L101: Machine Learning

for Language Processing

Lecture 6

Guy Emerson

Today’s Lecture

= Distributional semantics
= Count vectors

= Embedding vectors

= Challenges for distributional semantics

Distributional Semantics

... being hurt by another horse especially if some
by a better horse atthe on ...
... these studies that horses with other ...
with other horses in a free and ...
... 'Is that all your horse getsto ?"in ...

... cache of and horse , while from the ...
... was a sterling good horse, especially at

... way as a norse thatitis

... 1790 - that is, one horse ortwo for ...

’

... @s coarseasa horse 's straying from ...

The aim of distributional semantics is to learn the
meanings of linguistic expressions from a large cor-
pus of text. The core idea, known as the distri-
butional hypothesis, is that the contexts in which
an expression appears give us information about
its meaning. The hypothesis is often stated more
narrowly, to say that similar words will appear in
similar contexts.

Above are ten instances of horse in the British Na-
tional Corpus. From these, we might learn that
horses are animals used in racing and agriculture.
Some relevant context words are highlighted.

Distributional semantics is an unsupervised task -
we observe a corpus (without any annotated out-
puts), and we try to find semantic structure in the
corpus.

Distributional Semantics

Linguistic motivation:
understand language

= Harris (1954)
= Firth (1951, 1957)

Machine learning motivation:
text is cheap

Harris and Firth and widely cited in the NLP literature, but |
suspect most citing authors have not actually read these pa-
pers, and would be surprised to learn that Firth uses distribu-
tional ideas to analyse poetry. These papers are interesting
for understanding the linguistic motivations, but not useful
for understanding modern techniques. To read them, you will
probably have to find the physical books (!)

Harris (1954) “Distributional Structure”, reprinted in: Harris
(1970) “Papers in Structural and Transformational Linguis-
tics”, chapter 36; and Harris (1981), “Papers on Syntax”,
chapter 1.

Firth (1951) “Modes of meaning”, reprinted in: Firth (1957)
“Papers in Linguistics”, chapter 15.

Firth (1957) “A synopsis of linguistic theory 1930-1955",
chapter 1 of “Studies in Linguistic Analysis”, special volume
of the Philological Society.

Context

... saying ‘Is that all your horse

ASH-333: gets to eat?’ in amazement ...

Word windows (saying, your, eat, ...)
Dependencies (your-poss, get-suBj)

Documents (ASH-993)

To use distributional semantics, we need to for-
malise the notion of a context. Many choices are
possible.

ASH-993 is the document identifier from the BNC.
Document-level contexts are historically important,
because early distributional techniques were devel-
oped for document retrieval. For example, Sparck-
Jones (1964, reprinted 1986) “Synonymy and Se-
mantic Classification”.

Word Window Hyperparameters

= Window size
= Lemmatisation?
= Stop list?

= Rare words?

Even for the simple approach of word windows,
there are many pre-processing decisions, which can
have an important impact on results. And remem-
ber, this is before we even get to the model itself!

Some techniques, like lemmatisation, lose informa-
tion, but also reduce data sparsity.

Count Matrix

contexts
v [nll N M3 ... nlD\
g N1 N2 N23 ... Nyp
2 Nns1 N3z N33 Nnsp
O
O
+ \nv1 Ny Nysz ... nVD}

Entry njj is the number of times we observe the tar-
get word / with the context J.

If contexts are words, this will be a square matrix -
but we may also use other kinds of context.

We can view each row as a vector, where each con-
text defines a dimension.

Count Vectors

eat
N horse
democracy
>
vote

By representing the meanings of words as vectors,
we get a notion of distance (or its inverse, simi-
larity). For example, we could measure the angle
between two vectors — the smaller the angle, the
more similar the vectors. The cosine of the angle
(cosine similarity) can be easily calculated using a
dot product.

Count Vectors

eat .

_/z

the

If we directly use the counts, common contexts will
dominate, even though they are not terribly infor-
mative - if we use word windows, almost all words
will occur in the context of the.

