L101: Machine Learning for Language Processing

Lecture 6

Today's Lecture

Distributional semantics

- Count vectors
- Embedding vectors
- Challenges for distributional semantics

... being hurt by another horse especially if some rider beaten by a better horse at the distance on these studies that horses reared with other reared with other horses in a free and 'Is that all your horse gets to eat?' in cache of cattle and horse bones, while from the was a sterling good especially at Ascot ... horse, ... way as a domestic horse that it is stabled 1790 – that is, one horse or two cows for ... horse 's tail straying from as coarse as a

being hurt by another horse especially if some rider beaten by a better horse at the distance on these studies that horses reared with other reared with other horses in a free and 'Is that all your horse gets to eat?' in cache of cattle and horse bones, while from the was a sterling good especially at Ascot ... horse, ... way as a domestic horse that it is stabled 1790 – that is, one horse or two cows for ... horse 's tail straying from as coarse as a

... being hurt by another horse especially if some rider beaten by a better horse at the distance on these studies that horses reared with other reared with other horses in a free and 'Is that all your horse gets to eat?' in cache of cattle and horse bones, while from the was a sterling good especially at Ascot ... horse, ... way as a domestic horse that it is stabled 1790 – that is, one horse or two cows for ... 's tail straying from ... horse ... as coarse as a

... being hurt by another horse especially if some rider beaten by a better horse at the distance on these studies that horses reared with other reared with other horses in a free and 'Is that all your horse gets to eat?' in cache of cattle and horse bones, while from the was a sterling good especially at Ascot ... horse, ... way as a domestic horse that it is stabled ... or two cows for 1790 – that is, one horse 's tail straying from ... horse ... as coarse as a

Linguistic motivation: understand language

- Harris (1954)
- Firth (1951, 1957)
- Machine learning motivation: text is cheap

Context

ASH-993: ... saying 'Is that all your horse gets to eat?' in amazement ...

- Word windows (saying, your, eat, ...)
- Dependencies (your-poss, get-subj)
- Documents (ASH-993)

Word Window Hyperparameters

- Window size
- Lemmatisation?
- Stop list?
- Rare words?

Count Matrix

contexts

target words

(n ₁₁	<i>n</i> ₁₂	<i>n</i> ₁₃		n_{1D}
<i>n</i> ₂₁	n ₂₂	n ₂₃		n _{2D}
<i>n</i> ₃₁	n ₃₂	n ₃₃		n _{3D}
:	:	÷	۰.	:
n_{V1}	n _{V2}	n _{v3}		n _{VD}

Count Vectors

Count Vectors

Count Vectors

Processing the Counts – TF-IDF

$$\mathbf{v}_{ij} = \frac{n_{ij}}{\left|\left\{i': n_{i'j} > 0\right\}\right|}$$

- Used in document retrieval
- TF: term frequency
- IDF: inverse document frequency

Processing the Counts – PMI

$$v_{ij} = \log rac{n_{ij}n_{..}}{n_{i.}n_{.j}}$$

 Pointwise Mutual Information (from information theory)

$$\log \frac{P(x, y)}{P(x)P(y)}$$

Processing the Counts – PMI

$$v_{ij} = \log rac{n_{ij}n_{..}}{n_{i.}n_{.j}}$$

 Pointwise Mutual Information (from information theory)

•
$$\log \frac{P(x, y)}{P(x)P(y)}$$
 – more likely than expected?

Processing the Counts – PPMI

$$V_{ij} = \max\left\{0, \log rac{n_{ij}n_{i.}}{n_{i.}n_{.j}}
ight\}$$

 Pointwise Mutual Information (from information theory)

•
$$\log \frac{P(x, y)}{P(x)P(y)}$$
, positive only

Avoids negative infinities

Singular Value Decomposition

- High dimensions difficult to work with
- Find directions of highest variance
- Only use these directions

Singular Value Decomposition

Singular Value Decomposition

Embedding Vectors

Directly learn lower-dimensional vectors

Never construct count matrix

Observe target-context pairs (t, c)

