψ " ⋄,ϕ⊢ ψ is provable in IPL

Then one can show that (P,⊑) is a cartesian closed pre-ordered set.
For this (P,⊑), taking M to be M(p) = p, one can show that
M"Φ# ⊑ M"ϕ# holds in P iff Φ ⊢ϕ is provable in IPL. #

L6 64


