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= Prerequisites:
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® L95 - desirable

= 8 lectures, 8 seminars, 1 essay/project



Sources of Information

= Course web pages
= Handouts include additional notes!

= L90 (and L95) notes

= Textbooks, e.qg. Jurafsky & Martin



Sources of Information
S

= Course web pages
= Handouts include additional notes!

= L90 (and L95) notes
= Textbooks, e.qg. Jurafsky & Martin

= Ask questions!



Today’s Lecture

= What is Machine Learning?
= Example: topic classification

= How do we know if it works?
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Tasks

= What do we want to do?

= Abstract from a real-world problem

= Examples:
= Sentiment analysis
= Topic classification
= Machine translation



Data

= Types of data:
= Natural (e.g. “raw” text)
= Pre-processed (e.g. tokenised text)
= Annotated (e.g. pos-tagged text)
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Supervised vs. Unsupervised
-1
f:xm—y

= Supervised: observe pairs (X, y)
= Unsupervised: observe only x

= Semi-supervised: observe both



Models
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Models

f:xm—y

= How do we represent f?

m Parameters



Discriminative vs. Generative
-1
f:xm—y
= Non-probabilistic: f
= Discriminative: P(y|x)

= Generative: P(x, y)
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What is Machine Learning?

Task — what function do we want?
Data — what do we observe?
Model — how do we represent the function?

Training — how do we fix the representation,
based on what we observe?
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Topic Classification

= Task
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= Qutput: topic (out of small set)
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Topic Classification

= Task
= |nput: text
= Qutput: topic (out of small set)

= Data
= Texts, each labelled with a topic
= (If unsupervised: topic discovery)
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Naive Bayes

= Generative model
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Naive Bayes

= Generative model - P(x, y)
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Naive Bayes

argmax P(y|x)
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Naive Bayes

Bayes
™

argmax P(y|x) = argmax P(y)P(x|y)
y y
~ argmax P(y) l_[ P(XD
y i

= Bernoulli NB - x; binary-valued

= Multinomial NB - x; integer-valued

Naive
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Naive Bayes

= Parameters: P(y), P(xily)
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Naive Bayes

= Parameters: P(y), P(xily)
= Training (Bernoulli NB):

p Ny +a

| | —

V) N+ Ka
Ny,i+ B

g P(XiIY)=N
y+2B

= Hyperparameters: a,
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Example: English Wikipedia

Thus, what started as an effort to translate
between languages evolved into an entire
discipline devoted to understanding how to
represent and process natural languages
using computers.

15



Example: English Wikipedia

An extreme example is the alien species,
the Vulcans, who had a violent past but
learned to control their emotions.
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Example: German Wikipedia

Es umschlieSt die Mundungen des Hudson
River und des East River in den Atlantis-
chen Ozean und erhebt sich durchschnit-
tlich sechs Meter Uber den Meeresspiegel.
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Example: German Wikipedia

SchlieBSlich bediente sich lan Fleming auch
der Geschichten und des Charakters des
serbischen Doppelagenten DusSko Popov
aus dem Zweiten Weltkrieq.
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Example: German Wikipedia
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Evaluation

How do we know if it works?
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Training and Testing

= Split data:
= Training
= Development
= Testing
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Training and Testing

= Split data:
= Training
= Development
= Testing

= Metric (e.g. accuracy, F1)

= Baseline, significance test
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Shared Tasks

= Task
> Provided
= Data
= Model
> Participant
= Training )
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Summary

= ML - task, data, model, training
= Topic classification with Naive Bayes

= Evaluation - data split, shared tasks
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