L101: Machine Learning for Language Processing

Lecture 5

Guy Emerson

Today's Lecture

- Unsupervised Learning
- Word Sense Induction
- Topic Discovery
- K-Means Clustering
- Latent Dirichlet Allocation
- Approximate Inference

Supervised Learning

Unsupervised Learning

Unsupervised Learning

Word Senses

There was even closing drama when Shelford missed a penalty, and a chance to save the game, with the last kick of the match.

Micro-routes in the Duddon are no match, after all, for a route on any of the limestone crags in Yorkshire or Derbyshire.

Word Senses

- a thin piece of wood, ignites with friction
- a formal contest
- a burning piece of wood
- an exact duplicate
- the score needed to win
- a good matrimonial prospect
- a person of equal standing
- a pair of people who live together
- something that harmonizes

Word Senses

... the last kick of the
... the Duddon are no
... first or second round
... Tried soaking the ... is very much a ... to win and the
... to lose you the
... of an elimination
... needed to watch the
drop in a burning
... drop in a burning
match. match, after all, for a route ... matches of any consequence ...
matches in paint, he wrote, ...
match for Berowne; this is ...
match is therefore ...
match even though no ...
match is fought. If this ...
match, needed a diversion ...
match. The plastic of the ...

Word Senses

... the last kick of the match.
... the Duddon are no
... first or second round
... Tried soaking the ... is very much a match ... to win and the match ... to lose you the match
... of an elimination
... needed to watch the
... drop in a burning
match, matches of any consequence ...
match for Berowne; this is ... is therefore ... even though no ... is fought. If this ...
match, needed a diversion ... match. The plastic of the ...

Word Senses

... the last kick of the
... the Duddon are no
... first or second round
... Tried soaking the ... is very much a match ... to win and the
... to lose you the
... of an elimination
... needed to watch the
... drop in a burning
match. match, after all, for a route ... matches of any consequence ... matches in paint, he wrote, ... match for Berowne; this is ... match is therefore ...
match even though no ... match is fought. If this ... match, needed a diversion ... match. The plastic of the ...

Word Senses

... the last kick of the
... the Duddon are no
... first or second round
... Tried soaking the ... is very much a match ... to win and the match ... to lose you the match
... of an elimination
... needed to watch the
... drop in a burning
match. match, after all, for a route ... matches of any consequence ... matches in paint, he wrote, ... match for Berowne; this is ... is therefore ... even though no ... is fought. If this ... needed a diversion ... The plastic of the ...

This dissertation describes the measurement of angular diameters of compact radio sources by the technique of interplanetary scintillation. The design, construction and testing of a four acre radio aerial functioning at a frequency of 81.5 MHz is described, and its operation during a survey of the sky.

The stunning array of features and functions exhibited by proteins in nature should convince most scientists of the power of evolutionary design processes. Natural selection acting on populations over long periods of time has generated a vast number of proteins ideally suited to their biological functions.

This dissertation describes the measurement of angular diameters of compact radio sources by the technique of interplanetary scintillation. The design, construction and testing of a four acre radio aerial functioning at a frequency of 81.5 MHz is described, and its operation during a survey of the sky.

The stunning array of features and functions exhibited by proteins in nature should convince most scientists of the power of evolutionary design processes. Natural selection acting on populations over long periods of time has generated a vast number of proteins ideally suited to their biological functions.

Topics

This dissertation describes the measurement of angular diameters of compact radio sources by the technique of interplanetary scintillation. The design, construction and testing of a four acre radio aerial functioning at a frequency of 81.5 MHz is described, and its operation during a survey of the sky.

The stunning array of features and functions exhibited by proteins in nature should convince most scientists of the power of evolutionary design processes. Natural selection acting on populations over long periods of time has generated a vast number of proteins ideally suited to their biological functions.

