
Hoare Logic and Model Checking

Conrad Watt

Computer Laboratory, University of Cambridge, UK
http://www.cl.cam.ac.uk/~caw77

CST Part II – 2018/19

Slides due to Alan Mycroft, heavily based on Mike Gordon’s 2014/15 courses

Conrad Watt Hoare Logic and Model Checking 1 / 127

http://www.cl.cam.ac.uk/~ caw77

Part 2: Temporal Logic and Model Checking

Conrad Watt Hoare Logic and Model Checking 2 / 127

Big-picture view of second half of the course

I idea of model checking
I the models (Kripke structures), and getting them from real

systems
I the formulae (temporal logics), expressing ideas in them

and comparing them
I model abstraction

Dominic Mulligan’s 2016/17 course to the same syllabus covers
the same topics in a somewhat different way, and includes a
lecture on practical use of the NuSMV model-checking tool.

I http:
//www.cl.cam.ac.uk/teaching/1617/HLog+ModC

I http://nusmv.fbk.eu/

Conrad Watt Hoare Logic and Model Checking 3 / 127

http://www.cl.cam.ac.uk/teaching/1617/HLog+ModC
http://www.cl.cam.ac.uk/teaching/1617/HLog+ModC
http://nusmv.fbk.eu/

A motivating example

bool flag[2] = {false, false}; int turn;

Thread 1: flag[0] = true;
turn = 1;
while (flag[1] && turn == 1); // busy wait
// critical section
flag[0] = false;
// non-critical stuff
repeat;

Thread 2: flag[1] = true;
turn = 0;
while (flag[0] && turn == 0); // busy wait
// critical section
flag[1] = false;
// non-critical stuff
repeat;

How can we prove this implements mutual exclusion without
using locks (Peterson’s algorithm)? Answer: model checking.

Conrad Watt Hoare Logic and Model Checking 4 / 127

Hoare Logic vs Model Checking
Couldn’t we use Hoare logic to prove it too? Perhaps (if we
knew how to deal with concurrency!). Sometimes Hoare logic is
easier, sometimes model checking.

I Hoare logic is built on proof theory, syntactically showing
various formulae hold at each point in the program.
Emphasis on proof, hence using inference rules R as
we’ve seen to establish `R φ.

I Model checking instead is built on model theory,
exhaustive checking. E.g. we can prove a formula φ is valid
or satisfiable by determining its value |=I φ at every
interpretation I of its free variables.

Very different techniques: Hoare-like logics are in principle
more general, but automation is hard, and some primitives hard
(e.g. concurrency). Model checking is automatic, but requires
some form of finiteness in the problem for exhaustively
enumerating states.

Conrad Watt Hoare Logic and Model Checking 5 / 127

Model-checking overview 3

Yes/No +
Counter-example

Yes/No +
Counter-example

SW/HW
Artifact
SW/HW
Artifact

Correctness
properties
Correctness
properties

Temporal
logic

Temporal
logic

Finite
Model
Finite
Model

Model
Extraction

Model
Extraction TranslationTranslation

Model
Checker
Model

Checker

Correct?

AbstractionAbstraction

[Acknowledgement: image due to Arie Gurfinkel]

Conrad Watt Hoare Logic and Model Checking 6 / 127

Model checking in words
Model checking is used to verify properties of a potentially
complex) hardware or software system:

I we express the desired property, or aspects of it, as a a
modal formula – here propositional logic augmented with
temporal operators (e.g. F,G,X).

I we generally don’t verify the actual system (unlike Hoare
logic), but instead create a a finite model of such a system,
and verify that. The model is expressed as a Kripke
structure containing states and transitions, and where each
state is labelled with a set of atomic properties.

I a model-checking algorithm or tool then attempts to
determine the validity of the specification w.r.t. the model
and either says “yes” or provides a counter-example trace.

I sometimes abstraction (as in ‘abstract interpretation’ from
the Optimising Compilers course) is useful for helping us
get a finite model)

Conrad Watt Hoare Logic and Model Checking 7 / 127

Revision
[1A Digital Electronics and 1B Logic and Proof]

I Are AB + AC + BC and BC + AC equivalent?
I In other words, letting φ be the formula

(A ∧ B) ∨ (A ∧ ¬C) ∨ (B ∧ C) ⇔ (B ∧ C) ∨ (A ∧ ¬C)
does |= φ hold (in propositional logic)?

I Two methods:
I we could show |=I φ for every interpretation I
I we could prove `R φ for some set of sound and complete

set of rules R (e.g. algebraic equalities like A ∨ (A ∧ B) = A)
I So far in the course (Hoare logic) we’ve used `. But for

propositional logic (e.g. modelling hardware) it’s easier and
faster to check that |=I φ holds in all interpretations. Why?
Finiteness.
(Note that Karnaugh maps can speed up checking this.)

I Additional benefit: counter-example if something isn’t true.

Conrad Watt Hoare Logic and Model Checking 8 / 127

Revision (2)

I An interpretation for propositional logic with propositional
variables P (say {A,B,C}) is a finite map from {A,B,C} to
{true, false}, or equivalently, the subset of {A,B,C} which
maps to true.

I When does a formula φ satisfy an interpretation I? Defined
by structural induction on φ:

I |=I P if P ∈ I
|=I ¬φ if |=I φ is false
|=I φ ∧ φ′ if |=I φ and |=I φ

′

I Recall that an interpretation I which makes formula φ true
is called a model of φ. (That’s why we’re doing ‘model
checking’ – determining whether a proposed model is
actually one.)
So we’ll write M from now on, rather than I, for
interpretations we hope are models.

