
L101: Machine Learning
for Language Processing

Lecture 4

Guy Emerson



Today’s Lecture

� Decision boundaries

� Non-probabilistic classifiers
� Support Vector Machine

� Kernels

� Linguistic kernels

1



Decision Boundaries

argmax
y

P(y|x)

= argmax
y

exp

�

θy +
∑

i

θy,ixi

�

For two classes:

b+
∑

i

aixi > 0 ?

2

For any probabilistic model, we can consider the
best decision under the model, argmaxy P(y|x).

The rest of the slide is specifically for logistic re-
gression (and Naive Bayes). For any two classes,
we can simplify the decision to checking whether
b+

∑

i aixi is more or less than 0, for some values of
ai and b.



Decision Boundaries

x1

x2

?

?

?
?

?

◦
◦

◦

◦

◦

3

If we consider each input x as a point in space, a
classifier makes a decision at each point. We can
then consider regions of space with the same deci-
sion, and the boundaries between regions.

For logistic regression and Naive Bayes, the deci-
sion boundary is a straight line.

Ideally, a classifier’s decision boundaries should
match the classes – e.g. the orange decision
boundary correctly separates the stars and circles.



Support Vector Machines

� Non-probabilistic

� argmaxy
�

θy +
∑

i θy,ixi
�

� Linear: hyperplane boundary

4

A support vector machine is a non-probabilistic classifier – it
directly learns a decision boundary.

The boundary is linear, just like for logistic regression and
Naive Bayes. For an n-dimensional space, the boundary is
(n−1)-dimensional, called a hyperplane. (Compared to logis-
tic regression, we can drop the exponential, because we don’t
need to define a probability distribution.)

Since we only care about the argmax of the above expres-
sion, and not its magnitude, multiplying all parameters by a
constant doesn’t change the boundary – unlike for logistic re-
gression, where this changes the probabilities. This means
a support vector machine has fewer independent parame-
ters than logistic regression does – for two classes, over an
n-dimensional space, a support vector machine has n inde-
pendent parameters, while logistic regression has n+1. (And
Naive Bayes has 2n+ 1.)



Perceptron Algorithm

� Iterate through training data

� If correct, do nothing

� If incorrect, update:
� Correct class y: θy,i ← θy,i + xi

� Incorrect class y′: θy′,i ← θy′,i − xi

5

The perceptron algorithm is a simple training algo-
rithm.

Conceptually similar to gradient descent – we in-
crementally update the parameters, to improve the
predictions of the model.

(Not to be confused with the term “multilayer per-
ceptron”, which refers to a multilayer feedforward
network, but which cannot sensibly be trained us-
ing the perceptron algorithm. I will avoid the term
“multilayer perceptron” to avoid confusion.)



Linear Separability

x1

x2

?

?

?
?

?

◦
◦

◦

◦

◦

6

A dataset is linearly separable if a linear decision
boundary can perfectly separate the classes. There
may be more than one such boundary.

For a linearly separable dataset, the perceptron al-
gorithm is guaranteed to converge on a separating
hyperplane.



Linear Separability

x1

x2

?

?

?
?

?

◦
◦

◦

◦

◦

◦

6

This dataset is not linearly separable.

When training on such a dataset, the perceptron al-
gorithm will never converge (for any linear bound-
ary, there is some incorrectly classified point, and
so there will be an update to the parameters). How-
ever, for a dataset that is close to separable, it will
only make a small number of mistakes.



Maximum Margin

x1

x2

?

?

?
?

?

◦
◦

◦

◦

◦

7

For a linearly separable dataset, a support vector
machine chooses the hyperplane with maximum
distance from any point.

The points closest to the boundary are called the
“support vectors”, hence the name “support vector
machine”.



Maximum Margin

x1

x2

?

?

?
?

?

◦
◦

◦

◦

◦

◦

7

To deal with datasets that are not linearly separa-
ble, we can introduce a penalty for incorrectly clas-
sified points, where the penalty increases with dis-
tance from the boundary.

Training then involves finding a balance between
maximising the margin for correctly classified
points, and minimising the penalty for incorrectly
classified points. We can introduce a hyperparam-
eter to control the balance between these two ob-
jectives.

Further reading: Cortes and Vapnik (1995)
“Support-vector networks” https://link.
springer.com/article/10.1007/BF00994018

https://link.springer.com/article/10.1007/BF00994018
https://link.springer.com/article/10.1007/BF00994018


Nonlinear Decision Boundaries

x1

x2

?
?