Processing the Counts — TF-IDF

.|
nijj
|{I’ Ny = O}|

Vij —

Used in document retrieval
TF: term frequency

IDF: inverse document frequency

To avoid common contexts from dominating, we need to
reweight the counts. Ideally, we want high values for informa-
tive contexts, rather than common contexts. A simple method
is TF-IDF, which was developed for information retrieval.

Each count (“term frequency”) is divided by (“inverse...”) the
number of target words the context appears with (“...docu-
ment frequency”).

Common contexts are observed with many target words (they
have a high document frequency), and so they are heavily
downweighted. Rare contexts are only mildly downweighted,
and so they become more important.

TF-IDF is easy to understand, but there are many other ways
that we could transform the counts. One transformation,
which has a strong information-theoretic underpinning, is
Pointwise Mutual Information - see next slide!

Processing the Counts - PMI

nijn..

Vij = log
ni.n.

Pointwise Mutual Information
(from information theory)

P(X,
log . Y) — more likely than expected?

P(x)P(y)

10

n;. is the sum for row |
n.j is the sum for column j
n.. is the sum for the whole matrix

This views the observations of target-context pairs as samples
from a joint distribution over target words and contexts. Intu-
itively, a high probability of observing a particular combina-
tion (i.e. a large count for that combination) is not surprising if
the target and context are both frequent. So, we can compare
the probability of observing a combination with the marginal
probability of the target and context separately. If the joint
probability P(x, y) is exactly the same as the product P(x)P(y),
this means the combination is just as likely as we would ex-
pect by chance, and we get a PMI of 0. If the combination is
more likely than we would expect, we get a positive PMI, and
if the combination is less likely than we would expect, we get
a negative PMI.

After transforming the counts using PMI, we have high values
for informative contexts, in an information-theoretic sense.

Processing the Counts — PPMI

Vij = max+ 0, log
ni.n.

Pointwise Mutual Information
(from information theory)

P(X,y) "y
log , positive only

P(x)P(y)

Avoids negative infinities

10

This formula uses the observed counts to estimate the proba-
bilities. However, we’ve seen before that zero counts can be
a problem - here, zero counts lead to negative infinities.

One solution would be to add smoothing. Another solution, is
to use PPMI (positive PMI), where we set the value to zero, if
the PMI is negative. For distributional semantics, this is much
more commonly used than smoothing.

As well as removing the problem of negative infinities, this
also means that we are only recording positive associations
between targets and contexts. The PMI is positive if a target-
context combination is observed more than expected, and we
keep these values. The PMI is negative if it’'s observed less
than expected, and all of these values are set to zero. In
other words, we forget about all negative associations, and
only remember the positive associations.

Singular Value Decomposition

= High dimensions difficult to work with
= Find directions of highest variance

= Only use these directions

11

Singular Value Decomposition

o
o .7
@
o .’
L4
’f
It o
L d
2
L4
L d
-
-
L4
L 4
L d
L4
L 4 >

12

In this toy example, we can reduce this two-
dimensional space to a one-dimensional space, by
only looking at the direction along the dotted line.
The plotted points vary a lot in this direction, and
don’t vary as much in the orthogonal direction.

Because we are working with a vector space, and
looking for a linear directions, we can re-express
the aim of finding high-variance directions in terms
of a matrix factorisation. (If everything is linear, the
maths will usually work out nicely.)

Embedding Vectors

= Directly learn lower-dimensional
vectors

= Never construct count matrix

13

Using PPMI and SVD gives us useful low(ish)-
dimensional vectors, but they are calculated via a
high-dimensional count matrix. Can we learn low-
dimensional vectors directly?

Skip-Gram

Observe target-context pairs (t, ¢)

Treat as classification:
predict context, given target

Discriminative classifier:
P(c|t) < exp(ve-uc)

Like logistic regression, but:
“Input vectors” are learnt, not given

14

Skip-gram starts from the same place as (P)PMI
count vectors — we treat the training data as target-
context pairs. The crucial idea is to use tools from
supervised learning, even though this is an unsu-
pervised task. We will see this idea again next lec-
ture.