Conrad Watt Hoare Logic and Model Checking 9 / 127

Revision (3)

I Sometimes we write [[φ]]M for this (only an incidental
connection to denotational semantics). So the above can
alternatively be written:
[[P]]M = M(P) (treating M as a mapping here)
[[¬φ]]M = not [[φ]]M
[[φ ∧ φ′]]M = [[φ]]M and [[φ′]]M

Observation (not mentioned in Logic and Proof):
I The definition of model satisfaction |=I φ directly gives an

algorithm (O(n) in the size of φ).

Conrad Watt Hoare Logic and Model Checking 10 / 127

Logic and notation used in this course

I In this course we write M |= φ (and sometimes [[φ]]M) rather
than the Γ |=M φ of Logic and Proof.

I In this course we’re mainly interested in whether a formula
φ holds in some particular putative model M, not in all
interpretations. If so we say that “model M satisfies φ”.

I We’re also interested in richer formulae than propositional
logic, as want to model formulae whose truth might vary
over time (hence the name “temporal logic”).

I We’re also interested in richer models than “which
propositional variables are true”, so we use Kripke
structures as models; these reflect systems that change
state over time.

Conrad Watt Hoare Logic and Model Checking 11 / 127

Temporal Logic and Model Checking

I Model
I mathematical structure extracted from hardware or

software; here a Kripke structure

I Temporal logic

I provides a language for specifying functional properties;
here a temporal logic (LTL or CTL, see later)

I Model checking

I checks whether a given property holds of a model

I Model checking is a kind of static verification
I dynamic verification is simulation (HW) or testing (SW)

Conrad Watt Hoare Logic and Model Checking 12 / 127

A Kripke structure
We assume given a set of atomic properties AP.

A (finite) Kripke structure is a 4-tuple (S,S0,R,L) where S is a
finite set of states, S0 ⊆ S is the subset of possible initial
states, R is a binary relation on states (the transition relation)
and L is a labelling function mapping from S to P(AP).

Notes
I we often call a Kripke structure a Kripke model
I some authors omit S0 and only give a 3-tuple (wrong!)
I some authors use world instead of state and accessibility

relation instead of transition relation.
I note that L(s) specifies a propositional model for each

state s ∈ S, hence the phrase possible worlds.
I some authors write 2AP instead of P(AP).

Conrad Watt Hoare Logic and Model Checking 13 / 127

Comparison to similar structures

Computer hardware as a state machine:
I instead of R we have a transition function

next : Inp × S → S (where Inp is an input alphabet) and
an output function output : Inp × S → P(AP) (viewing AP
as externally visible outputs)

Finite-state automata
I instead of R we have a ternary transition relation – a

subset of Σ× S × S – where Σ is an alphabet).
I By having accept ∈ AP, we can recover ‘accepting states’

s as the requirement accept ∈ L(s).
Kripke models don’t have input – they treat user-input as
non-determinism. (But Part II course “Topics in Concurrency”
uses richer models with an alphabet like Σ above, and a richer
transition relation.)

Conrad Watt Hoare Logic and Model Checking 14 / 127

Transition systems

I Start by looking at the (S,R) components of a Kripke
model, this is also called a transition system

I S is a set of states
I R is a transition relation
I we could add start states S0 too, but doesn’t add much.

I (s, s′) ∈ R means s′ can be reached from s in one step.
But this notation is awkward, so:

I here we mainly write R s s; treating relation R as being the
equivalent function R : S → (S → B) (where
B = {true, false})

I i.e. R(this course) s s′ ⇔ (s, s′) ∈ R(formally)

I some books also write R(s, s′) (equivalent by currying)

I we’ll consider AP later.

Conrad Watt Hoare Logic and Model Checking 15 / 127

A simple example transition system
I A simple T.S.: ({0,1,2,3}︸ ︷︷ ︸

S

, λn n′. n′ = n+1(mod 4)︸ ︷︷ ︸
R

)

I where “λx . · · · x · · · ” is the function mapping x to · · · x · · ·
I so R n n′ = (n′ = n+1(mod 4))

I e.g. R 0 1 ∧ R 1 2 ∧ R 2 3 ∧ R 3 0

0 1 2 3

I Might be extracted from:

[Acknowledgement: http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm]

Conrad Watt Hoare Logic and Model Checking 16 / 127

http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm

DIV: a software example

I Perhaps a familiar program:
0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

I State (pc, x , y , r ,q)
I pc ∈ {0,1,2,3,4,5} program counter
I x , y , r , q ∈ Z are the values of X, Y, R, Q

I Model (SDIV,RDIV) where:
SDIV = [0..5]× Z× Z× Z× Z (where [m..n] = {m,m+1, . . . ,n})
∀x y r q.RDIV (0, x , y , r ,q) (1, x , y , x ,q) ∧

RDIV (1, x , y , r ,q) (2, x , y , r ,0) ∧
RDIV (2, x , y , r ,q) ((if y≤r then 3 else 5), x , y , r ,q) ∧
RDIV (3, x , y , r ,q) (4, x , y , (r−y),q) ∧
RDIV (4, x , y , r ,q) (2, x , y , r , (q+1)

Conrad Watt Hoare Logic and Model Checking 17 / 127

Deriving a transition system from a state machine

I State machine transition function : δ : Inp ×Mem→Mem
I Inp is a set of inputs
I Mem is a memory (set of storable values)