Skip-Gram

- Observe target-context pairs (t, c)
- Treat as classification: predict context, given target

Skip-Gram

- Observe target-context pairs (t, c)
- Treat as classification: predict context, given target
- Discriminative classifier: $P(c|t) \propto \exp(v_t \cdot u_c)$

Skip-Gram

- Observe target-context pairs (t, c)
- Treat as classification: predict context, given target
- Discriminative classifier: $P(c|t) \propto \exp(v_t \cdot u_c)$
- Like logistic regression, but: "input vectors" are learnt, not given

• $P(c|t) \propto \exp(v_t \cdot u_c)$ requires *all* possible contexts

- $P(c|t) \propto \exp(v_t \cdot u_c)$ requires *all* possible contexts
- Instead, sample a few other contexts c'

- $P(c|t) \propto \exp(v_t \cdot u_c)$ requires *all* possible contexts
- Instead, sample a few other contexts c'
- Treat as binary classification: predict if context is real or sampled

- $P(\text{real} | t, c) \propto \exp(v_t \cdot u_c)$
- $P(\text{sampled} | t, c) \propto 1$

- $P(\text{real} | t, c) \propto \exp(v_t \cdot u_c)$
- $P(\text{sampled} | t, c) \propto 1$

•
$$P(\text{real} | t, c) = \sigma(v_t \cdot u_c) = \frac{1}{1 + \exp(-v_t \cdot u_c)}$$

- Want high: $v_t \cdot u_c$
- Want low: $v_t \cdot u_{c'}$

Count vs. Embedding

Skip-gram approximately factorises a PMI matrix!

Count vs. Embedding

- Skip-gram approximately factorises a PMI matrix!
- Hyperparameters important

Evaluation

- Lexical semantics
- Compositional semantics
- Downstream tasks

Lexical Semantics

democracy	water	happiness
aubergine	flood	јоу
computer	law	cat
earthquake	lawyer	dog

Lexical Semantics

Give annotators pairs of words

Ask to score (e.g. from 1 to 7)

Lexical Semantics

- Give annotators pairs of words
- Ask to score (e.g. from 1 to 7)
- Get system's similarity scores
- Measure Spearman rank correlation

Challenges for Dist. Sem.

Grounding

- Lexical Semantics
 - Word senses
 - Hyponymy
- Sentence Semantics
 - Composition
 - Logic

... the last kick of the match. It was entertaining the Duddon are no match. after all, for a route first or second round matches of any consequence Tried soaking the matches in paint, he wrote, is very much a match for Berowne: this is to win and the match is therefore to lose you the match even though no of an elimination match is fought. If this needed to watch the needed a diversion ... match. ... drop in a burning The plastic of the ... match.

... the last kick of the match. It was entertaining the Duddon are no match. after all. for a route first or second round matches of any consequence Tried soaking the matches in paint, he wrote, is very much a match for Berowne: this is to win and the match is therefore to lose you the match even though no of an elimination match is fought. If this needed to watch the needed a diversion ... match. ... drop in a burning The plastic of the ... match.

... the last kick of the match. It was entertaining the Duddon are no match. after all, for a route first or second round matches of any consequence Tried soaking the matches in paint, he wrote, is very much a match for Berowne: this is to win and the match is therefore to lose you the match even though no of an elimination match is fought. If this needed to watch the needed a diversion ... match. ... drop in a burning The plastic of the ... match.

... the last kick of the match. It was entertaining the Duddon are no match. after all. for a route first or second round matches of any consequence Tried soaking the matches in paint, he wrote, is very much a match for Berowne; this is to win and the match is therefore to lose you the match even though no of an elimination match is fought. If this needed to watch the needed a diversion ... match. ... drop in a burning The plastic of the ... match.

Semantic Composition

Semantic Composition

Addition?

Componentwise multiplication?

Semantic Composition

Addition?

- Componentwise multiplication?
- Linguistically-motivated approach?

Summary

- Distributional semantics context
- Count models

PPMI, SVD

- Embedding models
 - Skip-gram with negative sampling
- Similarity and relatedness
- Challenges word senses, composition