# L101: Machine Learning for Language Processing

#### Lecture 3



### Today's Lecture

#### Discriminative Models

- Logistic Regression
- Maximum Entropy Markov Model
- Conditional Random Field
- Named Entity Recognition

#### **Recap** – Models

- Generative P(x, y)
- Discriminative P(y|x)

#### Recap – Naive Bayes

$$\operatorname{argmax}_{y} P(y|x) = \operatorname{argmax}_{y} P(y) P(x|y)$$

$$\approx \operatorname{argmax}_{y} P(y) \prod_{i} P(x_{i}|y)$$

#### Recap – Naive Bayes

$$\operatorname{argmax}_{y} P(y|x) = \operatorname{argmax}_{y} P(y) P(x|y)$$

$$\approx \operatorname{argmax}_{y} P(y) \prod_{i} P(x_{i}|y)$$

#### Recap – Naive Bayes

$$\operatorname{argmax}_{y} P(y|x) = \operatorname{argmax}_{y} P(y) P(x|y)$$
$$\approx \operatorname{argmax}_{y} P(y) \prod_{i} P(x_{i}|y)$$

Discriminative – approximate P(y|x)?

$$P(y|x) \approx \frac{1}{Z} \exp\left(\sum_{i} \theta_{y,i} x_{i}\right)$$

$$P(y|x) \approx \frac{1}{Z} \exp\left(\sum_{i} \theta_{y,i} x_{i}\right)$$
$$= \frac{\exp\left(\sum_{i} \theta_{y,i} x_{i}\right)}{\zeta}$$

 $\frac{1}{\sum_{y'} \exp\left(\sum_i \theta_{y',i} x_i\right)}$ 

$$P(y|x) \approx \frac{1}{Z} \exp\left(\theta_{y} + \sum_{i} \theta_{y,i} x_{i}\right)$$
$$= \frac{\exp\left(\theta_{y} + \sum_{i} \theta_{y,i} x_{i}\right)}{\sum_{y'} \exp\left(\theta_{y'} + \sum_{i} \theta_{y',i} x_{i}\right)}$$

4

$$P(y|x) \approx \frac{1}{Z} \exp\left(\theta_{y} + \sum_{i} \theta_{y,i} x_{i}\right)$$
$$= \frac{\exp\left(\theta_{y} + \sum_{i} (\theta_{y,i} + k) x_{i}\right)}{\sum_{y'} \exp\left(\theta_{y'} + \sum_{i} (\theta_{y',i} + k) x_{i}\right)}$$

$$P(y|x) \approx \frac{1}{Z} \exp\left(\theta_{y} + \sum_{i} \theta_{y,i} x_{i}\right)$$
$$= \frac{e^{kx_{i}} \exp\left(\theta_{y} + \sum_{i} \theta_{y,i} x_{i}\right)}{e^{kx_{i}} \sum_{y'} \exp\left(\theta_{y'} + \sum_{i} \theta_{y',i} x_{i}\right)}$$

$$P(y|x) \approx \frac{1}{Z} \exp\left(\theta_{y} + \sum_{i} \theta_{y,i} x_{i}\right)$$
$$= \frac{\exp\left(\theta_{y} + \sum_{i} \theta_{y,i} x_{i}\right)}{\sum_{y'} \exp\left(\theta_{y'} + \sum_{i} \theta_{y',i} x_{i}\right)}$$

4

#### Naive Bayes





#### Parameters: $\theta_y$ , $\theta_{y,i}$

#### Parameters: $\theta_y$ , $\theta_{y,i}$

• Optimise for:  $\sum_{(x,y)\in D} \log P(y|x)$ 

- Parameters:  $\theta_y$ ,  $\theta_{y,i}$
- Optimise for:  $\sum_{(x,y)\in D} \log P(y|x)$
- No closed form formula!



#### Hong Kong vs. HongKong

- Hong Kong vs. HongKong
- Naive Bayes:
  - $P(x_i|y)$  same
  - P(y|x) over-estimated

- Hong Kong vs. HongKong
- Naive Bayes:
  - $P(x_i|y)$  same
  - P(y|x) over-estimated
- Logistic Regression:
  - *P*(*y*|*x*) same
  - P(x<sub>i</sub>|y) never used!

$$P(y|x) \approx \frac{1}{Z} \exp\left(\sum_{i} \theta_{y,i} x_{i}\right)$$

#### Consider all distributions P(y|x)

- Consider all distributions P(y|x)
- Under constraints:
  - P(y|x<sub>i</sub>) matches observed data

- Consider all distributions P(y|x)
- Under constraints:
  - P(y|x<sub>i</sub>) matches observed data
- Maximise conditional entropy H(Y|X) on observed data

- Consider all distributions P(y|x)
- Under constraints:
  - P(y|x<sub>i</sub>) matches observed data
- Maximise conditional entropy H(Y|X) on observed data
- → Logistic regression

### Regularisation

- Equivalent of smoothing
- Optimise objective function:

$$\mathcal{L} = \log P(y|x) - \lambda |\theta|$$

#### Recap: Hidden Markov Model





#### MaxEnt: logistic regression

Markov: limited context

- MaxEnt: logistic regression
- Markov: limited context
- Locally normalised: token by token

- MaxEnt: logistic regression
- Markov: limited context
- Locally normalised: token by token
- Dynamic programming for inference



#### Conditional: discriminative

Random field: undirected

- Conditional: discriminative
- Random field: undirected
- Globally normalised: all at once

- Conditional: discriminative
- Random field: undirected
- Globally normalised: all at once
- Dynamic programming or beam search for inference

## Bill Gates says mosquitoes scare him more than sharks.

## Bill Gates says mosquitoes scare him more than sharks.

## Bill Gates says mosquitoes scare him more than sharks.

## The reaction will produce 2,4- and 2,6-dinitrotoluene.

## Bill Gates says mosquitoes scare him more than sharks.

## The reaction will produce 2,4- and 2,6-dinitrotoluene.

#### Sequence labelling task

#### Usually into classes: PER, LOC, etc.

#### Bill Gates says mosquitoes

#### scare him more than sharks

- B beginning
- I inside
- O outside

#### Bill Gates says mosquitoes B scare him more than sharks

- B beginning
- I inside
- O outside

#### Bill Gates says mosquitoes B I scare him more than sharks

- B beginning
- I inside
- O outside

#### Bill Gates says mosquitoes B I O scare him more than sharks

- B beginning
- I inside
- O outside

#### Bill Gates says mosquitoes B I O O scare him more than sharks

- B beginning
- I inside
- O outside

#### Bill Gates says mosquitoes В scare him more than sharks $\cap$ $\cap$ $\cap$ $\cap$ B beginning inside O outside

#### Bill Gates says mosquitoes B-PER I-PER O O scare him more than sharks O O O O O O

- B beginning
- I inside
- O outside

## The New York and Chicago Stock Exchanges fell today.

Queen Elizabeth the Queen the Queen of England the queen of England a queen of England the queen of France

#### Features for Named Entity Recognition

- Gazeteers (lists of names)
- Capitalisation
- Digits
- Punctuation
- Specific words preceding/following (Prof., Inc.)