I Transition system is: (Sδ,Rδ) where:

Sδ = Inp ×Mem
Rδ (i ,m) (i ′,m′) = (m′ = δ(i ,m))

and
I i ′ arbitrary: determined by environment not by machine
I m′ determined by input and current state of machine

I Deterministic machine, non-deterministic transition relation

I inputs unspecified (determined by environment)
I so called “input non-determinism”

Conrad Watt Hoare Logic and Model Checking 18 / 127

RCV: example state-machine circuit specification
I Part of a handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

I Input: dreq, Memory: (q0,dack)

I Relationships between Boolean values on wires:
q0bar = ¬q0
a0 = q0bar ∧ dack
or0 = q0 ∨ a0
a1 = dreq ∧ or0

I State machine: δRCV : B× (B×B)→(B×B)

δRCV (dreq︸︷︷︸
Inp

, (q0,dack)︸ ︷︷ ︸
Mem

) = (dreq, dreq ∧ (q0 ∨ (¬q0 ∧ dack)))

I RTL model – could have lower level model with clock edges
Conrad Watt Hoare Logic and Model Checking 19 / 127

RCV: deriving a transition system
I Circuit from previous slide:

dackdreq
q0

q0bar
a0

or0
a1

I State represented by a triple of Booleans (dreq,q0,dack)

I By De Morgan Law: q0 ∨ (¬q0 ∧ dack) = q0 ∨ dack

I Hence δRCV corresponds to transition system (SRCV,RRCV)

where:
SRCV = B× B× B [identifying B× B× B with B× (B× B)]
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

I but drawing R pictorially can be clearer . . .

Conrad Watt Hoare Logic and Model Checking 20 / 127

RCV as a transition system

I Possible states for RCV:
{000,001,010,011,100,101,110,111}
where b2b1b0 denotes state
dreq = b2 ∧ q0 = b1 ∧ dack = b0

I Graph of the transition relation:

000 100 110 111

101

011

001

010

Conrad Watt Hoare Logic and Model Checking 21 / 127

Some comments
I RRCV is non-deterministic and left-total

I RRCV (1,1,1) (0,1,1) and RRCV (1,1,1) (1,1,1)
(where 1 = true and 0 = false)

I RRCV (dreq,q0,dack) (dreq′,dreq, (dreq ∧ (q0 ∨ dack)))

I RDIV is deterministic but not left-total
I at most one successor state
I no successor when pc = 5

I Non-deterministic models are very common, e.g. from:
I asynchronous hardware
I parallel software (more than one thread)

I Can extend any transition relation R to be left-total, e.g.
Rtotal = R ∪ {(s, s) | ¬∃s′ such that (s, s′) ∈ R}

I some texts require left-totality (e.g. Model Checking by
Clarke et al.); this can simplify reasoning.

Conrad Watt Hoare Logic and Model Checking 22 / 127

JM1: a non-deterministic software example
I From Jhala and Majumdar’s tutorial:

Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

I Two program counters, state: (pc1,pc2, lock , x)

SJM1 = [0..3]× [0..3]× Z× Z
∀pc1 pc2 lock x .RJM1 (0,pc2,0, x) (1,pc2,1, x) ∧

RJM1 (1,pc2, lock , x) (2,pc2, lock ,1) ∧
RJM1 (2,pc2,1, x) (3,pc2,0, x) ∧
RJM1 (pc1,0,0, x) (pc1,1,1, x) ∧
RJM1 (pc1,1, lock , x) (pc1,2, lock ,2) ∧
RJM1 (pc1,2,1, x) (pc1,3,0, x)

I Non-deterministic:
RJM1 (0,0,0, x) (1,0,1, x)
RJM1 (0,0,0, x) (0,1,1, x)

I Not so obvious that RJM1 is a correct model

Conrad Watt Hoare Logic and Model Checking 23 / 127

Atomic properties (properties of states)
I Atomic properties are true or false of individual states

I an atomic property p is a function p : S → B
I can also be regarded as a subset of state: p ⊆ S

I Example atomic properties of RCV
(where 1 = true and 0 = false)
Dreq(dreq,q0,dack) = (dreq = 1)
NotQ0(dreq,q0,dack) = (q0 = 0)
Dack(dreq,q0,dack) = (dack = 1)
NotDreqAndQ0(dreq,q0,dack) = (dreq=0) ∧ (q0=1)

I Example atomic properties of DIV
AtStart (pc, x , y , r ,q) = (pc = 0)
AtEnd (pc, x , y , r ,q) = (pc = 5)
InLoop (pc, x , y , r ,q) = (pc ∈ {3,4})
YleqR (pc, x , y , r ,q) = (y ≤ r)
Invariant (pc, x , y , r ,q) = (x = r + (y × q))

Conrad Watt Hoare Logic and Model Checking 24 / 127

Atomic properties as labellings
These properties are convenient to express:

Dreq(dreq,q0,dack) = (dreq = 1)
NotQ0(dreq,q0,dack) = (q0 = 0)
Dack(dreq,q0,dack) = (dack = 1)
NotDreqAndQ0(dreq,q0,dack) = (dreq=0) ∧ (q0=1)

But how are they related to the Kripke model requirement at
“each state is labelled with a set of atomic properties”?

