#### Lecture 2

Exercise Sheet 1 available on the course web page (solutions next week)

#### Recall

#### A category C is specified by

- ► a set obj C whose elements are called C-objects
- ► for each  $X, Y \in obj C$ , a set C(X, Y) whose elements are called C-morphisms from X to Y
- ▶ a function assigning to each  $X \in obj \mathbb{C}$  an element  $id_X \in \mathbb{C}(X, X)$  called the identity morphism for the  $\mathbb{C}$ -object X
- ▶ a function assigning to each  $f \in C(X, Y)$  and  $g \in C(Y, Z)$  (where  $X, Y, Z \in obj C$ ) an element  $g \circ f \in C(X, Z)$  called the composition of C-morphisms f and g and satisfying associativity and unity properties.

## Example: category of pre-orders, **Preord**

A partial order is a pre-order that is also anti-symmetric:  $\forall x, y \in P, x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$ 

objects are sets *P* equipped with a pre-order \_ \_ \_ \_
morphisms: Preord((*P*<sub>1</sub>, \_ 1), (*P*<sub>2</sub>, \_ 2)) ≜ {*f* ∈ Set(*P*<sub>1</sub>, *P*<sub>2</sub>) | *f* is monotone}

$$\forall x, x' \in P_1, \ x \sqsubseteq_1 x' \Rightarrow f x \sqsubseteq_2 f x'$$

# Example: category of pre-orders, **Preord**

- objects are sets P equipped with a pre-order \_ \_ \_
- ▶ morphisms:  $Preord((P_1, \sqsubseteq_1), (P_2, \bigsqcup_2)) \triangleq$ { $f \in Set(P_1, P_2) \mid f$  is monotone}
- identities and composition: as for Set

Q: why is this well-defined?

A: because the set of monotone functions contains identity functions and is closed under composition.

# Example: category of pre-orders, **Preord**

- objects are sets P equipped with a pre-order \_ \_ \_
- ► morphisms:  $\operatorname{Preord}((P_1, \sqsubseteq_1), (P_2, \bigsqcup_2)) \triangleq$ { $f \in \operatorname{Set}(P_1, P_2) \mid f$  is monotone}
- identities and composition: as for Set

Pre- and partial orders are relevant to the denotational semantics of programming languages (among other things).

- ► objects are monoids  $(M, \cdot, e)$  set M equipped with a binary operation  $\_ \cdot \_ : M \times M \to M$ which is associative  $\forall x, y, z \in M, x \cdot (y \cdot z) = (x \cdot y) \cdot z$ 
  - has *e* as its unit  $\forall x \in M, e \cdot x = x = x \cdot e$

CS-relevant example of a monoid:  $(List \Sigma, @, nil)$  where

List  $\Sigma$  = set of finite lists of elements of set  $\Sigma$ @ = list concatenation nil @  $\ell = \ell$ ( $a :: \ell$ ) @  $\ell' = a :: (\ell @ \ell')$ nil = empty list

objects are monoids (M, ·, e)

morphisms: Mon( $(M_1, \cdot_1, e_1), (M_2, \cdot_2, e_2)$ )  $\triangleq$   $\{f \in Set(M_1, M_2) \mid f e_1 = e_2 \land$   $\forall x, y \in M_1, f(x \cdot_1 y) = (f x) \cdot_2 (f y)\}$ 

It's common to denote a monoid  $(M, \cdot, e)$  just by its underlying set M, leaving  $\_ \cdot \_$  and e implicit (hence the same notation gets used for different instances of monoid operations).

- objects are monoids  $(M, \cdot, e)$
- morphisms: Mon( $(M_1, \cdot_1, e_1), (M_2, \cdot_2, e_2)$ )  $\triangleq$   $\{f \in Set(M_1, M_2) \mid f e_1 = e_2 \land$   $\forall x, y \in M_1, f(x \cdot_1 y) = (f x) \cdot_2 (f y)\}$
- identities and composition: as for Set

Q: why is this well-defined?

A: because the set of functions that are monoid morphisms contains identity functions and is closed under composition.