Here, we use a log-linear model, like logistic regres-
sion. We learn a vector v for each target, and a
vector u. for each context.

(If contexts are words, note that we learn two vec-
tors for each word, once as a target and once as a
context.)

Skip-Gram & Negative Sampling

P(c|t) cexp(ve-uc)
requires all possible contexts

Instead, sample a few other contexts ¢’

Treat as binary classification:
predict if context is real or sampled

15

The classifier on the previous slide is expensive to calculate:

exp(vi-Uc)

P(Cl t) xX exp (Vt : UC) = >t exp(Vt'Uc’)

Instead, we can use a slightly different task. For each ob-
served context, we sample a number of other contexts, called
“negative” contexts. This means we effectively have two
parts to our training data - the real observed data, and the
negatively sampled data.

The task is now: given a target-context pair, predict whether
this pair came from the real training data or the negatively
sampled data.

There will be a small chance of sampling a real context, but
most of the negative samples will not have been observed.

The number of samples we take for each real observation is a
hyperparameter.

Skip-Gram & Negative Sampling

= P(real|t, c) < exp (vi- uc)

» P(sampled|t,c)x1

L P(real | t, C) — U(Vt) UC) — 1—|—eXp(1—Vt’Uc)

16

Again, we use a log-linear model.

The reason that we set P(sampled|t, c) < 1 is because log-
linear models can be rescaled, as explained in lecture 3.

o is called the sigmoid function. The formula above follows
immediately from the unnormalised probabilities in the first
two lines. As the value of the dot product tends to infinity,
the probability tends to 1, and as the dot product tends to
negative infinity, the probability tends to 0. If the dot product
is exactly 0, the probability is exactly 1/2.

Skip-Gram & Negative Sampling

= Want high: v¢-uc

= Want low: v¢-uy

17

Skip-gram with negative sampling is trained to
maximise the log-probability of the correct predic-
tions (predicting real or sampled).

This means that we want a high dot product for ob-
served target-context pairs, and a low dot product
for unobserved target-context pairs.

Further reading:

The original paper (Mikolov et al.,, 2013) got
scathing reviews https://openreview.net/forum?id=
1dpCdOWtgXdeo

A more careful explanation of the model is given
by Goldberg and Levy (2014) https://arxiv.org/pdf/
1402.3722.pdf (careful except for D being used with
two meanings).

https://openreview.net/forum?id=idpCdOWtqXd60
https://openreview.net/forum?id=idpCdOWtqXd60
https://arxiv.org/pdf/1402.3722.pdf
https://arxiv.org/pdf/1402.3722.pdf

Count vs. Embedding

= Skip-gram approximately factorises a
PMI matrix!

= Hyperparameters important

18

At first sight, Skip-gram looks very different from count vec-
tors — but because both Skip-gram and (P)PMI vectors start by
looking at the data as a set of target-context pairs, there is a
close connection between the two.

Before this connection was discovered, it was widely believed
that Skip-gram was more effective than count vectors, but
the difference in performance is down to a number of hyper-
parameters (as shown by Levy et al., to be discussed in the
reading group).

Levy and Goldberg (2014) nttp://papers.nips.cc/paper/
5477-neural-word-embedding-as-implicit-matrix-factorization.pdf

Li et al. (2015) http://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/
paper/download/10863/11249

Cotterell et al. (2017) http://aclweb.org/anthology/E17-2028

http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf
http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/download/10863/11249
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/download/10863/11249
http://aclweb.org/anthology/E17-2028

Evaluation

Lexical semantics
Compositional semantics

Downstream tasks

19

Finding a good evaluation task is a real challenge
for distributional semantics.

The simplest tasks look at lexical semantics, for ex-
ample word similarity (see next slide).

The other extreme is to use distributional vectors in
a downstream task. However, it can be difficult to
isolate the effect of distributional vectors, separate
from the rest of the system. It can also be difficult
to find tasks where detailed semantic representa-
tions are necessary.