These are just equivalent views. Note that states (1,0,0),
(1,0,1), (1,1,0), (1,1,1) are labelled with Dreq ∈ AP, and no
other state is. Similarly for NotQ0,Dack,NotDreqAndQ0.

So the labelling function L : S → P(AP) is here given by

L(0,0,0) = {NotQ0}
L(1,0,0) = {Dreq,NotQ0}
etc

Conrad Watt Hoare Logic and Model Checking 25 / 127

Model behaviour viewed as a computation tree

I Atomic properties are true or false of individual states
I General properties are true or false of whole behaviour
I Behaviour of (S,R) starting from s ∈ S as a tree:

s

initial state states after

one step

states after

two steps

I A path is shown in red
I Properties may look at all paths, or just a single path

I CTL: Computation Tree Logic (all paths from a state)
I LTL: Linear Temporal Logic (a single path)

Conrad Watt Hoare Logic and Model Checking 26 / 127

Paths

I A path of (S,R) is represented by a function π : N→ S
I π(i) is the i th element of π (first element is π(0))
I might sometimes write π i instead of π(i)
I π↓i is the i-th tail of π so π↓i(n) = π(i + n)
I successive states in a path must be related by R

I Path R s π is true if and only if π is a path starting at s:

Path R s π = (π(0) = s) ∧ ∀i . R (π(i)) (π(i+1))

where:

Path : (S → S → B)︸ ︷︷ ︸
transition
relation

→ S︸︷︷︸
initial
state

→ (N→ S)︸ ︷︷ ︸
path

→ B

Conrad Watt Hoare Logic and Model Checking 27 / 127

RCV: example hardware properties

I Consider this timing diagram:

dreq

dack

I Two handshake properties representing the diagram:
I following a rising edge on dreq, the value of dreq

remains 1 (i.e. true) until it is acknowledged by a rising
edge on dack

I following a falling edge on dreq, the value on dreq
remains 0 (i.e. false) until the value of dack is 0

I A property language is used to formalise such properties.
In this course this is some form of temporal logic.

Conrad Watt Hoare Logic and Model Checking 28 / 127

DIV: example program properties

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

AtStart (pc, x , y , r , q) = (pc = 0)
AtEnd (pc, x , y , r , q) = (pc = 5)
InLoop (pc, x , y , r , q) = (pc ∈ {3, 4})
YleqR (pc, x , y , r , q) = (y ≤ r)
Invariant (pc, x , y , r , q) = (x = r + (y × q))

I Example properties of the program DIV.
I on every execution if AtEnd is true then Invariant is true

and YleqR is not true

I on every execution there is a state where AtEnd is true

I on any execution if there exists a state where YleqR is true
then there is also a state where InLoop is true

I Compare these with what is expressible in Hoare logic
I execution: a path starting from a state satisfying AtStart

Conrad Watt Hoare Logic and Model Checking 29 / 127

Recall JM1: a non-deterministic program example
Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

SJM1 = [0..3]× [0..3]× Z× Z
∀pc1 pc2 lock x .RJM1 (0,pc2,0, x) (1,pc2,1, x) ∧

RJM1 (1,pc2, lock , x) (2,pc2, lock ,1) ∧
RJM1 (2,pc2,1, x) (3,pc2,0, x) ∧
RJM1 (pc1,0,0, x) (pc1,1,1, x) ∧
RJM1 (pc1,1, lock , x) (pc1,2, lock ,2) ∧
RJM1 (pc1,2,1, x) (pc1,3,0, x)

I An atomic property:
I NotAt11(pc1,pc2, lock , x) = ¬((pc1 = 1) ∧ (pc2 = 1))

I A non-atomic property:
I all states reachable from (0,0,0,0) satisfy NotAt11

I this is an example of a reachability property

Conrad Watt Hoare Logic and Model Checking 30 / 127

All states reachable from (0,0,0,0) satisfy NotAt11
Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (1, pc2, lock , x) (2, pc2, lock , 1)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x)

RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (pc1, 1, lock , x) (pc1, 2, lock , 2)
RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

I NotAt11(pc1, pc2, lock , x) = ¬((pc1 = 1) ∧ (pc2 = 1))

I Can only reach pc1 = 1 ∧ pc2 = 1 via:
RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)

i.e. a step RJM1 (0, 1, 0, x) (1, 1, 1, x)
i.e. a step RJM1 (1, 0, 0, x) (1, 1, 1, x)

I But:
RJM1 (pc1, pc2, lock , x) (pc′

1, pc′
2, lock ′, x ′) ∧ pc′

1=0 ∧ pc′
2=1 ⇒ lock ′=1

∧
RJM1 (pc1, pc2, lock , x) (pc′

1, pc′
2, lock ′, x ′) ∧ pc′

1=1 ∧ pc′
2=0 ⇒ lock ′=1

I So can never reach (0, 1, 0, x) or (1, 0, 0, x)

I So can’t reach (1, 1, 1, x), hence never (pc1 = 1) ∧ (pc2 = 1)

I Hence all states reachable from (0, 0, 0, 0) satisfy NotAt11

Conrad Watt Hoare Logic and Model Checking 31 / 127

Reachability
I R s s′ means s′ reachable from s in one step

I Rn s s′ means s′ reachable from s in n steps
R0 s s′ = (s = s′)
Rn+1 s s′ = ∃s′′. R s s′′ ∧ Rn s′′ s′

I R∗ s s′ means s′ reachable from s in finite steps
R∗ s s′ = ∃n. Rn s s′

I Note: R∗ s s′ ⇔ ∃π n. Path R s π ∧ (s′ = π(n))

I The set of states reachable from s is {s′ | R∗ s s′}

I Verification problem: all states reachable from s satisfy p
I verify truth of ∀s′. R∗ s s′ ⇒ p(s′)

I e.g. all states reachable from (0,0,0,0) satisfy NotAt11

I i.e. ∀s′. R∗JM1 (0,0,0,0) s′ ⇒ NotAt11(s′)

Conrad Watt Hoare Logic and Model Checking 32 / 127

Model Checking a Simple Property

Conrad Watt Hoare Logic and Model Checking 33 / 127

Models and model checking

I We’ve defined and exemplified Kripke models
I We treat their states as externally unimportant, what is

important is how the various atomic predicates change as
the Kripke model evolves.

