Lecture 2

Exercise Sheet 1 available on the course web page
(solutions next week)
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Exercise Sheet 1 available on the course web page
(solutions next week)∕


Recall

A category C is specified by

» aset|objC| whose elements are called C-objects

» for each X,Y € objC, aset|C(X,Y) whose
elements are called C-morphisms from X to Y

» a function assigning to each X € obj C an element

idy € C(X, X) | called the identity morphism for
the C-object X

> a function assigning to each f € C(X,Y) and
g€ C(Y,Z) (where X,Y,Z € objC) an element

gof € C(X,Z)|called the composition of
C-morphisms f and g and satisfying associativity
and unity properties.
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Example:
category of pre-orders, Preord

» objects are sets P equipped with a pre-order _ L
— a binary relation on P that is
reflexive: Vx € P, x L x
transitive: Vx,y,z € P, x LyAyL z=xL z

A partial order is a pre-order that is also
anti-symmetric: Vx,y E P, x LyAyL x=>x=y
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Example:
category of pre-orders, Preord

» objects are sets P equipped with a pre-order _ L

» morphisms: Preord((Py, 1), (P, C,)) =
{f € Set(Py, P,) | f is monotone}

Vx,x’ € P, xC1x' = fx 5y fa
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Example:
category of pre-orders, Preord

» objects are sets P equipped with a pre-order

» morphisms: Preord((P;, C1), (P, C,)) =
{f € Set(Py, P,) | f is monotone}

» identities and composition: as for Set

Q: why is this well-defined?
A: because the set of monotone functions contains identity functions and
is closed under composition.
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Example:
category of pre-orders, Preord

» objects are sets P equipped with a pre-order

» morphisms: Preord((P;, C1), (P, C,)) =
{f € Set(Py, P,) | f is monotone}

» identities and composition: as for Set

Pre- and partial orders are relevant to the denotational
semantics of programming languages (among other
things).
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Example:
category of monoids, Mon

» objects are monoids (M, :,e) — set M equipped
with a binary operation _ - _ : M X M — M
which is
associative Vx,y,z € M, x- (y-z) = (x-y) - z
hase asitsunitVx e M, e-x =x=x-e¢

CS-relevant example of a monoid: (List X, @,nil) where

ListX = set of finite lists of elements of set X
@ = list concatenation
nil@f =+¢
(azl)@f =a:(L@l)
nil = empty list
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Example:
category of monoids, Mon

» objects are monoids (M, -, e)
> morphisms: MO“((Ml, 1, 81), (Mz, *9y 82)) =
{f & Set(Ml,Mz) | fel = ey N\
Vx,y € My, f(x1y) = (fx)2(fy)}

It's common to denote a monoid (M, -, e) just by its underlying set M,
leaving __ - __ and e implicit (hence the same notation gets used for
different instances of monoid operations).
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Example:
category of monoids, Mon

» objects are monoids (M, -, e)

> morphisms: Mon((Ml, 1, 81), (Mz, °9, 82)) é
{f & Set(Ml,Mz) | fel = e, N\
Vx,y € My, f(x1y) = (fx)2(fy)}
» identities and composition: as for Set
Q: why is this well-defined?

A: because the set of functions that are monoid morphisms contains
identity functions and is closed under composition.
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Example:
category of monoids, Mon

» objects are monoids (M, -, e)

» morphisms: Mon((Mj, +1,e1), (M, 3, e5)) =
{f € Set(My, M) | fer =ex N\
Vx,y € My, f(x1y) = (fx)2(fy)}

» identities and composition: as for Set

Monoids are relevant to automata theory (among other
things).
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Example: each pre-order
determines a category

Given a pre-ordered set (P, ),
we get a category Cp by taking

» objects obj Cp = P

» morphisms Cp(x,y) = <

)
1

\

%

ifx Ly
ifx Ly

(where 1 is some fixed one-element set and @ is the empty set)
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Example: each pre-order
determines a category

Given a pre-ordered set (P, ),
we get a category Cp by taking
» objects obj Cp = P
)
1

» morphisms Cp(x,y) = < >

\

ifx Ly
ifx Ly

» identity morphisms and composition are uniquely

determined (why?)

