L101: Machine Learning for Language Processing

Lecture 6

Guy Emerson

Today's Lecture

Distributional semantics

- Count vectors
- Embedding vectors

Challenges for distributional semantics

Distributional Semantics

being hurt by another horse especially if some rider ...
... beaten by a better horse at the distance on ...
... these studies that horses reared with other ...
... reared with other horses in a free and ...
... 'Is that all your horse gets to eat?' in ...
... cache of cattle and horse bones, while from the ...
... was a sterling good horse, especially at Ascot ...
... way as a domestic horse that it is stabled ...
... 1790 - that is, one horse or two cows for ...
... as coarse as a horse 's tail straying from ...

Distributional Semantics

being hurt by another horse especially if some rider ...
... beaten by a better horse at the distance on ...
... these studies that horses reared with other ...
... reared with other horses in a free and ...
... 'Is that all your horse gets to eat?' in ...
... cache of cattle and horse bones, while from the ...
... was a sterling good horse, especially at Ascot ...
... way as a domestic horse that it is stabled ...
... 1790 - that is, one horse or two cows for ...
... as coarse as a horse 's tail straying from ...

Distributional Semantics

being hurt by another horse especially if some rider ...
... beaten by a better horse at the distance on ...
... these studies that horses reared with other ...
... reared with other horses in a free and ...
... 'Is that all your horse gets to eat?' in ...
... cache of cattle and horse bones, while from the ...
... was a sterling good horse, especially at Ascot ...
... way as a domestic horse that it is stabled ...
... 1790 - that is, one horse or two cows for ...
... as coarse as a horse 's tail straying from ...

Distributional Semantics

being hurt by another horse especially if some rider ...
... beaten by a better horse at the distance on ...
... these studies that horses reared with other ...
... reared with other horses in a free and ...
... 'Is that all your horse gets to eat?' in ...
... cache of cattle and horse bones, while from the ...
... was a sterling good horse, especially at Ascot ...
... way as a domestic horse that it is stabled ...
... 1790 - that is, one horse or two cows for ...
... as coarse as a horse 's tail straying from ...

Distributional Semantics

- Linguistic motivation: understand language
- Harris (1954)
- Firth $(1951,1957)$

Machine learning motivation:
text is cheap

Context

ASH-993: ... saying 'Is that all your horse gets to eat?' in amazement ...

- Word windows (saying, your, eat, ...)
- Dependencies (your-POSs, get-SUBJ)
- Documents (ASH-993)

Word Window Hyperparameters

- Window size
- Lemmatisation?
- Stop list?
- Rare words?

Count Matrix

contexts

$$
\begin{gathered}
\frac{n}{0} \\
\frac{0}{0} \\
\vdots \\
\frac{0}{0} \\
\frac{0}{\mathbb{D}}
\end{gathered}\left(\begin{array}{ccccc}
n_{11} & n_{12} & n_{13} & \ldots & n_{1 D} \\
n_{21} & n_{22} & n_{23} & \ldots & n_{2 D} \\
n_{31} & n_{32} & n_{33} & \ldots & n_{3 D} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n_{V 1} & n_{V 2} & n_{V 3} & \ldots & n_{V D}
\end{array}\right)
$$

Count Vectors

Count Vectors

Count Vectors

Processing the Counts - TF-IDF

$$
v_{i j}=\frac{n_{i j}}{\left|\left\{i^{\prime}: n_{i^{\prime} j}>0\right\}\right|}
$$

- Used in document retrieval
- TF: term frequency

IDF: inverse document frequency

Processing the Counts - PMI

$$
v_{i j}=\log \frac{n_{i j} n_{. .}}{n_{i \cdot n_{\cdot j}}}
$$

Pointwise Mutual Information (from information theory)
$-\log \frac{P(x, y)}{P(x) P(y)}$

Processing the Counts - PMI

$$
v_{i j}=\log \frac{n_{i j} n_{. .}}{n_{i \cdot n_{\cdot j}}}
$$

Pointwise Mutual Information (from information theory)

- $\log \frac{P(x, y)}{P(x) P(y)}$ - more likely than expected?

Processing the Counts - PPMI

$$
v_{i j}=\max \left\{0, \log \frac{n_{i j} n \cdot .}{n_{i \cdot} \cdot n_{\cdot j}}\right\}
$$

Pointwise Mutual Information (from information theory)

- $\log \frac{P(x, y)}{P(x) P(y)}$, positive only
- Avoids negative infinities

Singular Value Decomposition

- High dimensions difficult to work with
- Find directions of highest variance
- Only use these directions

Singular Value Decomposition

Singular Value Decomposition

Embedding Vectors

Directly learn lower-dimensional vectors

Never construct count matrix

Skip-Gram

Observe target-context pairs (t, c)

Skip-Gram

Observe target-context pairs (t, c)
Treat as classification: predict context, given target