I A Kripke structure is a tuple (S,S0,R,L) where L is a
labelling function from S to P(AP)

I Note the two understandings of atomic properties:
I the formal one above p ∈ AP
I the previous informal, but equivalent, one λs. p ∈ L(s)
I often convenient to assume T,F ∈ AP with ∀s: T ∈ L(s) and
F /∈ L(s)

I Model checking computes whether (S,S0,R,L) |= φ

I φ is a property expressed in a property language
I informally M |= φ means “formula φ is true in model M”

Start with trivial and minimal property languages . . .
Conrad Watt Hoare Logic and Model Checking 34 / 127

Trivial property language: φ is p where p ∈ AP

I Assume M = (S,S0,R,L)

I M |= p means p true of all initial states of M
I formally M |= p holds if ∀s ∈ S0. p ∈ L(s)

I uninteresting – does not consider transitions in M (other
‘possible worlds’ than the initial ones)

Conrad Watt Hoare Logic and Model Checking 35 / 127

Minimal property language: φ is AGp where p ∈ AP
Our first temporal operator in a very restricted form so far.

I Consider properties φ of form AGp where p ∈ AP
I “AG ” stands for “Always Globally”
I from CTL (same meaning, more elaborately expressed)

I Assume M = (S,S0,R,L)

I Reachable states of M are {s′ | ∃s ∈ S0. R∗ s s′}
I i.e. the set of states reachable from an initial state

I Define Reachable M = {s′ | ∃s ∈ S0. R∗ s s′}

I M |= AGp means p true of all reachable states of M

I If M = (S,S0,R,L) then M |= φ formally defined by:

M |= AGp ⇔ ∀s′. s′ ∈ Reachable M ⇒ p ∈ L(s′)

Conrad Watt Hoare Logic and Model Checking 36 / 127

Model checking M |= AGp
I M |= AGp ⇔ ∀s′. s′ ∈ Reachable M ⇒ p ∈ L(s′)

⇔ Reachable M ⊆ {s′ | p ∈ L(s′)}
checked by:

I first computing Reachable M
I then checking p true of all its members

I Let S abbreviate {s′ | ∃s ∈ S0. R∗ s s′} (i.e. Reachable M)
I Compute S iteratively: S = S0 ∪ S1 ∪ · · · ∪ Sn ∪ · · ·

I i.e. S =
⋃∞

n=0 Sn

I where: S0 = S0 (set of initial states)
I and inductively: Sn+1 = Sn ∪ {s′ | ∃s ∈ Sn ∧ R s s′}

I Clearly S0 ⊆ S1 ⊆ · · · ⊆ Sn ⊆ · · ·
I Hence if Sm = Sm+1 then S = Sm
I Algorithm: compute S0, S1, . . . , until no change;

then check p labels all members of computed set

Conrad Watt Hoare Logic and Model Checking 37 / 127

Algorithmic issues

Compute S0, S1, . . . , until no change;
then check p holds of all members of computed set

I Does the algorithm terminate?
I yes, if set of states is finite, because then no infinite chains:
S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ · · ·

I How to represent S0, S1, . . . ?
I explicitly (e.g. lists or something more clever)
I symbolic expression

I Huge literature on calculating set of reachable states

Conrad Watt Hoare Logic and Model Checking 38 / 127

Example: RCV

I Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

I State represented by a triple of Booleans (dreq,q0,dack)

I A model of RCV is MRCV where:
M = (SRCV, {(1,1,1)},RRCV,LRCV)

and
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

I AP and labelling function LRCV discussed later

Conrad Watt Hoare Logic and Model Checking 39 / 127

RCV as a transition system

I Possible states for RCV:
{000,001,010,011,100,101,110,111}
where b2b1b0 denotes state
dreq = b2 ∧ q0 = b1 ∧ dack = b0

I Graph of the transition relation:

000 100 110 111

101

011

001

010

Conrad Watt Hoare Logic and Model Checking 40 / 127

Computing Reachable MRCV

000 100 110 111

101

011

001

010

I Define:
S0 = {b2b1b0 | b2b1b0 ∈ {111}}

= {111}

Si+1 = Si ∪ {s′ | ∃s ∈ Si . RRCV s s′ }
= Si ∪ {b′2b′1b′0 |

∃b2b1b0 ∈ Si . (b′1 = b2) ∧ (b′0 = b2 ∧ (b1 ∨ b0))}

Conrad Watt Hoare Logic and Model Checking 41 / 127

Computing Reachable MRCV (continued)

000 100 110 111

101

011

001

010

0322

3

1

I Compute:

