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Today’s Lecture

® Neural networks
= Sequence labelling

= Language modelling
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= Engineering at a more abstract level
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Feedforward Networks

X — f1(x) — fr(f1(X))

= Nonlinear: f(x) = g(Ax)
(g applied componentwise)

= Can approximate any function



Nonlinear Activation Functions
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Nonlinear Decision Boundaries




Nonlinear Decision Boundaries

Quadratic kernel:

X1X2—X1—X2+1=0



Nonlinear Decision Boundaries
S

Rectified linear units:
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Feedforward Networks
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Feedforward Networks

Multiple classes: “softmax”
(like logistic regression)



Feedforward Networks
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“Deep” Feedforward Networks
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Sequence Labelling
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Convolutional Neural Net
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Language Modelling
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Language Modelling
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Inference and Training

= Defined for fast inference
= No beam search / dynamic programming



Inference and Training

= Defined for fast inference
= No beam search / dynamic programming

= Train with gradient descent
= Backpropagation: efficient chain rule



Short-Term Memory

= “Vanilla” RNNs, in ideal case:
= Can remember long history
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Short-Term Memory

= “Vanilla” RNNs, in ideal case:
= Can remember long history

= “Vanilla” RNNs, in practice:
= Very forgetful
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Exploding/Vanishing Gradients

= Gradient descent for vanilla RNNs:
= Backprop through recurrent connections
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Exploding/Vanishing Gradients

= Gradient descent for vanilla RNNs:
= Backprop through recurrent connections
= Repeated multiplications
= Exponential increase/decrease

= Long Short-Term Memory (LSTM):
= Avoid repeated multiplications
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Long Short-Term Memory

............
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Long Short-Term Memory

>(tanh
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Long Short-Term Memory
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The Devil’s in the Hyperparameters
N

= A lot of details...

= Activation function

= Dimensionality

= Descent algorithm

= Learning rate

= Batch size

= Regularisation

= No. training epochs

= Initialisation

= etc... 13
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“Black Boxes”

= Interpretation of features?

= No pre-defined interpretation
(unlike e.g. LDA)

= Can measure correlations
= Can measure effects on predictions
= Open area of research...
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Summary

= Feedforward networks
= CNNs
= RNNs
= LSTMs

= Hyperparameter tuning

= Challenge: interpreting a model
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