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Today’s Lecture

� Discriminative Models
� Logistic Regression

� Maximum Entropy Markov Model

� Conditional Random Field

� Named Entity Recognition
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Recap – Models

� Generative – P(x, y)

� Discriminative – P(y|x)
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Recap – Naive Bayes

argmax
y

P(y|x) = argmax
y

P(y)P(x|y)

≈ argmax
y

P(y)
∏

i

P(xi|y)

Discriminative – approximate P(y|x)?
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Logistic Regression

P(y|x) ≈
1

Z
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Naive Bayes

y

x1 x2 x3 x4 x5
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Logistic Regression

y

x1 x2 x3 x4 x5
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Logistic Regression

� Parameters: θy, θy,i

� Optimise for:
∑

(x,y)∈D
logP(y|x)

� No closed form formula!
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Independence of Features

y

x1 x2 x3 x4 x5
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Independence of Features

� Hong Kong vs. HongKong

� Naive Bayes:
� P(xi|y) same

� P(y|x) over-estimated

� Logistic Regression:
� P(y|x) same

� P(xi|y) never used!
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Why Log-Linear?

� Consider all distributions P(y|x)

� Under constraints:

� P(y|xi) matches observed data

� Maximise conditional entropy H(Y|X)
on observed data

→ Logistic regression
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Regularisation

� Equivalent of smoothing

� Optimise objective function:

L = logP(y|x)− λ|θ|
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Recap: Hidden Markov Model

t1 t2 t3 t4

w1 w2 w3 w4
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MaxEnt Markov Model

t1 t2 t3 t4

w1 w2 w3 w4
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MaxEnt Markov Model

� MaxEnt: logistic regression

� Markov: limited context

� Locally normalised: token by token

� Dynamic programming for inference
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Conditional Random Field

t1 t2 t3 t4

w1 w2 w3 w4
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Conditional Random Field

� Conditional: discriminative

� Random field: undirected

� Globally normalised: all at once

� Dynamic programming or beam search
for inference
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Named Entity Recognition

Bill Gates says mosquitoes
scare him more than sharks.

The reaction will produce
2,4- and 2,6-dinitrotoluene.
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Named Entity Recognition

� Sequence labelling task

� Usually into classes: PER, LOC, etc.
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BIO scheme

Bill Gates says mosquitoes

B I O O

scare him more than sharks

O O O O O

B beginning

I inside

O outside
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BIO scheme

Bill Gates says mosquitoes
B-PER I-PER O O

scare him more than sharks
O O O O O

B beginning

I inside

O outside
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Defining the Task

The New York Stock Exchange fell today.
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Defining the Task

The New York and Chicago
Stock Exchanges fell today.
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Defining the Task

Queen Elizabeth
the Queen

the Queen of England
the queen of England
a queen of England
the queen of France
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Features for Named Entity Recognition

� Gazeteers (lists of names)

� Capitalisation

� Digits

� Punctuation

� Specific words preceding/following
(Prof., Inc.)
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