
L101: Machine Learning
for Language Processing

Lecture 7

Guy Emerson

Today’s Lecture

� Neural networks

� Sequence labelling

� Language modelling

1

Disclaimer: any similarity with biological neural
networks is coincidental.

Many NLP researchers now jump straight for neural
network models. Hopefully, the past 6 lectures will
help to situate neural nets within a wider range of
tools.

Features

input features

engineered

trained

prediction

trained

� Engineering at a more abstract level

2

Many machine learning models can be broken into
two steps: feature extraction, and training. For ex-
ample, kernel methods use a hand-engineered ker-
nel, on top of which a linear classifier is trained.

Features

input features

engineered

trained

prediction

trained

� Engineering at a more abstract level

2

Neural network models train the features as well.
People will talk of “end-to-end” training, because
all steps are trained, from the input to the output.

Engineering decisions are pushed to a higher level:
not in terms of individual features, but in terms of
the model architecture.

Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Linear: f (x) = Ax

� but can simplify matrix multiplication
AB = C

� Nonlinear: f (x) = g(Ax)
(g applied componentwise)

� Can approximate any function

3

A feedforward net applies a sequence of functions to map
from the input to the output.

If the functions are linear, a sequence of functions doesn’t
give us anything – we can express two matrix multiplications
as a single matrix. However, with nonlinear functions, a se-
quence of functions may be more complicated than a single
function. The simplest way to do this is to first use a linear
map, and then apply a nonlinear function to each dimension.

The benefit is that we can approximate a complicated func-
tion using a sequence of simple functions. We can make the
approximation more accurate by having a longer sequence,
or by increasing the dimensionality (the dimensionalities of
the input x and output f2(f1(x)) are fixed by the data, but we
can use any dimensionality for the intermediate values f1(x)).

In practice, there will usually also be a “bias” term – f (x) =
g(Ax+b). (In strict mathematical terminology, Ax+b would be
called “affine”, rather than “linear”, but in machine learning,
many authors use the term “linear”.)

Nonlinear Activation Functions

�
1

1+e−x “sigmoid”

�
1−e−2x

1+e−2x “tanh”

� max{x,0} “rectified linear”

� log(1+ ex) “softplus”

4

−4 −2 0 2 4
0

0.5

1 We came across the sigmoid func-
tion when looking at logistic re-
gression. It is also called the lo-
gistic function.

−4 −2 0 2 4
−1

0

1
The tanh function (pronounced
“tanch”, short for “hyperbolic tan-
gent”), is important mathemati-
cally, but for reasons irrelevant
here. It’s a rescaled sigmoid func-
tion, bounded between -1 and 1,
and shrunk in the x direction.

−4 −2 0 2 4
0

2

4 The rectified linear unit is possibly
the simplest nonlinearity, and fast
to calculate. It isn’t differentiable
at 0, and to avoid this, we can
use the softplus function, which is
smoothed out around 0.

Nonlinear Decision Boundaries

x1

x2

?
?

??
?

◦
◦◦
◦
◦

?

?

?
? ?

◦
◦ ◦◦ ◦

Quadratic kernel:

x1x2 − x1 − x2 + 1 = 0

5

Recall how kernels allow us to learn nonlinear deci-
sion boundaries.

Nonlinear Decision Boundaries

x1

x2

?
?

??
?

◦
◦◦
◦
◦

?

?

?
? ?

◦
◦ ◦◦ ◦

Rectified linear units:

r(x1 + x2 − 2)
+ r(−x1 − x2 + 2)
− r(x1 − x2)

− r(−x1 + x2)

= 0

5

A feedforward net can also learn a nonlinear deci-
sion boundary.

Here, r is the rectified linear function. We linearly
map the input to a 4-dimensional vector, and then
apply r componentwise. We then linearly map this
vector to a single number – if it’s above 0, we
choose ?, and if it’s below 0, we choose ◦.

Feedforward Networks

x h y

Multiple classes: “softmax”
(like logistic regression)

6

We can draw each vector as a node in a graph.

Unlike the probabilistic graphical models we’ve
seen so far this course, each function is determin-
istic.

(It’s possible to define probabilistic neural nets, but
that’s beyond the scope of this lecture.)

Feedforward Networks

Multiple classes: “softmax”
(like logistic regression)

6

We can also draw individual units (individual dimen-
sions).

In the example from the previous slide, we had two
input units, four hidden units, and one output unit
(to decide between the two classes).

Feedforward Networks

Multiple classes: “softmax”
(like logistic regression)

6

For multiple classes, we can use a softmax layer,
which has one unit for each class. Mathematically,
it’s the same as multiclass logistic regression.

In the remainder of this lecture, I will not draw the
individual units.

“Deep” Feedforward Networks

x h1 h2 h3 y

a
a

7

A “deep” network is a network with many layers.

