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exercise sheets
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pointers to some additional material
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[Awodey| Steve Awodey, Category theory,
Oxford University Press (2nd ed.), 2010.
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» A graded exercise sheet (25% of the final mark).
Exercise Sheet 4, issued in lecture 10 on Tuesday 10 November
2019, with solutions due in at the Graduate Office Graduate
Office (FS03) by 16:00 on Tuesday 19 November 2019.

> A take-home test (75% of the final mark).

The take-home test will be issued on Thursday 16 January
2020 at 16:00. Solutions are due in at the Graduate Office
(FS03) by 16:00 on Monday 20 January 2020.
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What we are probably seeking is a “purer” view of
functions: a theory of functions in themselves, not a
theory of functions derived from sets. What, then, is a
pure theory of functions? Answer: category theory.

Dana Scott, Relating theories of the A-calculus, p406

set theory gives an “element-oriented” account of
mathematical structure, whereas

category theory takes a ‘function-oriented” view —
understand structures not via their elements, but by how
they transform, i.e. via morphisms.

(Both theories are part of Logic, broadly construed.)
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Category Theory emerges

1945 Eilenberg®™ and MacLane®
General Theory of Natural Equivalences,
Trans AMS 58, 231-294

(algebraic topology, abstract algebra)
1950s Grothendieck? (algebraic geometry)
1960s Lawvere (logic and foundations)

1970s Joyal and Tierney+ (elementary topos theory)
1980s Dana Scott, Plotkin

(semantics of programming languages)

Lambek?* (linguistics)
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Category Theory and
Computer Science

“Category theory has. .. become part of the standard
“tool-box" in many areas of theoretical informatics, from
programming languages to automata, from process
calculi to Type Theory.”

Dagstuhl Perpectives Workshop on Categorical Methods at the Crossroads
April 2014
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This course

basic concepts of category theory

adjunction <— natural transformation

|

category functor

propositional logic
applied to ¢ typed lambda-calculus
functional programming



Definition

A category C is specified by

» aset |obj C|whose elements are called C-objects

» for each X,Y € objC, a set

C(X,Y)

whose

elements are called C-morphisms from X to Y

(so far, that is just what some people call a directed graph)

L1
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Definition
A category C is specified by

» aset | objC| whose elements are called C-objects

» for each X,Y € objC, aset|C(X,Y)|whose
elements are called C-morphisms from X to Y

» a function assigning to each X &€ obj C an element
idy € C(X, X) | called the identity morphism for
the C-object X

» a function assigning to each f € C(X,Y) and
g€ C(Y,Z) (where X,Y,Z € objC) an element

gof € C(X,Z) called the composition of
C-morphisms f and g and satisfying. ..

10



Definition, continued

satisfying. . .

» associativity: for all X,Y,Z, W &€ objC,
feC(X,Y),geClY,Z)andhe C(Z W)

ho(gof) = (hog)of

» unity: for all X,Y € objC and f € C(X,Y)

idyof:f:foidx

L1 11
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Example: category of sets, Set

» obj Set = some fixed universe of sets

(more on universes later)
> Set(X,Y) =
{f € X X Y| f is single-valued and total}}

(Cartesian product of sets X and Y is the )

set of all ordered pairs (x,y) with x € X
andy €Y.

Equality of ordered pairs:

(xy)=EyY)eox=x"Ay=y

12
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Example: category of sets, Set

» obj Set = some fixed universe of sets

(more on universes later)
> Set(X,Y) =
{f € X X Y| fis single-valued and total}

Vx € X,Vy,y' €Y, Vx € X,Jy €Y,
(xy) efAxy)eEf=y=y (x,y) € f

12
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Example: category of sets, Set

obj Set = some fixed universe of sets

(more on universes later)

Set(X,Y) =

{f € X X Y| fis single-valued and total }

idy = {(x,x) | x € X}

composition of f € Set(X,Y) and ¢ € Set(Y, Z)
is

gof={(x2)]
dy €Y, (xy) € fA(y,z) € g}

(check that associativity and unity properties hold)
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Example: category of sets, Set

Notation. Given f € Set(X,Y) and x € X, it is usual
to write | f x| (or f(x)) for the unique y € Y with

(x, y) cf
Thus

idyx = x

(gof)x=g(fx)
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Domain and codomain

Given a category C,

write | f: X — Y|or x Ly

to mean that f € C(X,Y),

in which case one says

object X is the domain of the morphism f
object Y is the codomain of the morphism f

and writes
X =domf Y =codf

(Which category C we are referring to is left implicit with this notation.)

14
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Commutative diagrams

in a category C:
a diagram is

a directed graph whose vertices are C-objects
and whose edges are C-morphisms

and the diagram is commutative (or commutes) if

any two finite paths in the graph between any
two vertices determine equal morphisms in the
category under composition

15
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Examples:

Commutative diagrams

15
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Alternative notations

| will often just write

C for obj C
id for idy

Some people write

Homc (X, Y) for C(X,Y)
1X for idX

gfforgef

| use “applicative order” for morphism composition;
other people use “diagrammatic order” and write

f:8 (or fg)forgof

16



Alternative definition of category

The definition given here is “dependent-type friendly”.

See [Awodey, Definition 1.1] for an equivalent

formulation:

One gives the whole set of morphisms mor C
(in bijection with }x yecopyc C(X,Y) in my definition)
plus functions
dom, cod : mor C — objC
id : obj C — mor C
and a partial function for composition
_o_:morC XmorC — morC
defined at (f, g) iff cod f = dom ¢
and satisfying the associativity and unity equations.

L1 17