• objects are monoids  $(M, \cdot, e)$ 

morphisms: Mon( $(M_1, \cdot_1, e_1), (M_2, \cdot_2, e_2)$ )  $\triangleq$   $\{f \in Set(M_1, M_2) \mid f e_1 = e_2 \land$   $\forall x, y \in M_1, f(x \cdot_1 y) = (f x) \cdot_2 (f y)\}$ 

identities and composition: as for Set

Monoids are relevant to automata theory (among other things).

Given a pre-ordered set  $(P, \sqsubseteq)$ , we get a category  $C_P$  by taking

- ▶ objects obj  $C_P = P$
- $\blacktriangleright \text{ morphisms } C_P(x,y) \triangleq \begin{cases} 1 & \text{if } x \sqsubseteq y \\ \emptyset & \text{if } x \not\sqsubseteq y \end{cases}$

(where  $\mathbf{1}$  is some fixed one-element set and  $\emptyset$  is the empty set)

Given a pre-ordered set  $(P, \sqsubseteq)$ , we get a category  $C_P$  by taking

▶ objects obj  $C_P = P$ 

- $\blacktriangleright \text{ morphisms } \mathbf{C}_{P}(x,y) \triangleq \begin{cases} 1 & \text{if } x \sqsubseteq y \\ \emptyset & \text{if } x \not\sqsubseteq y \end{cases}$
- identity morphisms and composition are uniquely determined (why?)

Given a pre-ordered set  $(P, \sqsubseteq)$ , we get a category  $C_P$  by taking

▶ objects obj  $C_P = P$ 

- $\blacktriangleright \text{ morphisms } \mathbf{C}_{P}(x,y) \triangleq \begin{cases} 1 & \text{if } x \sqsubseteq y \\ \emptyset & \text{if } x \not\sqsubseteq y \end{cases}$
- identity morphisms and composition are uniquely determined (why?)

E.g. when 
$$(P, \sqsubseteq)$$
 has just one element 0  
 $C_P = \begin{bmatrix} 0 & id_0 \\ one & object, one & morphism \end{bmatrix}$ 

Given a pre-ordered set  $(P, \sqsubseteq)$ , we get a category  $C_P$  by taking

▶ objects obj  $C_P = P$ 

- $\blacktriangleright \text{ morphisms } \mathbf{C}_{P}(x,y) \triangleq \begin{cases} 1 & \text{if } x \sqsubseteq y \\ \emptyset & \text{if } x \not\sqsubseteq y \end{cases}$
- identity morphisms and composition are uniquely determined (why?)

E.g. when 
$$(P, \sqsubseteq)$$
 has just two elements  $0 \sqsubseteq 1$   
 $C_P = \begin{bmatrix} i d_0 & 0 \longrightarrow 1 & i d_1 \\ i wo objects, one non-identity morphism \end{bmatrix}$ 

Given a pre-ordered set  $(P, \sqsubseteq)$ , we get a category  $C_P$  by taking

▶ objects obj  $C_P = P$ 

- **b** morphisms  $C_P(x, y) \triangleq \begin{cases} 1 & \text{if } x \sqsubseteq y \\ \emptyset & \text{if } x \nvdash y \end{cases}$
- identity morphisms and composition are uniquely determined (why?)

Example of a finite category that does not arise from a pre-ordered set:

 $id_0$  0 1  $id_1$ 

Example: each monoid determines a category

Given a monoid  $(M, \cdot, e)$ , we get a category  $C_M$  by taking

- ▶ objects: obj  $C_M = 1 = \{0\}$  (one-element set)
- morphisms:  $C_M(0,0) = M$
- ▶ identity morphism:  $id_0 = e \in M = C_M(0,0)$
- ► composition of  $f \in C_M(0,0)$  and  $g \in C_M(0,0)$  is  $g \cdot f \in M = C_M(0,0)$

#### Definition of isomorphism

Let **C** be a category. A **C**-morphism  $f: X \to Y$  is an isomorphism if there is some  $g: Y \to X$  for which



is a commutative diagram.