Skip-Gram

Observe target-context pairs (t, c)

- Treat as classification: predict context, given target

Discriminative classifier:
$P(c \mid t) \propto \exp \left(v_{t} \cdot u_{c}\right)$

Skip-Gram

Observe target-context pairs (t, c)

- Treat as classification: predict context, given target
- Discriminative classifier:
$P(c \mid t) \propto \exp \left(v_{t} \cdot u_{c}\right)$
- Like logistic regression, but: "input vectors" are learnt, not given

Skip-Gram \& Negative Sampling

$P(c \mid t) \propto \exp \left(v_{t} \cdot u_{c}\right)$ requires all possible contexts

Skip-Gram \& Negative Sampling

- $P(c \mid t) \propto \exp \left(v_{t} \cdot u_{c}\right)$ requires all possible contexts
- Instead, sample a few other contexts c'

Skip-Gram \& Negative Sampling

- $P(c \mid t) \propto \exp \left(v_{t} \cdot u_{c}\right)$ requires all possible contexts
- Instead, sample a few other contexts c^{\prime}
- Treat as binary classification: predict if context is real or sampled

Skip-Gram \& Negative Sampling

- $P($ real $\mid t, c) \propto \exp \left(v_{t} \cdot u_{c}\right)$
- $P($ sampled $\mid t, c) \propto 1$

Skip-Gram \& Negative Sampling

- $P($ real $\mid t, c) \propto \exp \left(v_{t} \cdot u_{c}\right)$
- $P($ sampled $\mid t, c) \propto 1$
- $P($ real $\mid t, c)=\sigma\left(v_{t} \cdot u_{c}\right)=\frac{1}{1+\exp \left(-v_{t} \cdot u_{c}\right)}$

Skip-Gram \& Negative Sampling

- Want high: $v_{t} \cdot u_{c}$
- Want low: $v_{t} \cdot u_{c^{\prime}}$

Count vs. Embedding

Skip-gram approximately factorises a PMI matrix!

Count vs. Embedding

- Skip-gram approximately factorises a PMI matrix!
- Hyperparameters important

Evaluation

- Lexical semantics

Compositional semantics
Downstream tasks

Lexical Semantics

democracy
aubergine
water
happiness
joy
computer
law
lawyer
cat
dog

Lexical Semantics

Give annotators pairs of words
Ask to score (e.g. from 1 to 7)

Lexical Semantics

- Give annotators pairs of words
- Ask to score (e.g. from 1 to 7)
- Get system's similarity scores
- Measure Spearman rank correlation

Challenges for Dist. Sem.

- Grounding

- Lexical Semantics
- Word senses
- Hyponymy
- Sentence Semantics
- Composition
- Logic

Word Senses

... the last kick of the match. It was entertaining ...
... the Duddon are no match, after all, for a route ...
... first or second round matches of any consequence ...
... Tried soaking the matches in paint, he wrote, is very much a match for Berowne; this is ...
... to win and the match is therefore ...
... to lose you the
... of an elimination
... needed to watch the ... drop in a burning

match
match
match,
match.
even though no ... is fought. If this ...
needed a diversion ...
The plastic of the ...

Word Senses

... the last kick of the match. It was entertaining ...
... the Duddon are no match, after all, for a route ...
... first or second round matches of any consequence ...
... Tried soaking the matches in paint, he wrote, is very much a match for Berowne; this is ...
... to win and the match is therefore ...
... to lose you the match even though no ...
... of an elimination match is fought. If this ...
... needed to watch the match, needed a diversion...
... drop in a burning match. The plastic of the ...

Word Senses

... the last kick of the match. It was entertaining ...
... the Duddon are no match, after all, for a route ...
... first or second round matches of any consequence ...
... Tried soaking the matches in paint, he wrote, is very much a match for Berowne; this is ...
... to win and the match is therefore ...
... to lose you the
... of an elimination
... needed to watch the ... drop in a burning match.
match even though no ...
match is fought. If this ...
match, needed a diversion ...
The plastic of the ...

Word Senses

... the last kick of the match. It was entertaining ...
... the Duddon are no match, after all, for a route ...
... first or second round matches of any consequence ...
... Tried soaking the matches in paint, he wrote, ...
... is very much a match for Berowne; this is ...
... to win and the match is therefore ...
... to lose you the
... of an elimination
... needed to watch the ... drop in a burning match.
even though no ... is fought. If this ... needed a diversion ... The plastic of the ...

Semantic Composition

Every picture tells

a

story

Semantic Composition

Every picture tells

a

story

- Addition?
- Componentwise multiplication?

Semantic Composition

Every picture tells

a

story

- Addition?
- Componentwise multiplication?
- Linguistically-motivated approach?

Summary

Distributional semantics - context

- Count models
- PPMI, SVD
- Embedding models
- Skip-gram with negative sampling
- Similarity and relatedness
- Challenges - word senses, composition