K-Means Clustering

1. For each point, find closest cluster
2. For each cluster, find mean point

K-Means Clustering

1. For each point, find closest cluster
2. For each cluster, find mean point

K-Means Clustering

1. For each point, find closest cluster
2. For each cluster, find mean point

K-Means Clustering

1. For each point, find closest cluster
2. For each cluster, find mean point

K-Means Clustering

1. For each point, find closest cluster
2. For each cluster, find mean point

K-Means Clustering

1. For each point, find closest cluster
2. For each cluster, find mean point

K-Means Clustering

1. For each point, find closest cluster
2. For each cluster, find mean point

K-Means Clustering

1. For each point, find closest cluster
2. For each cluster, find mean point

Recap: Multinomial Naive Bayes

class words

Recap: Multinomial Naive Bayes

class words

Recap: Multinomial Naive Bayes

Recap: Multinomial Naive Bayes

Bayesian view of smoothing hyperparameters: Dirichlet prior

Recap: Multinomial Naive Bayes

Latent Dirichlet Allocation

Latent Dirichlet Allocation

$\prod_{z} P\left(\phi_{z} \mid \beta\right)$

Latent Dirichlet Allocation

$$
\prod_{z} P\left(\phi_{z} \mid \beta\right) \prod_{i} P\left(\theta_{i} \mid \alpha\right)
$$

Latent Dirichlet Allocation

$$
\prod_{z} P\left(\phi_{z} \mid \beta\right) \prod_{i} P\left(\theta_{i} \mid \alpha\right) \prod_{j} P\left(z_{i, j} \mid \theta_{i}\right) P\left(w_{i, j} \mid z_{i, j}\right)
$$

Latent Dirichlet Allocation

$P\left(\phi_{z}, \theta_{i} \mid w_{i, j}, \alpha, \beta\right)$

Latent Dirichlet Allocation

$P\left(\phi_{z}, \theta_{i} \mid w_{i, j}, \alpha, \beta\right)=\sum_{z_{i, j}} P\left(\phi_{z}, \theta_{i}, z_{i, j} \mid w_{i, j}, \alpha, \beta\right)$

Latent Dirichlet Allocation

$P\left(\phi_{z}, \theta_{i} \mid w_{i, j}, \alpha, \beta\right)=\sum_{z_{i, j}} P\left(\phi_{z}, \theta_{i}, z_{i, j} \mid w_{i, j}, \alpha, \beta\right)$

Approximate Inference

- Want to know global variables (e.g. ϕ)
- Don't want to know local variables (e.g. z)
- Exact inference intractable

Markov Chain Monte Carlo

- $P(x)$ intractable

Markov Chain Monte Carlo

- $P(x)$ intractable
- Construct Markov chain converging to $P(x)$
- Sample from Markov chain

Markov Chain Monte Carlo

- $E_{x}[f(x)]=\sum_{x} P(x) f(x)$
- Construct Markov chain converging to $P(x)$
- Sample from Markov chain

Markov Chain Monte Carlo

- $E_{x}[f(x)]=\sum_{x} P(x) f(x)$
- Construct Markov chain converging to $P(x)$
- Sample from Markov chain
- $E_{x}[f(x)] \approx \frac{1}{N} \sum_{\text {samples }} f(x)$

Gibbs Sampling

$P(x)$ intractable

- $P\left(x_{1} \mid x_{2}, x_{3}, \ldots\right)$ tractable

Gibbs Sampling

- $P(x)$ intractable
- $P\left(x_{1} \mid x_{2}, x_{3}, \ldots\right)$ tractable
- Markov chain:
- Initialise x
- Iteratively update $x_{i} \sim P\left(x_{i} \mid x_{-i}\right)$

Gibbs Sampling

- $P(x)$ intractable
- $P\left(x_{1} \mid x_{2}, x_{3}, \ldots\right)$ tractable
- Markov chain:
- Initialise x
- Iteratively update $x_{i} \sim P\left(x_{i} \mid x_{-i}\right)$

Distribution converges to $P(x)$

Gibbs Sampling for LDA

$\sum_{z_{i, j}} P\left(\phi_{z}, \theta_{i,}, z_{i, j} \mid w_{i, j}, \alpha, \beta\right)$ intractable

Gibbs Sampling for LDA

$\sum_{z_{i, j}} P\left(\phi_{z}, \theta_{i}, z_{i, j} \mid w_{i, j}, \alpha, \beta\right)$ intractable
$P\left(z_{i, j} \mid z_{-i, j}, w_{i, j}, \alpha, \beta\right)$ tractable

Gibbs Sampling for LDA

$\sum_{z_{i, j}} P\left(\phi_{z}, \theta_{i,}, z_{i, j} \mid w_{i, j}, \alpha, \beta\right)$ intractable