S0 = {111}
S1 = {111} ∪ {011}

= {111,011}
S2 = {111,011} ∪ {000,100}

= {111,011,000,100}
S3 = {111,011,000,100} ∪ {010,110}

= {111,011,000,100,010,110}
Si = S3 (i > 3)

I Hence Reachable MRCV = {111,011,000,100,010,110}
Conrad Watt Hoare Logic and Model Checking 42 / 127

Model checking MRCV |= AGp
I M = (SRCV, {111},RRCV,LRCV)

I To check MRCV |= AG p
I compute Reachable MRCV = {111,011,000,100,010,110}
I check Reachable MRCV ⊆ {s | p ∈ LRCV(s)}
I i.e. check if s ∈ Reachable MRCV then p ∈ LRCV(s), i.e.:

p ∈ LRCV(111) ∧
p ∈ LRCV(011) ∧
p ∈ LRCV(000) ∧
p ∈ LRCV(100) ∧
p ∈ LRCV(010) ∧
p ∈ LRCV(110)

I Example
I if AP = {A,B}
I and LRCV(s) = if s ∈ {001,101} then {A} else {B}
I then MRCV |= AGA is not true, but MRCV |= AGB is true

Conrad Watt Hoare Logic and Model Checking 43 / 127

Generating counterexamples (explicit states)
Can use ‘failure to prove’ to generate counter-example traces.
Here ‘trace’ is a synonym for ‘path’
Easy, but potentially slow using explicit state representation:

I Suppose not all reachable states of model M satisfy p
I i.e. ∃s ∈ Reachable M. ¬p(s)

I Set of reachable states S given by: S =
⋃∞

n=0 Sn

I Iterate to find least n such that ∃s ∈ Sn. ¬p(s)
(helpful to report the the shortest error trace)

I Pick a state sn such that sn ∈ Sn ∧ ¬p(sn)

I Find a path s0 ∈ S0 . . . sn ∈ Sn to it

Finding a path in (S,S0,R,L) is linear time if we store
breadcrumbs (back-pointers from each reachable state si+1 to
the state si which first caused it to be visited); s0 is necessarily
part of S0 = S0

Conrad Watt Hoare Logic and Model Checking 44 / 127

Explicit vs Symbolic model checking

The problem:
I Suppose we have a system with n flip-flops. Then it has up

to 2n states. Exploring all these exhaustively is
exponentially horrid – even a system with three 32-bit
registers has 296 states which take ‘forever’ to explore

I In general the number of states is exponential in the
number of variables and number of parallel threads.

Technology to avoid this: ‘Symbolic model checking’
I Same model-checking idea
I Use symbolic representations of data (e.g. BDDs) instead

of explicit state and relation representations (e.g. set of
tuples of booleans)

I Do this both for states and for the transition relation
I Faster (for data-structures-and-algorithms reasons)

Conrad Watt Hoare Logic and Model Checking 45 / 127

Symbolic Boolean model checking of reachability

I Assume states are n-tuples of Booleans (b1, . . . ,bn)
I bi ∈ B = {true, false} (= {1,0})
I S = Bn, so S is finite: 2n states

I Assume n distinct Boolean variables: v1,. . .,vn
I e.g. if n = 3 then could have v1 = x, v2 = y, v3 = z

I Boolean formula f (v1, . . . , vn) represents a subset of S
I f (v1, . . . , vn) only contains variables v1,. . .,vn

I f (b1, . . . ,bn) denotes result of substituting bi for vi

I f (v1, . . . , vn) determines{(b1, . . . ,bn) | f (b1, . . . ,bn)⇔ true}
I Example ¬(x = y) represents {(true, false), (false, true)}
I Transition relations also represented by Boolean formulae

I e.g. RRCV represented by:
(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ (¬q0 ∧ dack))))

Conrad Watt Hoare Logic and Model Checking 46 / 127

Symbolically represent Boolean formulae as BDDs
I Key features of Binary Decision Diagrams (BDDs):

I canonical (given a variable ordering)
I efficient to manipulate

I Variables:
v = if v then 1 else 0
¬v = if v then 0 else 1

I Example: BDDs of variable v and ¬v

0 1

v

0 1

v

I Example: BDDs of v1 ∧ v2 and v1 ∨ v2

0 1

v1

v2

01

v1

v2

Conrad Watt Hoare Logic and Model Checking 47 / 127

More BDD examples

I BDD of v1 = v2

0 1

v1

v2 v2

I BDD of v1 6= v2

0 1

v1

v2 v2

Conrad Watt Hoare Logic and Model Checking 48 / 127

BDD of a transition relation
I BDDs of

(v1′ = (v1 = v2)) ∧ (v2′ = (v1 6= v2))

with two different variable orderings

0 1

v1

v2 v2

v1’ v1’

v2’ v2’

01

v1’

v1 v1

v2v2 v2 v2

v2’ v2’

I Exercise: draw BDD of RRCV

Conrad Watt Hoare Logic and Model Checking 49 / 127

Standard BDD operations
I If formulae f1, f2 represents sets S1, S2, respectively

then f1 ∧ f2, f1 ∨ f2 represent S1 ∩ S2, S1 ∪ S2 respectively

I Standard algorithms compute Boolean operation on BDDs

I Abbreviate (v1, . . . , vn) to ~v

I If f (~v) represents S
and g(~v , ~v ′) represents {(~v , ~v ′) | R ~v ~v ′)}
then ∃~u. f (~u) ∧ g(~u, ~v) represents {~v | ∃~u. ~u ∈ S ∧ R ~u ~v}