The choice of the term “deep” was good for public-
ity. The word has connotations of being “meaning-
ful” or “serious”, and it sounds much more exciting
than “function approximation parametrised by the
composition of a sequence of simple functions”

Sequence Labelling

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

8

In a sequence labelling task, such as part-of-speech
tagging or named entity recognition, we have one
output ti for each token wi.

Convolutional Neural Net

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

8

In a convolutional neural net (CNN), each hidden vector (and
each output) is a function of a window of vectors – in this
diagram, a window of one token either side.

The same function is used at each token – e.g. h2 =
f (w1,w2,w3) is the same function as h3 = f (w2,w3,w4). Ap-
plying the same function across different windows is called a
“convolution”.

More precisely, the input vectors are concatenated – given
three vectors w1,w2,w3, each with N dimensions, we can view
them together as one vector w3

1 with 3N dimensions. We can
then apply a normal feedforward layer – e.g. h2 = g(Aw3

1 + b),
for a matrix A, vector b, and nonlinearity g.

For the ends of the input sequence, we can add special
beginning-of-sequence and end-of-sequence vectors.

In principle, the window size can vary for each layer.

Recurrent Neural Net

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

8

One limitation of a CNN is that each output is a function of
a limited window of words (on the previous slide, two words
either side). However, for some tasks, we may need to take
into account a larger context (for example, long-distance syn-
tactic dependencies).

In a recurrent neural network (RNN), we have a hidden state
which is dependent on the current token and the previous
hidden state. This means that each prediction is dependent
on the current token and all previous tokens. For example,
t5 depends on all input tokens – in the CNN on the previous
slide, t5 only depended on w3 to w5.

In a “vanilla” RNN, we concatenate wi and hi−1, and use a
normal feedforward layer. The same function is used at each
token.

To make use of context in both directions, a bidirectional RNN
is composed of two RNNs, one forwards (as in the diagram
above), and one backwards. The hidden states are concate-
nated before being passed to the next layer (e.g. from hi to ti).

Language Modelling

w2 w3 w4 w5 w6

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

8

Language modelling is an example of an unsuper-
vised task – we observe many inputs (sequences of
words), but there are no desired outputs.

Last lecture, we saw how Skip-gram uses tools from
supervised learning for an unsupervised task, and
we can do the same here. In particular, we can view
the next word as a desired output. For example,
this means that we can use an RNN for language
modelling, as shown above.

Inference and Training

� Defined for fast inference
� No beam search / dynamic programming

� Train with gradient descent
� Backpropagation: efficient chain rule

9

A feedforward net is defined to directly gives us
predictions – unlike an HMM or MEMM, where we
needed an additional inference algorithm, such as
Viterbi or forward-backward. (Further reading: An-
dreas (2016) blog post http://blog.jacobandreas.
net/monference.html)

Feedforward nets are usually trained using gradient
descent. To calculate the gradients, we can use the
chain rule. The backpropagation algorithm is an ef-
ficient way to use the chain rule.

http://blog.jacobandreas.net/monference.html
http://blog.jacobandreas.net/monference.html

Short-Term Memory

� “Vanilla” RNNs, in ideal case:

� Can remember long history

� “Vanilla” RNNs, in practice:

� Very forgetful

10

The problem is that we keep applying a matrix mul-
tiplication. There is nothing which easily allows the
model to keep information.

Exploding/Vanishing Gradients

� Gradient descent for vanilla RNNs:
� Backprop through recurrent connections

� Repeated multiplications

� Exponential increase/decrease

� Long Short-Term Memory (LSTM):
� Avoid repeated multiplications

11

Related to the problem of short-term memory, using repeated
matrix multiplications leads to exploding/vanishing gradients.
In the same way that repeatedly multiplying the same num-
ber will give a result tending to 0 or infinity, repeatedly mul-
tiplying the same matrix will give a result whose components
tend to 0 or infinity. (Making this statement more precise re-
quires factorising the matrix and looking at singular values,
but basic idea is the same as for numbers.)

A long short-term memory network avoids this problem – it
still has a short-term memory, but it’s a long short-term mem-
ory. Perhaps an unfortunate name.

The original LSTM paper (Hochreiter and Schmidhuber,
1997) is a classic, but is actually quite difficult to
read: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

56.7752&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7752&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7752&rep=rep1&type=pdf

Long Short-Term Memory

xi

hihi−1

12

Let’s start with a vanilla RNN. The hidden state de-
pends on the previous hidden state, and the current
input.

Long Short-Term Memory

xi

hihi−1

tanh

+

12

Rather than multiplying the previous hidden state
with something, we will add something to it.

We will use a normal feedforward layer with a tanh
activation, using the previous hidden state and the
current input. This is then added to the previous
hidden state to give the new hidden state.

The orange tanh node has trainable parameters (a
matrix and a bias vector), while the yellow + node
is hard-coded – it just adds two vectors together.

This is the most important part of the LSTM ar-
chitecture. By adding to the hidden state, rather
than multiplying with it, we avoid the explod-
ing/vanishing gradient problem.

