1. (a) Show that the sets $2 = \{0, 1\}$ and $3 = \{0, 1, 2\}$ are not isomorphic in the category Set of sets and functions.

(b) Let P be the pre-ordered set with underlying set $\{0, 1\}$ and pre-order: $0 \leq 0$, $1 \leq 1$. Let Q be the pre-ordered set with the same underlying set and pre-order: $0 \leq 0, 0 \leq 1, 1 \leq 1$. Show that P and Q are not isomorphic in the category Pre of pre-ordered sets and monotone functions.

(c) Why are the sets \mathbb{N} (natural numbers) and \mathbb{Q} (rational numbers) isomorphic in Set? Regarding them as pre-ordered sets via the usual ordering on numbers, show that they are not isomorphic in Pre.

2. Let C be a category and let $f \in C(X, Y)$ and $g \in C(Y, Z)$ be morphisms in C.

(a) Prove that if f and g are both isomorphisms, then so is $g \circ f$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

(b) Prove that if f and $g \circ f$ are both isomorphisms, then so is g.

(c) If $g \circ f$ is an isomorphism, does that necessarily imply that either of f or g are isomorphisms?

3. Let Mat be a category whose objects are all the non-zero natural numbers $1, 2, 3, \ldots$ and whose morphisms $M \in \text{Mat}(m, n)$ are $m \times n$ matrices with real number entries. If composition is given by matrix multiplication, what are the identity morphisms? Give an example of an isomorphism in Mat that is not an identity. Can two object m and n be isomorphic in Mat if $m \neq n$?

4. Let C be a category. A morphism $f : X \to Y$ in C is called a monomorphism, if for every object $Z \in C$ and every pair of morphisms $g, h : Z \to X$ we have

$$f \circ g = f \circ h \Rightarrow g = h$$

It is called a split monomorphism if there is some morphism $g : Y \to X$ with $g \circ f = \text{id}_X$, in which case we say that g is a left inverse for f.

(a) Prove that every isomorphism is a split monomorphism and that every split monomorphism is a monomorphism.

(b) Prove that if $f : X \to Y$ and $g : Y \to Z$ are monomorphisms, then $g \circ f : X \to Z$ is a monomorphism.

(c) Prove that if $f : X \to Y$ and $g : Y \to Z$ are morphisms in C, and $g \circ f$ is a monomorphism, then f is a monomorphism.

(d) Characterize the monomorphisms in the category Set of sets and functions. Is every monomorphism in Set a split monomorphism?

(e) By considering the category Set, show that a split monomorphism can have more than one left inverse.
(f) Regarding a pre-ordered set \((P, \leq)\) as a category, which of its morphisms are monomorphisms and which are split monomorphisms?

5. The dual of \textit{monomorphism} is called \textit{epimorphism}: a morphism \(f : X \to Y\) in \(\mathbf{C}\) is an epimorphism iff \(f \in \mathbf{C}^{\text{op}}(Y, X)\) is a monomorphism in \(\mathbf{C}^{\text{op}}\).

(a) Show that \(f \in \mathbf{Set}(X, Y)\) is an epimorphism iff \(f\) is a surjective function.
(b) Regarding a pre-ordered set \((P, \leq)\) as a category, which of its morphisms are epimorphisms?
(c) Give an example of a category containing a morphism that is both an epimorphism and a monomorphism, but not an isomorphism. [Hint: consider your answers to (4f) and (5b).]

6. Let \(\mathbf{C}\) be the category the following category:

- \(\mathbf{C}\)-objects are triples \((X, x_0, x_s)\) where \(X \in \mathbf{Set}\), \(x_0 \in X\) and \(x_s \in \mathbf{Set}(X, X)\);
- \(\mathbf{C}\)-morphisms \(f \in \mathbf{C}(((X, x_0, x_s), (Y, y_0, y_s)))\) are functions \(f \in \mathbf{Set}(X, Y)\) satisfying \(f x_0 = y_0\) and \(f \circ x_s = y_s \circ f\);
- composition and identities are as for the category \(\mathbf{Set}\).

(a) Show that \(\mathbf{C}\) has a terminal object.
(b) Show that \(\mathbf{C}\) has an initial object whose underlying set is the set \(\mathbb{N} = \{0, 1, 2, 3, \ldots\}\) of natural numbers.

7. In a category \(\mathbf{C}\) with a terminal object \(1\), a morphism \(p : 1 \to X\) is called a \textit{point} (or \textit{global element}) of the object \(X\). \(\mathbf{C}\) is said to be \textit{well-pointed} if for all objects \(X, Y \in \mathbf{C}\), two morphisms \(f, g : X \to Y\) are equal if their compositions with all points of \(X\) are equal:

\[
(\forall p \in \mathbf{C}(1, X)) \quad f \circ p = g \circ p \quad \Rightarrow \quad f = g
\]

(1)

(a) Show that \(\mathbf{Set}\) is well-pointed.
(b) Is the opposite category \(\mathbf{Set}^{\text{op}}\) well-pointed? [Hint: observe that the left-hand side of the implication in (1) is vacuously true in the case that \(\mathbf{C}(1, X)\) is empty.]