Lecture 6

CCC

Recall:

Definition. C is a cartesian closed category (ccc) if it is a category with a terminal object, binary products and exponentials of any pair of objects.

Non-example of a ccc

The category **Mon** of monoids has a terminal object and binary products, but is <u>not</u> a ccc

because of the following bijections between sets, where 1 denotes a one-element set and the corresponding one-element monoid:

Non-example of a ccc

The category Mon of monoids has a terminal object and binary products, but is <u>not</u> a ccc

because of the following bijections between sets, where 1 denotes a one-element set and the corresponding one-element monoid:

 $Set(1,List1) \cong Mon(List1,List1)$ $\cong Mon(1 \times List1,List1)$

Since Set(1, List1) is countably infinite, so is $Mon(1 \times List1, List1)$.

Since the one-element monoid is terminal in Mon, for any $M \in Mon$ we have that Mon(1, M) has just one element and hence

$Mon(1 \times List 1, List 1) \ncong Mon(1, M)$

Therefore no M can be the exponential of the objects List1 and List1 in Mon.

Cartesian closed pre-order

Recall that each pre-ordered set (P, \sqsubseteq) gives a category C_P . It is a ccc iff P has

- ▶ a greatest element \top : $\forall p \in P, p \sqsubseteq \top$
- ► binary meets $p \land q$: $\forall r \in P, r \sqsubseteq p \land q \Leftrightarrow r \sqsubseteq p \land r \sqsubseteq q$
- Heyting implications $p \rightarrow q$: $\forall r \in P, r \sqsubseteq p \rightarrow q \Leftrightarrow r \land p \sqsubseteq q$

Cartesian closed pre-order

Recall that each pre-ordered set (P, \sqsubseteq) gives a category C_P . It is a ccc iff P has

E.g. any Boolean algebra (with $p \rightarrow q = \neg p \lor q$).

E.g. $([0,1], \leq)$ with $\top = 1$, $p \land q = \min\{p,q\}$ and $p \rightarrow q = \begin{cases} 1 & \text{if } p \leq q \\ q & \text{if } q$

Intuitionistic Propositional Logic (IPL)

We present it in "natural deduction" style and only consider the fragment with conjunction and implication, with the following syntax:

Formulas of IPL: $\varphi, \psi, \theta, \dots ::=$ p, q, r, \dots propositional identifiers true truth $\varphi \& \psi$ conjunction

 $\varphi \Rightarrow \psi$ implication

Sequents of IPL: $\Phi ::= \diamond$ empty Φ, ϕ non=empty

(so sequents are finite snoc-lists of formulas)

IPL entailment $\Phi \vdash \varphi$

The intended meaning of $\Phi \vdash \varphi$ is "the conjunction of the formulas in Φ implies the formula φ ". The relation $_\vdash_$ is inductively generated by the following rules:

For example, if $\Phi = \diamond, \varphi \Rightarrow \psi, \psi \Rightarrow \theta$, then $\Phi \vdash \varphi \Rightarrow \theta$ is provable in IPL, because:

$$\frac{\overline{\Phi \vdash \psi \Rightarrow \theta}}{\Phi, \varphi \vdash \psi \Rightarrow \theta} (AX) \qquad \frac{\overline{\Phi \vdash \varphi \Rightarrow \psi}}{\Phi \vdash \varphi \Rightarrow \psi} (WK)}{\Phi, \varphi \vdash \varphi \Rightarrow \psi} (WK) \qquad \overline{\Phi, \varphi \vdash \varphi} (AX) \qquad \overline{\Phi, \varphi \vdash \varphi} (A$$

Semantics of IPL in a cartesian closed pre-oder (P, \subseteq)

