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Today’s Lecture

� Distributional semantics
� Count vectors

� Embedding vectors

� Challenges for distributional semantics
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Distributional Semantics

... being hurt by another horse especially if some rider ...

... beaten by a better horse at the distance on ...

... these studies that horses reared with other ...

... reared with other horses in a free and ...

... ‘Is that all your horse gets to eat?’ in ...

... cache of cattle and horse bones, while from the ...

... was a sterling good horse, especially at Ascot ...

... way as a domestic horse that it is stabled ...

... 1790 – that is, one horse or two cows for ...

... as coarse as a horse ’s tail straying from ...
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Distributional Semantics

� Linguistic motivation:
understand language
� Harris (1954)

� Firth (1951, 1957)

� Machine learning motivation:
text is cheap
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Context

ASH-993: ... saying ‘Is that all your horse
gets to eat?’ in amazement ...

� Word windows (saying, your, eat, ...)

� Dependencies (your-POSS, get-SUBJ)

� Documents (ASH-993)
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Word Window Hyperparameters

� Window size

� Lemmatisation?

� Stop list?

� Rare words?
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Count Vectors

eat

vote

democracy

horse
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Processing the Counts – TF-IDF

vij =
nij

�

�

�

i′ : ni′j > 0
	�

�

� Used in document retrieval

� TF: term frequency

� IDF: inverse document frequency
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Processing the Counts – PMI

vij = log
nijn··

ni·n·j

� Pointwise Mutual Information
(from information theory)

� log
P(x,y)

P(x)P(y)

� Avoids negative infinities
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Processing the Counts – PMI

vij = log
nijn··

ni·n·j

� Pointwise Mutual Information
(from information theory)

� log
P(x,y)

P(x)P(y)
– more likely than expected?

� Avoids negative infinities
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Processing the Counts – PPMI

vij = max

�

0, log
nijn··

ni·n·j

�

� Pointwise Mutual Information
(from information theory)

� log
P(x,y)

P(x)P(y)
, positive only

� Avoids negative infinities
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Singular Value Decomposition

� High dimensions difficult to work with

� Find directions of highest variance

� Only use these directions
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Singular Value Decomposition
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Singular Value Decomposition
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Embedding Vectors

� Directly learn lower-dimensional
vectors

� Never construct count matrix
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Skip-Gram

� Observe target-context pairs (t,c)

� Treat as classification:
predict context, given target

� Discriminative classifier:
P (c | t) ∝ exp (vt · uc)

� Like logistic regression, but:
“input vectors” are learnt, not given
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Skip-Gram & Negative Sampling

� P (c | t) ∝ exp (vt · uc)
requires all possible contexts

� Instead, sample a few other contexts c′

� Treat as binary classification:
predict if context is real or sampled
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Skip-Gram & Negative Sampling

� P (real | t,c) ∝ exp (vt · uc)

� P (sampled | t,c) ∝ 1

� P (real | t,c) = σ (vt · uc) =
1

1+exp(−vt ·uc)
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Skip-Gram & Negative Sampling

� Want high: vt · uc

� Want low: vt · uc′
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Count vs. Embedding

� Skip-gram approximately factorises a
PMI matrix!

� Hyperparameters important
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� Skip-gram approximately factorises a
PMI matrix!

� Hyperparameters important
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Evaluation

� Lexical semantics

� Compositional semantics

� Downstream tasks
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Lexical Semantics

democracy water happiness

aubergine flood joy

computer law cat

earthquake lawyer dog
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Lexical Semantics

� Give annotators pairs of words

� Ask to score (e.g. from 1 to 7)

� Get system’s similarity scores

� Measure Spearman rank correlation
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Challenges for Dist. Sem.

� Grounding

� Lexical Semantics
� Word senses

� Hyponymy

� Sentence Semantics
� Composition

� Logic
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Word Senses

... the last kick of the match. It was entertaining ...

... the Duddon are no match, after all, for a route ...

... first or second round matches of any consequence ...

... Tried soaking the matches in paint, he wrote, ...

... is very much a match for Berowne; this is ...

... to win and the match is therefore ...

... to lose you the match even though no ...

... of an elimination match is fought. If this ...

... needed to watch the match, needed a diversion ...

... drop in a burning match. The plastic of the ...
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Semantic Composition

Every picture tells a story

� Addition?

� Componentwise multiplication?

� Linguistically-motivated approach?
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Summary

� Distributional semantics – context

� Count models
� PPMI, SVD

� Embedding models
� Skip-gram with negative sampling

� Similarity and relatedness

� Challenges – word senses, composition
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