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Today’s Lecture

� Neural networks

� Sequence labelling

� Language modelling
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� Engineering at a more abstract level
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Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Linear: f (x) = Ax

� but can simplify matrix multiplication
AB = C

3



Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Linear: f (x) = Ax

� but can simplify matrix multiplication
AB = C

3



Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Linear: f (x) = Ax

� but can simplify matrix multiplication
AB = C

3



Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Nonlinear: f (x) = g(Ax)

(g applied componentwise)

� Can approximate any function

3



Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Nonlinear: f (x) = g(Ax)
(g applied componentwise)

� Can approximate any function

3



Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Nonlinear: f (x) = g(Ax)
(g applied componentwise)

� Can approximate any function

3



Nonlinear Activation Functions

�
1

1+e−x “sigmoid”

�
1−e−2x

1+e−2x “tanh”

� max{x,0} “rectified linear”

� log(1+ ex) “softplus”
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Nonlinear Decision Boundaries
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Quadratic kernel:

x1x2 − x1 − x2 + 1 = 0
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Nonlinear Decision Boundaries
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Rectified linear units:

r( x1 + x2 − 2)
+ r(−x1 − x2 + 2)
− r( x1 − x2)

− r(−x1 + x2)

= 0
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Feedforward Networks

x h y

Multiple classes: “softmax”
(like logistic regression)
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“Deep” Feedforward Networks

x h1 h2 h3 y

a
a
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Sequence Labelling

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

8



Convolutional Neural Net
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Recurrent Neural Net
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Language Modelling
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Language Modelling
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Inference and Training

� Defined for fast inference
� No beam search / dynamic programming

� Train with gradient descent
� Backpropagation: efficient chain rule
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Short-Term Memory

� “Vanilla” RNNs, in ideal case:

� Can remember long history

� “Vanilla” RNNs, in practice:

� Very forgetful
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Exploding/Vanishing Gradients

� Gradient descent for vanilla RNNs:
� Backprop through recurrent connections

� Repeated multiplications

� Exponential increase/decrease

� Long Short-Term Memory (LSTM):
� Avoid repeated multiplications
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Long Short-Term Memory

xi

hihi−1
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Long Short-Term Memory

xi

ci

hi

ci−1

hi−1

σ σ tanh σ

tanhx
x

x +

12



The Devil’s in the Hyperparameters

� A lot of details...
� Activation function

� Dimensionality

� Descent algorithm

� Learning rate

� Batch size

� Regularisation

� No. training epochs

� Initialisation

� etc... 13



“Black Boxes”

� Interpretation of features?

� No pre-defined interpretation
(unlike e.g. LDA)

� Can measure correlations

� Can measure effects on predictions

� Open area of research...
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Summary

� Feedforward networks
� CNNs

� RNNs

� LSTMs

� Hyperparameter tuning

� Challenge: interpreting a model
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