22



Example: each pre-order
determines a category

Given a pre-ordered set (P, ),
we get a category Cp by taking
» objects obj Cp = P
)
1

» morphisms Cp(x,y) = < >

\

ifx Ly
ifx Ly

» identity morphisms and composition are uniquely

determined (why?)

E.g. when (P, C) has just one element 0

0 /i\do
~

Cp =

one object, one morphism
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Example: each pre-order
determines a category

Given a pre-ordered set (P, ),
we get a category Cp by taking

» objects obj Cp = P

» morphisms Cp(x,y) = <

\

)
1

%

ifx Ly
ifx Ly

» identity morphisms and composition are uniquely

determined (why?)

E.g. when (P,C) has just two elements 0 C 1

Cp =

id/o\()ﬁl/_i\dl
\—~ ~

two objects, one non-identity morphism
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Example: each pre-order
determines a category

Given a pre-ordered set (P, ),
we get a category Cp by taking

» objects obj Cp = P

» morphisms Cp(x, y) =

\

( —
1 iftxLy

@ ifxlLy

» identity morphisms and composition are uniquely

determined (why?)

Example of a finite category that does not arise from a pre-ordered set:

1d/\OA1@d1

two objects, two non-identity morphisms
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Example: each monoid
determines a category

Given a monoid (M, -, e),
we get a category Cps by taking

» objects: obj Cyy =1 = {0} (one-element set)
morphisms: Cy;(0,0) = M

identity morphism: idg = e € M = Cy,(0,0)
composition of f € Cy(0,0) and g € Cps(0,0) is
g f€M=Cp(0,0)

vyy
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Detinition of isomorphism

Let C be a category. A C-morphism f: X — Y is an
isomorphism if there is some g : Y — X for which

x .

AN

Is a commutative diagram.
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Detinition of isomorphism

Let C be a category. A C-morphism f: X — Y is an
isomorphism if there is some g : Y — X with

gof =idx and fog = idy.

» Such a g is uniquely determined by f (why?) and

we write | f 1| for it.

» Given X,Y € C, if such an f exists, we say the

objects X and Y are isomorphic in C and write
XY

(There may be many different f that witness the fact that X and Y are

isomorphic.)
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L2

Theorem. A function f € Set(X,Y) is an isomorphism
in the category Set iff f is a bijection, that is

» injective: Vx,x' € X, fx=fx' =>x=x'
» surjective: Vy €Y, dx € X, fx =y

Proof. ..
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L2

Theorem. A function f € Set(X,Y) is an isomorphism
in the category Set iff f is a bijection, that is

» injective: Vx,x' € X, fx=fx' =>x=x'
» surjective: Vy €Y, dx € X, fx =y

Proof. ..

Theorem. A monoid morphism
f € Mon((My, +1,e1),(My, +2,e3)) is an isomorphism
in the category Mon iff f € Set(M;, M;) is a bijection.

Proof. ..
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Define Poset to be the category whose objects are
posets = pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the category

Preord of pre-ordered sets.

w
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Define Poset to be the category whose objects are
posets = pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the category

Preord of pre-ordered sets.

Theorem. A monotone function

f € Poset((P, 1), (P>, £5)) is an isomorphism in
the category Poset iff f € Set(P;, P,) is a surjective
function satisfying

» reflective: Vx, x' € P, fx ;2 fx’ —> X L_1X

Proof. ..

w
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Define Poset to be the category whose objects are
posets = pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the category
Preord of pre-ordered sets.

Theorem. A monotone function

f € Poset((P, 1), (P>, £5)) is an isomorphism in
the category Poset iff f € Set(P;, P,) is a surjective
function satisfying

> reflective: Vx,x' € Py, fx Ly fax' = x L1 X

Proof. ..

(Why does this characterisation not work for Preord?)

o
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We have seen that
(er'lr 81) = (Mz, 9, 82) in Mon < M; = M5 in Set.
However,

(Pl, El) = (Pz, Ez) in Preord 7& P1 = Pz in Set.
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We have seen that

(My,+1,e1) = (M, +2,e2) in Mon < My = M, in Set.
However,

(P, Eq) = (P,,55) in Preord 4= P; = P, in Set.

For example, consider

Py = P, = {0,1} a two-element set

—1 — {(Or O)r (111)}
—2 — {(Or 0)/ (011) (111)}

for which we have (P, ) 2 (P, 5) (why?)
N
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