L101: Machine Learning for Language Processing

Lecture 8

Today's Lecture

- Problem interpreting results: statistical significance
- Problem with datasets: social bias

Current State of NLP

- Emphasis on empirical results
- Statistical significance rarely discussed

Current State of NLP

- Emphasis on empirical results
- Statistical significance rarely discussed
- Large number of architectures, hyperparameters

Current State of NLP

- Emphasis on empirical results
- Statistical significance rarely discussed
- Large number of architectures, hyperparameters
- Datasets re-used many times

Dror et al. (2018) survey

ACL 2017TACL 2017Total papers19637Experimental papers18033

Dror et al. (2018) survey

	ACL	2017	TAC	L 2017
Total papers	196		37	
Experimental papers	180		33	
 reporting significance 	63	(35%)	18	(55%)

_

Dror et al. (2018) survey

	ACL 2017		TACL 2017	
Total papers	196		37	
Experimental papers	180		33	
 reporting significance 	63	(35%)	18	(55%)
 correctly 	36	(20%)	15	(45%)

_

p-Values

Probability the result would be at least this extreme, under the null hypothesis

p-Values

Probability the result would be at least this extreme, under the null hypothesis

NOT:

Probability the null hypothesis is true

Statistical Significance Testing

- Decide on a **null hypothesis**
- Decide on a **test statistic**
- Decide on a threshold

Statistical Significance Testing

- Decide on a **null hypothesis**
- Decide on a **test statistic**
- Decide on a threshold
- Significance level: probability of incorrectly rejecting null hypothesis (assuming null hypothesis)

Statistical Significance Testing

- Decide on a **null hypothesis**
- Decide on a **test statistic**
- Decide on a threshold
- Significance level: probability of incorrectly rejecting null hypothesis (assuming null hypothesis)
- Power: probability of correctly rejecting null hypothesis (assuming alternative hypothesis)

 Test statistic follows known distribution (with known parameters)

- Test statistic follows known distribution (with known parameters)
- Paired Student's t-test:
 - Paired samples (test datapoints)
 - Scores normally distributed
 - Null hypothesis: same mean

- Test statistic follows known distribution (with known parameters)
- Paired Student's t-test:
 - Paired samples (test datapoints)
 - Scores normally distributed
 - Null hypothesis: same mean

• Test statistic:
$$t = \frac{\sqrt{n}}{s_D} \bar{x}_D$$

- Test statistic follows known distribution (with known parameters)
- Paired Student's t-test:
 - Paired samples (test datapoints)
 - Scores normally distributed
 - Null hypothesis: same mean

• Test statistic:
$$t = \frac{\sqrt{n}}{s_D} \bar{x}_D$$

 "Student's t-distribution with n-1 degrees of freedom"

No assumptions about distribution

- No assumptions about distribution
- Sign test:
 - Paired samples (test datapoints)
 - System A better or system B better
 - Null hypothesis: equal chance

- No assumptions about distribution
- Sign test:
 - Paired samples (test datapoints)
 - System A better or system B better
 - Null hypothesis: equal chance
 - Test statistic: n

- No assumptions about distribution
- Sign test:
 - Paired samples (test datapoints)
 - System A better or system B better
 - Null hypothesis: equal chance
 - Test statistic: n
 - Binomial distribution

Multiple Tests

If we test many systems, we expect some will pass

Multiple Tests

- If we test many systems, we expect some will pass
- Bonferroni correction:
 - Replace nominal significance level

$$\alpha \mapsto \frac{\alpha}{m}$$

Evaluate 1000 systems

- 900 similar to baseline
- 100 better than baseline

Evaluate 1000 systems

- 900 similar to baseline
- 100 better than baseline
- Perform statistical test
 - Significance level: 5%
 - Power: 80%

- Evaluate 1000 systems
 - 900 similar to baseline
 - 100 better than baseline
- Perform statistical test
 - Significance level: $5\% \rightarrow 45$ pass
 - Power: $80\% \rightarrow 80$ pass

- Evaluate 1000 systems
 - 900 similar to baseline
 - 100 better than baseline
- Perform statistical test
 - Significance level: $5\% \rightarrow 45$ pass
 - Power: $80\% \rightarrow 80$ pass
- Probability system is better, given it passed the test: 64%

- Evaluate 1000 systems
 - 960 similar to baseline
 - 40 better than baseline
- Perform statistical test
 - Significance level: $5\% \rightarrow 48$ pass
 - Power: $80\% \rightarrow 32$ pass
- Probability system is better, given it passed the test: 40%

- Evaluate 1000 systems
 - 1000 similar to baseline
 - 0 better than baseline
- Perform statistical test
 - Significance level: $5\% \rightarrow 50$ pass
 - Power: 80% \rightarrow 0 pass
- Probability system is better, given it passed the test: 0%

A significant difference may not be a large difference

Effect Size

- A significant difference may not be a large difference
- e.g. a coin toss
 - Coins not perfectly symmetric
 - Probability of heads not exactly 50%
 - Difference so small we don't care

Publication Bias

Hard to publish negative results...

