
Lecture 2
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Exercise Sheet 1 available on the course web page
(solutions next week)∕



Recall
A category C is specified by

! a set obj C whose elements are called C-objects

! for each X, Y ∈ obj C, a set C(X, Y) whose
elements are called C-morphisms from X to Y

! a function assigning to each X ∈ obj C an element
idX ∈ C(X, X) called the identity morphism for
the C-object X

! a function assigning to each f ∈ C(X, Y) and
g ∈ C(Y , Z) (where X, Y , Z ∈ obj C) an element

g ◦ f ∈ C(X, Z) called the composition of
C-morphisms f and g and satisfying associativity
and unity properties.
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Example:
category of pre-orders, Preord

! objects are sets P equipped with a pre-order _ ⊑ _
— a binary relation on P that is
reflexive: ∀x ∈ P, x ⊑ x
transitive: ∀x, y, z ∈ P, x ⊑ y∧ y ⊑ z⇒ x ⊑ z

A partial order is a pre-order that is also
anti-symmetric: ∀x, y ∈ P, x ⊑ y∧ y ⊑ x⇒ x = y

20



Example:
category of pre-orders, Preord

! objects are sets P equipped with a pre-order _ ⊑ _
! morphisms: Preord((P1,⊑1), (P2,⊑2)) "

{ f ∈ Set(P1, P2) | f is monotone}

∀x, x′ ∈ P1, x ⊑1 x′ ⇒ f x ⊑2 f x′
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Example:
category of pre-orders, Preord

! objects are sets P equipped with a pre-order _ ⊑ _
! morphisms: Preord((P1,⊑1), (P2,⊑2)) "

{ f ∈ Set(P1, P2) | f is monotone}
! identities and composition: as for Set

Q: why is this well-defined?
A: because the set of monotone functions contains identity functions and
is closed under composition.
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Example:
category of pre-orders, Preord

! objects are sets P equipped with a pre-order _ ⊑ _
! morphisms: Preord((P1,⊑1), (P2,⊑2)) "

{ f ∈ Set(P1, P2) | f is monotone}
! identities and composition: as for Set

Pre- and partial orders are relevant to the denotational
semantics of programming languages (among other
things).
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Example:
category of monoids, Mon

! objects are monoids (M, ·, e) — set M equipped
with a binary operation _ · _ : M×M→ M
which is
associative ∀x, y, z ∈ M, x · (y · z) = (x · y) · z
has e as its unit ∀x ∈ M, e · x = x = x · e

CS-relevant example of a monoid: (List Σ, @, nil) where

List Σ = set of finite lists of elements of set Σ

@ = list concatenation
nil @ ℓ = ℓ

(a :: ℓ) @ ℓ′ = a :: (ℓ @ ℓ′)
nil = empty list
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Example:
category of monoids, Mon

! objects are monoids (M, ·, e)

! morphisms: Mon((M1, ·1, e1), (M2, ·2, e2)) "
{ f ∈ Set(M1, M2) | f e1 = e2 ∧
∀x, y ∈ M1, f(x ·1 y) = ( f x) ·2 ( f y)}

It’s common to denote a monoid (M, ·, e) just by its underlying set M,
leaving _ ·_ and e implicit (hence the same notation gets used for
different instances of monoid operations).
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Example:
category of monoids, Mon

! objects are monoids (M, ·, e)

! morphisms: Mon((M1, ·1, e1), (M2, ·2, e2)) "
{ f ∈ Set(M1, M2) | f e1 = e2 ∧
∀x, y ∈ M1, f(x ·1 y) = ( f x) ·2 ( f y)}

! identities and composition: as for Set

Q: why is this well-defined?
A: because the set of functions that are monoid morphisms contains
identity functions and is closed under composition.
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Example:
category of monoids, Mon

! objects are monoids (M, ·, e)

! morphisms: Mon((M1, ·1, e1), (M2, ·2, e2)) "
{ f ∈ Set(M1, M2) | f e1 = e2 ∧
∀x, y ∈ M1, f(x ·1 y) = ( f x) ·2 ( f y)}

! identities and composition: as for Set

Monoids are relevant to automata theory (among other
things).
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Example: each pre-order
determines a category

Given a pre-ordered set (P,⊑),
we get a category CP by taking

! objects obj CP = P

! morphisms CP(x, y) "

{

1 if x ⊑ y

∅ if x ̸⊑ y
(where 1 is some fixed one-element set and ∅ is the empty set)
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Example: each pre-order
determines a category

Given a pre-ordered set (P,⊑),
we get a category CP by taking

! objects obj CP = P

! morphisms CP(x, y) "

{

1 if x ⊑ y

∅ if x ̸⊑ y

! identity morphisms and composition are uniquely
determined (why?)
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Example: each pre-order
determines a category

Given a pre-ordered set (P,⊑),
we get a category CP by taking

! objects obj CP = P

! morphisms CP(x, y) "

{

1 if x ⊑ y

∅ if x ̸⊑ y
! identity morphisms and composition are uniquely

determined (why?)