Long Short-Term Memory

xi

hihi−1

σ tanh

x

+

12

We will now add “gates” to control how updates are made. A
gate is a layer with sigmoid activation, which is multiplied with
another layer componentwise. Because the sigmoid function
is bounded between 0 and 1, a gate controls whether to do
something (value close to 1) or not to do it (value close to 0).

Using soft decisions (values between 0 and 1) makes it easier
to train the network than using hard decisions (values exactly
0 or 1), because continuous optimisation is generally easier
than discrete optimisation.

The first gate is the “input gate”. It is multiplied with the tanh
update. This means that we have split the update into two
decisions: whether to update (the input gate) and what to
update by (the tanh layer).

The input gate and the tanh layer have the same inputs, and
they both involve a matrix multiplication – but they have dif-
ferent activation functions. We now have two trainable matri-
ces (and two trainable bias vectors).

Long Short-Term Memory

xi

hihi−1

σ σ tanh

x

x +

12

The next gate is the “forget gate”, which is multi-
plied with the previous state.

Each update is bounded between -1 and 1. This
means that, if we’ve incremented one dimension
N times, we need to decrement it N times. The
forget gate allows us to quickly reset the state back
to 0.

Long Short-Term Memory

xi

hihi−1

σ σ tanh σ

tanhx
x

x +

12

The last gate is the “output gate”, which controls
what is passed to the next layer of the network.

This means that some dimensions of the hidden
state can be used to keep track of something, and
only used when necessary.

In total there are four matrix multiplications (the
three gates and the tanh layer), all with the same
inputs. (For efficiency, these can be concatenated
into a single matrix multiplication.)

Long Short-Term Memory

xi

ci

hi

ci−1

hi−1

σ σ tanh σ

tanhx
x

x +

12

Finally, rather than using the hidden state itself as input for
these layers, we use the output.

There are four trainable matrices (and four trainable bias vec-
tors). For a network with a single LSTM hidden layer, as well
as these parameters, we also have a trainable vector for each
word in the vocabulary, and a trainable matrix for the predic-
tions (such as a softmax layer). All of these parameters are
jointly optimised using gradient descent, using the objective
function for the task.

I have presented the “standard” version of the LSTM, which
has been found to be robust. There are, however, many
variants (for example, adding “peephole” connections from
ci−1 to the gates). One of the more simplified architectures
is the Gated Recurrent Unit (GRU) (Cho et al, 2014) http:

//aclweb.org/anthology/D14-1179. An even more heavily simpli-
fied architecture is the Recurrent Additive Network (RAN) (Lee
et al., 2017) https://arxiv.org/abs/1705.07393

http://aclweb.org/anthology/D14-1179
http://aclweb.org/anthology/D14-1179
https://arxiv.org/abs/1705.07393

The Devil’s in the Hyperparameters

� A lot of details...
� Activation function

� Dimensionality

� Descent algorithm

� Learning rate

� Batch size

� Regularisation

� No. training epochs

� Initialisation

� etc... 13

Good performance depends on many hyperparameters, and
hence depends on careful hyperparameter tuning.

Gradients tell us which direction to update each parameter in,
but they don’t don’t tell us how much to update each param-
eter. The learning rate controls how large the update steps
should be. There are many algorithms which try to adaptively
change the step size.

We can calculate gradients for each training example. In the
ideal case, we would average the gradients across the entire
dataset. However, this is computationally expensive. Aver-
aging the gradients across a small number of examples (a
“batch”) means that we can make more updates.

For an LSTM, parameter initialisation can be important, par-
ticularly for the forget gates – if parameters are close to 0,
the LSTM state decays by 1/2 at each token, so quickly forgets
the context. It can be a good idea to set the forget bias to be
positive, so that the LSTM initially forgets nothing.

“Black Boxes”

� Interpretation of features?

� No pre-defined interpretation
(unlike e.g. LDA)

� Can measure correlations

� Can measure effects on predictions

� Open area of research...

14

Neural nets are often called “black boxes” because
they are difficult to interpret.

There is a lot of interest in trying to understand
them better. For example, the recent EMNLP work-
shop, BlackboxNLP, was completely packed out.
https://blackboxnlp.github.io/

https://blackboxnlp.github.io/

Summary

� Feedforward networks
� CNNs

� RNNs

� LSTMs

� Hyperparameter tuning

� Challenge: interpreting a model

15

Further reading:

Goldberg (2015)
http://u.cs.biu.ac.il/%7Eyogo/nnlp.pdf

Goodfellow et al. (2016)
https://www.deeplearningbook.org/

http://u.cs.biu.ac.il/%7Eyogo/nnlp.pdf
https://www.deeplearningbook.org/

	Introduction
	Feedforward Networks
	Sequence Labelling
	Long Short-Term Memory
	Using Neural Networks
	Summary

