L101: Machine Learning for Language Processing

Lecture 7

Today's Lecture

- Neural networks
- Sequence labelling
- Language modelling

engineered

engineered trained

trained trained

trained trained

Engineering at a more abstract level

 $x \mapsto f_1(x) \mapsto f_2(f_1(x))$

$$x\mapsto f_1(x)\mapsto f_2(f_1(x))$$

• Linear: f(x) = Ax

$$x\mapsto f_1(x)\mapsto f_2(f_1(x))$$

• Linear:
$$f(x) = Ax$$

but can simplify matrix multiplication
 AB = C

 $x \mapsto f_1(x) \mapsto f_2(f_1(x))$

• Nonlinear: f(x) = g(Ax)

$$x\mapsto f_1(x)\mapsto f_2(f_1(x))$$

Nonlinear: f(x) = g(Ax)
 (g applied componentwise)

$$x\mapsto f_1(x)\mapsto f_2(f_1(x))$$

- Nonlinear: f(x) = g(Ax)
 (g applied componentwise)
- Can approximate any function

Nonlinear Activation Functions

Nonlinear Decision Boundaries

 X_1

Nonlinear Decision Boundaries

Quadratic kernel:

$$x_1x_2 - x_1 - x_2 + 1 = 0$$

Nonlinear Decision Boundaries

Rectified linear units: $r(x_1+x_2-2)$ $+r(-x_1-x_2+2)$

$$-r(x_1-x_2) - r(-x_1+x_2) = 0$$

 X_1

Multiple classes: "softmax" (like logistic regression)

"Deep" Feedforward Networks

Sequence Labelling

Convolutional Neural Net

Recurrent Neural Net

Language Modelling

Language Modelling

Language Modelling

Inference and Training

Defined for fast inference

No beam search / dynamic programming

Inference and Training

Defined for fast inference

- No beam search / dynamic programming
- Train with gradient descent
 - Backpropagation: efficient chain rule

Short-Term Memory

"Vanilla" RNNs, in ideal case:Can remember long history

Short-Term Memory

- "Vanilla" RNNs, in ideal case:
 - Can remember long history
- "Vanilla" RNNs, in practice:
 - Very forgetful

Gradient descent for vanilla RNNs:

Backprop through recurrent connections

Gradient descent for vanilla RNNs:

- Backprop through recurrent connections
- Repeated multiplications

Gradient descent for vanilla RNNs:

- Backprop through recurrent connections
- Repeated multiplications
- Exponential increase/decrease

Gradient descent for vanilla RNNs:

- Backprop through recurrent connections
- Repeated multiplications
- Exponential increase/decrease
- Long Short-Term Memory (LSTM):
 - Avoid repeated multiplications

The Devil's in the Hyperparameters

- A lot of details...
 - Activation function
 - Dimensionality
 - Descent algorithm
 - Learning rate
 - Batch size
 - Regularisation
 - No. training epochs
 - Initialisation
 - etc...

Interpretation of features?

- Interpretation of features?
- No pre-defined interpretation (unlike e.g. LDA)

- Interpretation of features?
- No pre-defined interpretation (unlike e.g. LDA)
- Can measure correlations
- Can measure effects on predictions

- Interpretation of features?
- No pre-defined interpretation (unlike e.g. LDA)
- Can measure correlations
- Can measure effects on predictions
- Open area of research...

Summary

Feedforward networks

- CNNs
- RNNs
- LSTMs
- Hyperparameter tuning
- Challenge: interpreting a model