E.g. when (P,⊑) has just one element 0

CP =
0 id0

one object, one morphism
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Example: each pre-order
determines a category

Given a pre-ordered set (P,⊑),
we get a category CP by taking

! objects obj CP = P

! morphisms CP(x, y) "

{

1 if x ⊑ y

∅ if x ̸⊑ y
! identity morphisms and composition are uniquely

determined (why?)

E.g. when (P,⊑) has just two elements 0 ⊑ 1

CP =
0id0 1 id1

two objects, one non-identity morphism
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Example: each pre-order
determines a category

Given a pre-ordered set (P,⊑),
we get a category CP by taking

! objects obj CP = P

! morphisms CP(x, y) "

{

1 if x ⊑ y

∅ if x ̸⊑ y
! identity morphisms and composition are uniquely

determined (why?)

Example of a finite category that does not arise from a pre-ordered set:

0id0 1 id1

two objects, two non-identity morphisms
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Example: each monoid
determines a category

Given a monoid (M, ·, e),
we get a category CM by taking

! objects: obj CM = 1 = {0} (one-element set)
! morphisms: CM(0, 0) = M
! identity morphism: id0 = e ∈ M = CM(0, 0)
! composition of f ∈ CM(0, 0) and g ∈ CM(0, 0) is

g · f ∈ M = CM(0, 0)
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Definition of isomorphism
Let C be a category. A C-morphism f : X → Y is an
isomorphism if there is some g : Y → X for which

X
f

idX

Y
g

idY

X
f

Y

is a commutative diagram.

24



Definition of isomorphism
Let C be a category. A C-morphism f : X → Y is an
isomorphism if there is some g : Y → X with
g ◦ f = idX and f ◦ g = idY .

! Such a g is uniquely determined by f (why?) and

we write f−1 for it.

! Given X, Y ∈ C, if such an f exists, we say the
objects X and Y are isomorphic in C and write
X ∼= Y

(There may be many different f that witness the fact that X and Y are

isomorphic.)
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Theorem. A function f ∈ Set(X, Y) is an isomorphism
in the category Set iff f is a bijection, that is

! injective: ∀x, x′ ∈ X, f x = f x′ ⇒ x = x′

! surjective: ∀y ∈ Y ,∃x ∈ X, f x = y

Proof. . .
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Theorem. A function f ∈ Set(X, Y) is an isomorphism
in the category Set iff f is a bijection, that is

! injective: ∀x, x′ ∈ X, f x = f x′ ⇒ x = x′

! surjective: ∀y ∈ Y ,∃x ∈ X, f x = y

Proof. . .

Theorem. A monoid morphism
f ∈Mon((M1, ·1, e1), (M2, ·2, e2)) is an isomorphism
in the category Mon iff f ∈ Set(M1, M2) is a bijection.

Proof. . .
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Define Poset to be the category whose objects are
posets = pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the category
Preord of pre-ordered sets.
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Define Poset to be the category whose objects are
posets = pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the category
Preord of pre-ordered sets.

Theorem. A monotone function
f ∈ Poset((P1,⊑1), (P2,⊑2)) is an isomorphism in
the category Poset iff f ∈ Set(P1, P2) is a surjective
function satisfying

! reflective: ∀x, x′ ∈ P1, f x ⊑2 f x′ ⇒ x ⊑1 x′

Proof. . .
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Define Poset to be the category whose objects are
posets = pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the category
Preord of pre-ordered sets.

Theorem. A monotone function
f ∈ Poset((P1,⊑1), (P2,⊑2)) is an isomorphism in
the category Poset iff f ∈ Set(P1, P2) is a surjective
function satisfying

! reflective: ∀x, x′ ∈ P1, f x ⊑2 f x′ ⇒ x ⊑1 x′

Proof. . .

(Why does this characterisation not work for Preord?)
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We have seen that

(M1, ·1, e1) ∼= (M2, ·2, e2) in Mon⇔ M1
∼= M2 in Set.

However,

(P1,⊑1) ∼= (P2,⊑2) in Preord ̸⇐ P1
∼= P2 in Set.
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We have seen that

(M1, ·1, e1) ∼= (M2, ·2, e2) in Mon⇔ M1
∼= M2 in Set.

However,

(P1,⊑1) ∼= (P2,⊑2) in Preord ̸⇐ P1
∼= P2 in Set.

For example, consider

P1 = P2 = {0, 1} a two-element set

⊑1 = {(0, 0), (1, 1)}

⊑2 = {(0, 0), (0, 1)(1, 1)}

for which we have (P1,⊑1) ̸∼= (P2,⊑2) (why?)
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