??
?

◦
◦◦
◦
◦

?

?

?
? ?

◦
◦ ◦◦ ◦

8

For some datasets, we need nonlinear boundaries.



Kernel Methods

� Input space → Feature space

� Linear boundary in feature space

� e.g. (x1, x2) 7→ (x1, x2, x1x2)

9

Linear decision boundaries are easy to work with.
Rather than abandoning them completely, one
option is to map the input space to a higher-
dimensional feature space, and then calculate a lin-
ear boundary in that space. This is the first impor-
tant idea for kernel methods.



Kernel Methods

x1

x2

?
?

??
?

◦
◦◦
◦
◦

?

?

?
? ?

◦
◦ ◦◦ ◦

xy− x− y+ 1 = 0

10

Mapping (x1, x2) 7→ (x1, x2, x1x2) allows us to deal
with this example.



Maximum Margin

x1

x2

?

?

?
?

?

◦
◦

◦

◦

◦

11

The second important idea for kernel methods is to notice that
only a few training points (the “support vectors”) are neces-
sary to define the hyperplane. (This is more extreme when
there are many points and few dimensions.)

The third important idea is that we can represent the classifier
just in terms of dot products with the support vectors. This re-
lies on the fact that we are working in a vector space, and the
boundary is linear. We can represent a vector perpendicular
to the boundary using a weighted sum of the support vectors
(? − 2

3◦top − 1
3◦bottom). Taking a dot product with this vector

lets us check where a point is, relative to the boundary. This
means, rather than thinking about what boundary to use, we
can think about what points to use (and with what weights).

(Stephen Clark’s notes from 2015/2016 give more details on
this equivalence, describing a “dual form” of the perceptron
algorithm. However, be aware that those notes use a different
notation, and use the term “feature” in a slightly different way
– for structured prediction tasks (such as parsing), it can be
useful to talk about “features” of the output.)



Kernel Methods

� Can represent and train an SVM only
using dot products in feature space

� Kernel function in input space
= dot product in feature space

12

The final important idea is to think about the dot
product, not in feature space, but in the input
space. As a function over the input space, it is
called a kernel function.

This is efficient when the feature space is sparse
(for most points, values in most dimensions are 0),
which means that calculating the kernel function
can be much faster than calculating the mapping
to feature space.



String Kernel

Number of shared substrings

The dog barked The dog slept

13

In this example, there are 3 shared substrings: “the”, “dog”,
and “the dog”.

Each possible string is a dimension of the feature space – so
this is an infinite-dimensional space! The value for each di-
mension is the number of times that substring appears – al-
most all dimensions will have value 0.

One method to calculate the string kernel is to use dynamic
programming. A more efficient method, which runs in linear
time, is to use a suffix tree.

Further reading:
Collins and Duffy (2002)
http://aclweb.org/anthology/P02-1034
Vishwanathan and Smola (2003)
http://papers.nips.cc/paper/
2272-fast-kernels-for-string-and-tree-matching.pdf
Moschitti (2006)
http://aclweb.org/anthology/E06-1015

http://aclweb.org/anthology/P02-1034
http://papers.nips.cc/paper/2272-fast-kernels-for-string-and-tree-matching.pdf
http://papers.nips.cc/paper/2272-fast-kernels-for-string-and-tree-matching.pdf
http://aclweb.org/anthology/E06-1015


Tree Kernel

Number of shared subtrees

S

NP VP

Det N

The dog

V

barked

S

NP VP

Det N

The dog

V

slept

14

In this example, there are 48 shared subtrees (if allow-
ing single-node subtrees, and allowing subtrees that include
some but not all children of a node).

Each possible tree is a dimension of the feature space.

The tree kernel can be calculating using dynamic program-
ming, or more efficiently using a suffix tree – see references
on previous slide.

The tree kernel can be useful for parsing (e.g. see: Collins and
Duffy, 2002).

Trees can be seen as a generalisation of strings. This can
be further generalised, viewing strings as 1-dimensional,
and trees as 2-dimensional, but I am not aware of work on
“higher-dimensional trees” in NLP. Further reading: Rogers
(2003) https://link.springer.com/article/10.1023/A:
1024695608419 [paywall]

https://link.springer.com/article/10.1023/A:1024695608419
https://link.springer.com/article/10.1023/A:1024695608419

	Introduction
	Decision Boundaries
	Support Vector Machines
	Kernel Methods
	String Kernel
	Tree Kernel