$P\left(z_{i, j} \mid z_{-i, j}, w_{i, j}, \alpha, \beta\right)$ tractable

- Dirichlet prior \Rightarrow can marginalise out ϕ, θ

Gibbs Sampling for LDA

$\sum_{z_{i, j}} P\left(\phi_{z}, \theta_{i,}, z_{i, j} \mid w_{i, j}, \alpha, \beta\right)$ intractable

$P\left(z_{i, j} \mid z_{i, i,}, w_{i, j}, \alpha, \beta\right)$ tractable

- Dirichlet prior \Rightarrow can marginalise out ϕ, θ

$$
\begin{aligned}
& P\left(z_{i, j} \mid z_{-i, j}, w_{i, j}, \alpha, \beta\right) \\
\propto & P\left(z_{i, j} \mid \theta_{i}\right) P\left(w_{i, j} \mid z_{i, j}, \phi_{z_{i, j}}\right)
\end{aligned}
$$

Gibbs Sampling for LDA

$\sum_{z_{i, j}} P\left(\phi_{z}, \theta_{i,}, z_{i, j} \mid w_{i, j}, \alpha, \beta\right)$ intractable

$P\left(z_{i, j} \mid z_{-i, j}, w_{i, j}, \alpha, \beta\right)$ tractable

- Dirichlet prior \Rightarrow can marginalise out ϕ, θ

$$
\begin{array}{cc}
& P\left(z_{i, j} \mid z_{-i, j},\right. \\
\left.w_{i, j}, \alpha, \beta\right) \\
\propto & P\left(z_{i, j} \mid \theta_{i}\right) \\
& P\left(w_{i, j} \mid z_{i, j}, \phi_{z_{i, j}}\right) \\
& \propto C_{i, z}
\end{array}
$$

Gibbs Sampling for LDA

$\sum_{z_{i, j}} P\left(\phi_{z}, \theta_{i,}, z_{i, j} \mid w_{i, j}, \alpha, \beta\right)$ intractable

$P\left(z_{i, j} \mid z_{i, i,}, w_{i, j}, \alpha, \beta\right)$ tractable

- Dirichlet prior \Rightarrow can marginalise out ϕ, θ

$$
\begin{aligned}
& P\left(z_{i, j} \mid z_{-i, j}, w_{i, j}, \alpha, \beta\right) \\
\propto & P\left(z_{i, j} \mid \theta_{i}\right) \\
= & P\left(w_{i, j} \mid z_{i, j}, \phi_{z_{i, j}}\right) \\
C_{i, z} & \frac{C_{z, w}}{C_{z}}
\end{aligned}
$$

Gibbs Sampling for LDA

$\sum_{z_{i, j}} P\left(\phi_{z}, \theta_{i,}, z_{i, j} \mid w_{i, j}, \alpha, \beta\right)$ intractable

$P\left(z_{i, j} \mid z_{-i, j}, w_{i, j}, \alpha, \beta\right)$ tractable

- Dirichlet prior \Rightarrow can marginalise out ϕ, θ

$$
\begin{aligned}
& P\left(z_{i, j} \mid z_{-i, j}, w_{i, j}, \alpha, \beta\right) \\
\propto & P\left(z_{i, j} \mid \theta_{i}\right) \\
= & P\left(w_{i, j} \mid z_{i, j}, \phi_{z_{i, j}}\right) \\
C_{i}+K \alpha & \frac{C_{z, w}+\beta}{C_{z}+V \beta}
\end{aligned}
$$

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

$a \quad a b a b b$
$c \quad d \quad d \quad d \quad c$
b a c b d d
a c

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
$\begin{array}{llllll}1 & 2 & 2 & 1 & 1 & 2\end{array}$
c d d d c
$\begin{array}{lllll}2 & 2 & 1 & 1\end{array}$
ba c b d d
$\begin{array}{llllll}1 & 2 & 1 & 1 & 1\end{array}$
a
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
? 222112
c d d d c
$\begin{array}{lllll}2 & 2 & 1 & 1 & 1\end{array}$
b a c b d d
$\begin{array}{llllll}1 & 2 & 1 & 1 & 2\end{array}$
a
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
? 22112
c d d d c
$P\left(z_{1,1}=1\right) \propto P\left(1 \mid \theta_{1}\right) P(a \mid 1)$
221111
ba cb d d
$\begin{array}{llllll}1 & 2 & 1 & 1 & 1 & 2\end{array}$
$P\left(z_{1,1}=2\right) \propto P\left(2 \mid \theta_{1}\right) P(a \mid 2)$
a
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
? 22112
c d d d c
$P\left(z_{1,1}=1\right) \propto P\left(1 \mid \theta_{1}\right) P(a \mid 1)$
221111
ba cb d d
$P\left(z_{1,1}=2\right) \propto P\left(2 \mid \theta_{1}\right) P(a \mid 2)$
a
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
? 22112