#### Definition of isomorphism

Let **C** be a category. A **C**-morphism  $f: X \to Y$  is an isomorphism if there is some  $g: Y \to X$  with  $g \circ f = \operatorname{id}_X$  and  $f \circ g = \operatorname{id}_Y$ .

- Such a g is uniquely determined by f (why?) and we write  $f^{-1}$  for it.
- ► Given  $X, Y \in C$ , if such an f exists, we say the objects X and Y are isomorphic in C and write  $X \cong Y$

(There may be many different f that witness the fact that X and Y are isomorphic.)

**Theorem.** A function  $f \in Set(X, Y)$  is an isomorphism in the category Set iff f is a bijection, that is

injective:  $\forall x, x' \in X, f x = f x' \Rightarrow x = x'$ surjective:  $\forall y \in Y, \exists x \in X, f x = y$ 

Proof...

**Theorem.** A function  $f \in Set(X, Y)$  is an isomorphism in the category Set iff f is a bijection, that is

• injective:  $\forall x, x' \in X, f x = f x' \Rightarrow x = x'$ 

► surjective:  $\forall y \in Y, \exists x \in X, f x = y$ 

Proof...

**Theorem.** A monoid morphism  $f \in Mon((M_1, \cdot_1, e_1), (M_2, \cdot_2, e_2))$  is an isomorphism in the category Mon iff  $f \in Set(M_1, M_2)$  is a bijection.

Proof...

Define **Poset** to be the category whose objects are posets = pre-ordered sets for which the pre-order is anti-symmetric, but is otherwise defined like the category **Preord** of pre-ordered sets. Define **Poset** to be the category whose objects are posets = pre-ordered sets for which the pre-order is anti-symmetric, but is otherwise defined like the category **Preord** of pre-ordered sets.

**Theorem.** A monotone function  $f \in \text{Poset}((P_1, \sqsubseteq_1), (P_2, \bigsqcup_2))$  is an isomorphism in the category **Poset** iff  $f \in \text{Set}(P_1, P_2)$  is a surjective function satisfying

▶ reflective:  $\forall x, x' \in P_1, f x \sqsubseteq_2 f x' \Rightarrow x \sqsubseteq_1 x'$ 

Proof...

Define **Poset** to be the category whose objects are posets = pre-ordered sets for which the pre-order is anti-symmetric, but is otherwise defined like the category **Preord** of pre-ordered sets.

**Theorem.** A monotone function  $f \in \text{Poset}((P_1, \sqsubseteq_1), (P_2, \bigsqcup_2))$  is an isomorphism in the category **Poset** iff  $f \in \text{Set}(P_1, P_2)$  is a surjective function satisfying

▶ reflective:  $\forall x, x' \in P_1, f x \sqsubseteq_2 f x' \Rightarrow x \sqsubseteq_1 x'$ 

Proof...

(Why does this characterisation not work for **Preord**?)

We have seen that

 $(M_1, \cdot_1, e_1) \cong (M_2, \cdot_2, e_2)$  in Mon  $\Leftrightarrow M_1 \cong M_2$  in Set. However,

 $(P_1, \sqsubseteq_1) \cong (P_2, \sqsubseteq_2)$  in **Preord**  $\not = P_1 \cong P_2$  in **Set**.

We have seen that

 $(M_1, \cdot_1, e_1) \cong (M_2, \cdot_2, e_2)$  in Mon  $\Leftrightarrow M_1 \cong M_2$  in Set. However,

 $(P_1, \sqsubseteq_1) \cong (P_2, \sqsubseteq_2)$  in **Preord**  $\not = P_1 \cong P_2$  in **Set**.

For example, consider

 $P_1 = P_2 = \{0,1\} \text{ a two-element set}$  $\sqsubseteq_1 = \{(0,0), (1,1)\}$  $\sqsubseteq_2 = \{(0,0), (0,1)(1,1)\}$ 

for which we have  $(P_1, \sqsubseteq_1) \ncong (P_2, \sqsubseteq_2)$  (why?)

Ex. Sh. 1, gu 1(b)