2018/19 MPhil ACS / CST Part III
Category Theory (L108)
Exercise Sheet 4 [GRADED]
Solutions due by 16:00 on Thursday 15 November

1. **[8/40 marks]** Let C be a category with binary products. Given a C-object X, the *diagonal* morphism $\delta_X \in C(X, X \times X)$ and the *twist* morphism $\tau_X \in C(X \times X, X \times X)$ are defined by:

\[
\delta_X \triangleq \langle \text{id}_X, \text{id}_X \rangle \quad \tau_X \triangleq \langle \pi_2, \pi_1 \rangle
\]

(a) For all C-objects X and Y and all morphisms $f, g \in C(X, Y)$, show that

\[
t_Y \circ (g \times f) = (f \times g) \circ \tau_X
\]

(where $f \times g \in C(X \times X, Y \times Y)$ is the product of morphisms introduced in Ex. Sh. 2, question 1b).

(b) For each $f \in C(X, Y)$, show that $\delta_Y \circ f = (f \times f) \circ \delta_X$

(c) Show that $\tau_X \circ \delta_X = \delta_X$.

(d) Show that $\tau_X \circ \tau_X = \text{id}_{X \times X}$.

2. **[10/40 marks]** Let C be a category. Given C-objects X and Y and morphisms $f, g \in C(X, Y)$, an *equalizer* for f and g is by definition a C-object E and a morphism $m \in C(E, X)$ such that

- $f \circ m = g \circ m \in C(E, Y)$ and
- for all C-objects Z and morphisms $h \in C(Z, X)$, if $f \circ h = g \circ h \in C(Z, Y)$, then there exists a unique morphism $k \in C(Z, E)$ satisfying $m \circ k = h$.

\[
\begin{array}{c}
Z \\
\downarrow^k \\
E \xrightarrow{m} X \xrightarrow{f} Y
\end{array}
\]

(a) Show that every equalizer is a monomorphism (see Ex. Sh. 1, question 4).

(b) Suppose that $f \in C(X, Y)$ is a *split monomorphism*, that is, there is a morphism $g \in C(Y, X)$ with $g \circ f = \text{id}_X$ (see Ex. Sh. 1, question 4). Show that $f : X \to Y$ is the equalizer of some pair of morphisms.

(c) Suppose the diagram

\[
\begin{array}{c}
U \xrightarrow{e} V \\
\downarrow^u \quad \downarrow^v \\
E \xrightarrow{m} X
\end{array}
\]

commutes in C (i.e. $m \circ u = v \circ e$), that m is an equalizer and that e is an epimorphism (see Ex. Sh. 1, question 5). Show that there is a unique morphism $k \in C(V, E)$ such that $m \circ k = v$ and $k \circ e = u$.
(d) Show that the category \mathbf{Set} of sets and functions possesses equalizers for all parallel pairs of morphisms and that every monomorphism is an equalizer. Is every monomorphism in \mathbf{Set} a split monomorphism?

3. [10/40 marks] Let X be an object of a category \mathbf{C}. The slice category \mathbf{C}/X is defined by:

- The objects of \mathbf{C}/X are pairs (A, p) where $A \in \text{obj} \mathbf{C}$ and $p \in \mathbf{C}(A, X)$.
- Given two such objects (A, p) and (B, q), a morphism $f : (A, p) \to (B, q)$ in \mathbf{C}/X is a \mathbf{C}-morphism $f \in \mathbf{C}(A, B)$ such that $q \circ f = p$

$$
\begin{array}{c}
A \\
\downarrow f \\
B \\
\downarrow p \\
X \\
\end{array}
$$

- Composition and identities in \mathbf{C}/X are given by those in \mathbf{C}.

(a) Show that \mathbf{C}/X always has a terminal object.

(b) Show that if \mathbf{C} has an initial object and binary coproducts, then so does \mathbf{C}/X.

(c) When $\mathbf{C} = \mathbf{Set}$, the category of sets and functions, show that \mathbf{Set}/X has binary products. [Hint: given $(A, p), (B, q) \in \text{obj} \mathbf{Set}/X$, consider a suitable subset of $\{(a, b) \mid a \in A \land b \in B\}$.

4. [4/40 marks] Let $\mathbf{C} = \mathbf{Set}^{\text{op}}$ be the opposite category of the category \mathbf{Set} of sets and functions.

(a) State, without proof, what is the product in \mathbf{C} of two objects X and Y.

(b) Show by example that there are objects X and Y in \mathbf{C} for which there is no exponential and hence that \mathbf{C} is not a cartesian closed category.

5. [8/40 marks] Let \mathbf{C} be a cartesian closed category. Writing $X \to Y$ for the exponential Y^X of two objects in \mathbf{C}, define $P(X, Y)$ to be the \mathbf{C}-object $((X \to Y) \to X) \to X$.

(a) By giving a suitable simply typed lambda calculus term in the internal language of \mathbf{C}, or otherwise, show that for any \mathbf{C}-object X, there is a morphism $p_X : 1 \to P(X, X)$ in \mathbf{C}.

(b) When $\mathbf{C} = \mathbf{Set}$, show that for any sets X and Y (including the case where one or other of them is empty), there is always some morphism $1 \to P(X, Y)$.

(c) Give an example of a cartesian closed category \mathbf{C} containing objects X and Y for which there is no morphism $1 \to P(X, Y)$. [Hint: recall the example on page 63 in Lecture 6.]

(d) Call a term t of the simply typed lambda calculus pure if it does not contain any constant symbols. Explain why part (c) implies that there is no pure term t such that $\vdash t : ((G \to G') \to G) \to G$ holds, where G and G' are distinct ground types.