c	d	d	d	c	$P\left(z_{1,1}=1\right) \propto$
2	2	1	1	1	$\frac{2+1}{5+2}$

b a c b d d
$\begin{array}{llllll}1 & 2 & 1 & 1 & 1 & 2\end{array}$
$P\left(z_{1,1}=2\right) \propto \frac{3+1}{5+2} P(a \mid 2)$
a c
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
? 22112
$\begin{array}{llllll}c & d & d & d & c & P\left(z_{1,1}=1\right) \propto \\ 2 & 2 & 1 & 1 & 1 & \frac{2+1}{5+2}\end{array} \quad P(a \mid 1)$
ba cb d d
$\begin{array}{llllll}1 & 2 & 1 & 1 & 1 & 2\end{array}$
a
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
? 22112
c d d d c $P\left(z_{1,1}=1\right) \propto$
$\frac{2+1}{5+2} \frac{2+1}{10+4}$
22111
$P\left(z_{1,1}=2\right) \propto \frac{3+1}{5+2} P(a \mid 2)$
a c
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
? 221112
c d d d c $P\left(z_{1,1}=1\right) \propto$
$\frac{2+1}{5+2} \frac{2+1}{10+4}$
$P\left(z_{1,1}=2\right) \propto \frac{3+1}{5+2} P(a \mid 2)$
a c
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
? 221112
c d d d c $P\left(z_{1,1}=1\right) \propto$
$\frac{2+1}{5+2} \frac{2+1}{10+4}$
$P\left(z_{1,1}=2\right) \propto \frac{3+1}{5+2} \quad \frac{2+1}{8+4}$
a
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a $a b a b b$
? 2221122
c d d d c
$P\left(z_{1,1}=1\right) \propto$
0.092

221111
b a c b d d
$P\left(z_{1,1}=2\right) \propto$
0.143
a c
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a $a b a b b$
? 221122
c d d d c
$P\left(z_{1,1}=1\right)=0.391$
221111
ba cb d d
$P\left(z_{1,1}=2\right)=$
0.609
a
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
22221122
c d d d c
$P\left(z_{1,1}=1\right)=0.391$
221111
ba c b d d
$P\left(z_{1,1}=2\right)=$
0.609
a
12

Gibbs Sampling for LDA

$$
K=2, V=4, \alpha=\beta=1
$$

a ab ab b
2 ? 2112
c d d d c
$\begin{array}{lllll}2 & 2 & 1 & 1\end{array}$
ba c b d d
$\begin{array}{llllll}1 & 2 & 1 & 1 & 2\end{array}$
a
12

Gibbs Sampling for LDA

Given a sample:

$$
\hat{\theta}_{i}(z)=\frac{C_{i, z}+\alpha}{C_{i}+K \alpha} \quad \hat{\phi}_{z}(w)=\frac{C_{z, w}+\beta}{C_{z}+V \beta}
$$

Gibbs Sampling for LDA

Given a sample:

$$
\hat{\theta}_{i}(z)=\frac{C_{i, z}+\alpha}{C_{i}+K \alpha} \quad \hat{\phi}_{z}(w)=\frac{C_{z, w}+\beta}{C_{z}+V \beta}
$$

Can't directly compare topics from different samples

Gibbs Sampling for LDA

- Given a sample:

$$
\hat{\theta}_{i}(z)=\frac{C_{i, z}+\alpha}{C_{i}+K \alpha} \quad \hat{\phi}_{z}(w)=\frac{C_{z, w}+\beta}{C_{z}+V \beta}
$$

- Can't directly compare topics from different samples
- Can compare e.g. $D_{K L}($ doc $1 \|$ doc 2$)$, as distributions over words

Summary

Tasks:

- Word Sense Induction
- Topic Discovery
- Models:
- K-Means
- Latent Dirichlet Allocation
- Training:
- Gibbs Sampling