In the middle, there are a nubmer of datasets which
try to measure various aspects of meaning at a
phrase level. Designing such datasets is challeng-
ing, and this is an ongoing area of research.

Lexical Semantics

democracy water happiness
aubergine flood joy
computer law cat

earthquake lawyer dog

20

The pairs on the left are unrelated.

The pairs on the right are similar - they are
near synonyms (happiness and joy are often inter-
changeable), or co-hyponyms (dogs and cats are
both animals and both pets).

The pairs in the middle are related but not similar -
there is some connection between them (a flood is
an overflow of water, and a lawyer practises law),
but the words are not interchangeable, and not co-
hyponyms.

Different similarity datasets target relatedness,
similarity, or both.

Lexical Semantics

= Give annotators pairs of words
= Ask to score (e.g. from 1 to 7)
= Get system’s similarity scores

= Measure Spearman rank correlation

21

Depending on the instructions given to annotators,
the scores may reflect similarity or relatedness.

Spearman rank correlation measures whether the
scores are in the same relative order - e.qg. if anno-
tators judge the pair (a,b) to be more similar than
the pair (c,d), we want the system to do the same,
but the exact numerical values don’t matter.

Challenges for Dist. Sem.

= Grounding

= Lexical Semantics
= Word senses

= Hyponymy

= Sentence Semantics
= Composition

= Logic

22

Everything presented so far in this lecture is rel-
atively well-established. However, there are still
many open research questions. For further discus-
sion, see chapter 2 of my PhD thesis:

https://www.cl.cam.ac.uk/~gete2/thesis.pdf

https://www.cl.cam.ac.uk/~gete2/thesis.pdf

Word Senses

... the last kick of the
... the Duddon are no
... first or second round
... Tried soaking the

. iIs very much a

... to win and the

... to lose you the

... of an elimination

. needed to watch the
... drop in a burning

match.
match,
matches
matches
match
match
match
match
match,
match.

It was entertaining ...
after all, for a route ...
of any consequence ...
in paint, he wrote, ...
for Berowne; this is ...
is therefore ...

even though no ...

is fought. If this ...
needed a diversion ...

The plastic of the ...
23

In the example we saw last lecture, there are dif-
ferent senses (clusters of usages) — these will all be
combined when constructing a distributional vec-

tor.

How should a distributional model deal with this?

Semantic Composition

> A > A > A >
Every picture tells a story

Addition?
Componentwise multiplication?

Linguistically-motivated approach?

If we have a vector for each word, how do we com-
bine these to get a representation for the whole
phrase?

Vector addition and componentwise multiplication
are competitive methods for many tasks, but we
know that they are not enough, because they are
insensitive to word order — we would get the same
representation for “every picture tells a story”, “ev-
ery story tells a picture”, and “story picture a every
tells”.

Are vectors even the right kind of representation?

24

Summary

|
= Distributional semantics — context

= Count models
= PPMI, SVD

= Embedding models

= Skip-gram with negative sampling
= Similarity and relatedness

= Challenges - word senses, composition

25

Further reading:

Turney and Pantel (2010) https://www.jair.org/
index.php/jair/article/view/10640/25440

Erk (2012) https://onlinelibrary.wiley.com/doi/
epdf/10.1002/1nco.362

Clark (2015) https://www.cl.cam.ac.uk/~sc609/pubs/
sem_handbook. pdf

https://www.jair.org/index.php/jair/article/view/10640/25440
https://www.jair.org/index.php/jair/article/view/10640/25440
https://onlinelibrary.wiley.com/doi/epdf/10.1002/lnco.362
https://onlinelibrary.wiley.com/doi/epdf/10.1002/lnco.362
https://www.cl.cam.ac.uk/~sc609/pubs/sem_handbook.pdf
https://www.cl.cam.ac.uk/~sc609/pubs/sem_handbook.pdf

	Introduction
	Distributional Semantics
	Count Vectors
	Embedding Vectors
	Evaluation
	Lexical Semantics

	Challenges for Dist. Sem.