Given a function M assigning a meaning to each propositional identifier p as an element $M(p) \in P$, we can assign meanings to IPL formula φ and sequents Φ as element $M[\varphi], M[\Phi] \in P$ by recursion on their structure:

$$\begin{split} M[\![p]\!] &= M(p) \\ M[\![true]\!] &= \top & \text{gree} \\ M[\![\varphi \& \psi]\!] &= M[\![\varphi]\!] \wedge M[\![\psi]\!] & \text{bin} \\ M[\![\varphi \gg \psi]\!] &= M[\![\varphi]\!] \rightarrow M[\![\psi]\!] & \text{Here} \\ M[\![\varphi \gg \psi]\!] &= M[\![\varphi]\!] \rightarrow M[\![\psi]\!] & \text{Here} \\ M[\![\varphi]\!] &= \top & \text{gree} \\ M[\![\varphi]\!] &= M[\![\varphi]\!] \wedge M[\![\varphi]\!] & \text{bin} \\ M[\![\varphi , \varphi]\!] &= M[\![\varphi]\!] \wedge M[\![\varphi]\!] & \text{bin} \\ M[\![\varphi , \varphi]\!] &= M[\![\varphi]\!] \wedge M[\![\varphi]\!] & \text{bin} \\ M[\![\varphi]\!] &= M[\![\varphi]\!] \wedge M[\![\varphi]\!] & \text{bin} \\ M[\![\varphi]\!] &= M[\![\varphi]\!] \wedge M[\![\varphi]\!] & \text{bin} \\ M[\![\varphi]\!] &= M[\![\varphi]\!] \wedge M[\![\varphi]\!] & \text{bin} \\ M[\![\varphi]\!] &= M[\![\varphi]\!] \wedge M[\![\varphi]\!] & \text{bin} \\ M[\![\varphi]\!] &= M[\![\varphi]\!] & \text{diag} \\ M[\![\varphi]\!] &= M[\![\varphi]\!] & \text{diag$$

greatest element binary meet Heyting implication greatest element binary meet

Semantics of IPL in a cartesian closed pre-oder (P, \subseteq)

Soundness Theorem. If $\Phi \vdash \varphi$ is provable from the rules of IPL, then $M[\Phi] \sqsubseteq M[\varphi]$ holds in any cartesian closed pre-order.

Proof. exercise (show that $\{(\Phi, \varphi) \mid M[\![\Phi]\!] \sqsubseteq M[\![\varphi]\!]\}$ is closed under the rules defining IPL entailment and hence contains $\{(\Phi, \varphi) \mid \Phi \vdash \varphi\}$)

Example

Peirce's Law $\diamond \vdash ((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi$ is <u>not</u> provable in IPL.

(whereas the formula $((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi$ is a classical tautology)

Example

Peirce's Law $\diamond \vdash ((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi$ is <u>not</u> provable in IPL.

(whereas the formula $((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi$ is a classical tautology)

For if $\diamond \vdash ((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi$ were provable in IPL, then by the Soundness Theorem we would have $\top = M[[\diamond]] \sqsubseteq M[((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi].$

But in the cartesian closed partial order $([0,1],\leq)$, taking $M(p) = \frac{1}{2}$ and M(q) = 0, we get

$$egin{aligned} M\llbracket ((p \Rightarrow q) \Rightarrow p) \Rightarrow p
rbrace &= ((1/2 o 0) o 1/2) o 1/2 \ &= (0 o 1/2) o 1/2 \ &= 1 o 1/2 \ &= 1/2 \ &\gtrless 1 \end{aligned}$$

Semantics of IPL in a cartesian closed pre-oder (P, \Box)

Completeness Theorem. Given Φ, φ , if for all cartesian closed pre-orders (P, \sqsubseteq) and all interpretations M of the propositional identifiers as elements of P, it is the case that $M[\Phi] \sqsubseteq M[\varphi]$ holds in P, then $\Phi \vdash \varphi$ is provable in IPL.

Semantics of IPL in a cartesian closed pre-oder (P, \Box)

Completeness Theorem. Given Φ, φ , if for all cartesian closed pre-orders (P, \sqsubseteq) and all interpretations M of the propositional identifiers as elements of P, it is the case that $M[\Phi] \sqsubseteq M[\varphi]$ holds in P, then $\Phi \vdash \varphi$ is provable in IPL.

Proof. Define

 $P \triangleq \{\text{formulas of IPL}\}$ $\varphi \sqsubseteq \psi \triangleq \diamond, \varphi \vdash \psi \text{ is provable in IPL}$

Then one can show that (P, \sqsubseteq) is a cartesian closed pre-ordered set. For this (P, \bigsqcup) , taking M to be M(p) = p, one can show that $M[\Phi] \sqsubseteq M[\varphi]$ holds in P iff $\Phi \vdash \varphi$ is provable in IPL.