Publication Bias

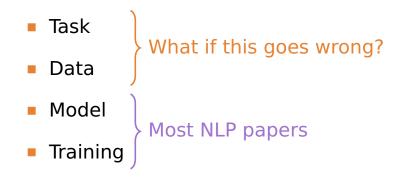
- Hard to publish negative results...
- Authors may hide failed experiments

Publication Bias

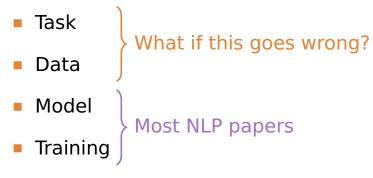
- Hard to publish negative results...
- Authors may hide failed experiments
- MPhil project and L101 mini-project: Don't hide! Negative results are okay!

Summary of Significance Testing

- Significance testing is important but underused in NLP!
- Choice of test:
 - Parametric (e.g. paired Student's t-test)
 - Nonparametric (e.g. sign test)
 - Multiple tests (e.g. Bonferroni correction)
- Be careful:
 - Base rate fallacy
 - Effect size
 - Publication bias


Back to the Beginning...

- Task
- Data
- Model
- Training


Back to the Beginning...

Task
Data
Model
Training

Back to the Beginning...

Back to the Beginning...

Real-world application?

Task: Predict death from pneumonia

- Task: Predict death from pneumonia
- Pattern in data: asthma reduces risk

Caruana et al. (2015)

- Task: Predict death from pneumonia
- Pattern in data: asthma reduces risk
- Real reason: asthma patients sent to Intensive Care Unit, reducing risk

Caruana et al. (2015)

- Task: Predict death from pneumonia
- Pattern in data: asthma reduces risk
- Real reason: asthma patients sent to Intensive Care Unit, reducing risk
- Shallow models (e.g. logistic regression)
 → can identify and fix such problems

Bias

- Bias (statistics): expected value differs from true value
- Bias (law): unfair or undesirable prejudice

"Bias is a social issue first, and a technical issue second." (Crawford, 2017)

Demographic Bias

- Region
- Social Class
- Gender
- Age
- Ethnicity

Hovy and Søgaard (2015)

POS-tagging

Hovy and Søgaard (2015)

- POS-tagging
- Training data:
 - Wall Street Journal (English)
 - Frankfurter Rundschau (German)

Hovy and Søgaard (2015)

- POS-tagging
- Training data:
 - Wall Street Journal (English)
 - Frankfurter Rundschau (German)
- Test data:
 - Trustpilot reviews
 - Age, gender, location

H&S (2015) – German Results

Group	TreeT	CRF++
Under 35	.874	.859
Over 45	.894	.870
Men	.885	.861
Women	.882	.868
Highest-prob region	.885	.865
Lowest-prob region	.889	.874

H&S (2015) – English Results

Group	TreeT	CRF++
Under 35	.879	.882
Over 45	.883	.884
Men	.882	.886
Women	.880	.881
Highest-prob region	.883	.886
Lowest-prob region	.882	.885

POS-tagging on Twitter data

Group	Stanf.	Gate	Ark
AAVE	.614	.791	.775
non-AAVE	.745	.833	.779

Caliskan et al. (2017)

- Corpora reflect social biases:
 - Uncontroversial (e.g. pleasant/unpleasant association with flowers, insects, etc.)
 - Prejudiced (e.g. pleasant/unpleasant association with gender, ethnicity, etc.)
 - Status quo (e.g. association between gender and career)

Caliskan et al. (2017)

- Corpora reflect social biases:
 - Uncontroversial (e.g. pleasant/unpleasant association with flowers, insects, etc.)
 - Prejudiced (e.g. pleasant/unpleasant association with gender, ethnicity, etc.)
 - Status quo (e.g. association between gender and career)
- Distributional semantic vectors reflect social biases

Decision Making

The Guardian (2017): "Computer says no: Irish vet fails oral English test needed to stay in Australia"

Decision Making

- The Guardian (2017): "Computer says no: Irish vet fails oral English test needed to stay in Australia"
- Bias in training data vs. bias in decisions

Summary of Bias and Ethics

Social bias (not statistical bias)

- Training data
- Model predictions
- POS-tagging & demographic groups
- Distributional semantics & associations

Course Summary

- Naive Bayes, Topic Classification
- HMM, POS-Tagging
- Logistic Regression, MEMM, NER
- Decision Boundaries, SVM, Kernels
- K-Means, LDA, WSI, Topic Discovery
- Distributional Semantics
- CNN, RNN, Hyperparameter Tuning
- Statistical Significance, Social Bias

Still To Come

Last 3 sessions – reading seminars

Mini-project