I Can compute BDD of ∃~u. h(~u, ~v) from BDD of h(~u, ~v)
I e.g. BDD of ∃v1. h(v1, v2) is BDD of h(T, v2) ∨ h(F, v2)

I From BDD of formula f (v1, . . . , vn) can compute b1, . . ., bn
such that if v1 = b1, . . ., vn = bn then f (b1, . . . ,bn)⇔ true

I b1, . . ., bn is a satisfying assignment (SAT problem)
I used for counterexample generation (see later)

Conrad Watt Hoare Logic and Model Checking 50 / 127

Reachable States via BDDs
I Assume M = (S,S0,R,L) and S = Bn

I Represent R by Boolean formulae g(~v , ~v ′)

I Iteratively define formula fn(~v) representing Sn

f0(~v) = formula representing S0

fn+1(~v) = fn(~v) ∨ (∃~u. fn(~u) ∧ g(~u, ~v))

I Let B0, BR be BDDs representing f0(~v), g(~v , ~v ′)

I Iteratively compute BDDs Bn representing fn
Bn+1 = Bn ∨ (∃~u. Bn[~u/~v] ∧ BR[~u, ~v/~v , ~v ′])

I efficient using (blue underlined) standard BDD algorithms
(renaming, conjunction, disjunction, quantification)

I BDD Bn only contains variables ~v : represents Sn ⊆ S

I At each iteration check Bn+1 = Bn efficient using BDDs
I when Bn+1 = Bn can conclude Bn represents Reachable M
I we call this BDD BM in a later slide (i.e. BM = Bn)

Conrad Watt Hoare Logic and Model Checking 51 / 127

Engineering BDDs is significant work

I size of BDD can depend hugely on choice of ‘variable
order’

I some operations (e.g. multiplication) produces big BDDs
I interleaved concurrency (think threads) can mean that the

exact BDD for R is huge.
I But there are tricks beyond this course (e.g. ‘disjunctive

partitioning’) which can calculate things like fn above
without computing R.

I See more-advanced courses e.g.
http://www.cs.ucsb.edu/~bultan/courses/267/

Conrad Watt Hoare Logic and Model Checking 52 / 127

http://www.cs.ucsb.edu/~bultan/courses/267/

Verification and counterexamples

I Typical safety question:
I is property p true in all reachable states?
I i.e. check M |= AG p
I i.e. is ∀s. s ∈ Reachable M ⇒ p s

I Check using BDDs
I compute BDD BM of Reachable M
I compute BDD Bp of p(~v)

I check if BDD of BM ⇒ Bp is the single node 1

I Valid because true represented by a unique BDD
(canonical property)

I If BDD is not 1 can get counterexample

Conrad Watt Hoare Logic and Model Checking 53 / 127

Generating counterexamples (general idea)

BDD algorithms can find satisfying assignments (SAT)

I Suppose not all reachable states of model M satisfy p
I i.e. ∃s ∈ Reachable M. ¬(p(s))

I Set of reachable state S given by: S =
⋃∞

n=0 Sn

I Iterate to find least n such that ∃s ∈ Sn. ¬(p(s))

I Use SAT to find bn such that bn ∈ Sn ∧ ¬(p(bn))

I Use SAT to find bn−1 such that bn−1 ∈ Sn−1 ∧ R bn−1 bn

I Use SAT to find bn−2 such that bn−2 ∈ Sn−2 ∧ R bn−2 bn−1
...

I Iterate to find b0, b1, . . ., bn−1, bn where bi ∈ Si ∧ R bi−1 bi

I Then b0 b1 · · · bn−1 bn is a path to a counterexample

Conrad Watt Hoare Logic and Model Checking 54 / 127

Use SAT to find sn−1 such that sn−1 ∈ Sn−1 ∧ R sn−1 sn

I Suppose states s, s′ symbolically represented by ~v , ~v ′

I Suppose BDD Bi represents ~v ∈ Si (1 ≤ i ≤ n)

I Suppose BDD BR represents R ~v ~v ′

I Then BDD
(Bn−1 ∧ BR[~bn/~v ′])
represents
~v ∈ Sn−1 ∧ R ~v ~bn

I Use SAT to find a valuation ~bn−1 for ~v

I Then BDD
(Bn−1 ∧ BR[~bn/~v ′])[~bn−1/~v]
represents
~bn−1 ∈ Sn−1 ∧ R ~bn−1

~bn

Conrad Watt Hoare Logic and Model Checking 55 / 127

Generating counterexamples with BDDs
BDD algorithms can find satisfying assignments (SAT)

I M = (S,S0,R,L) and B0, B1, . . . , BM , BR, Bp as earlier
I Suppose BM ⇒ Bp is not 1

I Must exist a state s ∈ Reachable M such that ¬(p s)

I Let B¬p be the BDD representing ¬(p ~v)

I Iterate to find first n such that Bn ∧ B¬p

I Use SAT to find ~bn such that (Bn ∧ B¬p)[~bn/~v]

I Use SAT to find ~bn−1 such that (Bn−1 ∧ BR[~bn/~v ′])[~bn−1/~v]

I For 0 < i < n find ~bi−1 such that (Bi−1 ∧ BR[~bi/~v ′])[~bi−1/~v]

I ~b0,. . .,~bi ,. . .,~bn is a counterexample trace
I Sometimes can use partitioning to avoid constructing BR

Conrad Watt Hoare Logic and Model Checking 56 / 127

Example (from an exam)
Consider a 3x3 array of 9 switches

1 2 3

4 5 6

7 8 9

Suppose each switch 1,2,...,9 can either be on or off, and that toggling any switch will
automatically toggle all its immediate neighbours. For example, toggling switch 5 will
also toggle switches 2, 4, 6 and 8, and toggling switch 6 will also toggle switches 3, 5
and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the
behaviour of the array of switches

You are given the problem of getting from an initial state in which even numbered
switches are on and odd numbered switches are off, to a final state in which all the
switches are off.

(b) Write down predicates on your state space that characterises the initial [2 marks]
and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of switches to
toggle to get from the initial to final state. [6 marks]

You are not expected to actually solve the problem, but only to explain how to represent
it in terms of model checking.

Conrad Watt Hoare Logic and Model Checking 57 / 127

Solution
A state is a vector (v1,v2,v3,v4,v5,v6,v7,v8,v9), where vi ∈ B

A transition relation Trans is then defined by:

Trans(v1,v2,v3,v4,v5,v6,v7,v8,v9)(v1’,v2’,v3’,v4’,v5’,v6’,v7’,v8’,v9’)
= ((v1’=¬v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=v5)∧

(v6’=v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 1)
∨ ((v1’=¬v1)∧(v2’=¬v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=¬v5)∧

(v6’=v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 2)
∨ ((v1’=v1)∧(v2’=¬v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=v5)∧

(v6’=¬v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 3)
∨ ((v1’=¬v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=¬v5)∧

(v6’=v6)∧(v7’=¬v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 4)
∨ ((v1’=v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=¬v5)∧

(v6’=¬v6)∧(v7’=v7)∧(v8’=¬v8)∧(v9’=v9)) (toggle switch 5)
∨ ((v1’=v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=¬v5)∧

(v6’=¬v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=¬v9)) (toggle switch 6)
∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=v5)∧

(v6’=v6)∧(v7’=¬v7)∧(v8’=¬v8)∧(v9’=v9)) (toggle switch 7)
∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=v4)∧(v5’=¬v5)∧

(v6’=v6)∧(v7’=¬v7)∧(v8’=¬v8)∧(v9’=¬v9)) (toggle switch 8)
∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=v4)∧(v5’=v5)∧

(v6’=¬v6)∧(v7’=v7)∧(v8’=¬v8)∧(v9’=¬v9)) (toggle switch 9)

Conrad Watt Hoare Logic and Model Checking 58 / 127

Solution (continued)

Predicates Init, Final characterising the initial and final states,
respectively, are defined by:

Init(v1,v2,v3,v4,v5,v6,v7,v8,v9) =
¬v1 ∧ v2 ∧ ¬v3 ∧ v4 ∧ ¬v5 ∧ v6 ∧ ¬v7 ∧ v8 ∧ ¬v9

Final(v1,v2,v3,v4,v5,v6,v7,v8,v9) =
¬v1 ∧ ¬v2 ∧ ¬v3 ∧ ¬v4 ∧ ¬v5 ∧ ¬v6 ∧ ¬v7 ∧ ¬v8 ∧ ¬v9

Model checkers can find counter-examples to properties, and
sequences of transitions from an initial state to a
counter-example state. Thus we could use a model checker to
find a trace to a counter-example to the property that
¬Final(v1,v2,v3,v4,v5,v6,v7,v8,v9)

Conrad Watt Hoare Logic and Model Checking 59 / 127

More Interesting Properties (1): LTL

Conrad Watt Hoare Logic and Model Checking 60 / 127

More General Properties
I ∀s∈S0.∀s′.R∗ s s′ ⇒ p s′ says p true in all reachable states
I Might want to verify other properties

1. DeviceEnabled holds infinitely often along every path
2. From any state it is possible to get to a state where

Restart holds
3. After a three or more consecutive occurrences of Req there

will eventually be an Ack

I Temporal logic can express such properties
I There are several temporal logics in use

I LTL is good for the first example above
I CTL is good for the second example
I PSL is good for the third example

I Model checking:
I Emerson, Clarke & Sifakis: Turing Award 2008
I widely used in industry: first hardware, later software

Conrad Watt Hoare Logic and Model Checking 61 / 127

Temporal logic selected history

Prior (1914-1969) devised ‘tense logic’ for investigating: “the
relationship between tense and modality attributed to the
Megarian philosopher Diodorus Cronus (ca. 340-280 BCE)”.

More details:
http://plato.stanford.edu/entries/prior/

I Temporal logic: deductive system for reasoning about time
I temporal formulae for expressing temporal statements
I deductive system for proving theorems

I Temporal logic model checking
I uses semantics to check truth of temporal formulae in models

I Temporal logic proof systems are also of interest (but not in
this course).

Conrad Watt Hoare Logic and Model Checking 62 / 127

http://plato.stanford.edu/entries/prior/

Temporal logic selected history (2)
I Many different languages capturing temporal statements

as formulae
I linear time (LTL)
I branching time (CTL)
I finite intervals (SEREs)
I industrial languages (PSL, SVA)

I Prior used linear time, Kripke suggested branching time:
... we perhaps should not regard time as a linear series ... there are
several possibilities for what the next moment may be like - and for
each possible next moment, there are several possibilities for the
moment after that. Thus the situation takes the form, not of a linear
sequence, but of a ‘tree’. [Saul Kripke, 1958 (aged 17, still at school)]

I CS issues different from philosophical issues
I Moshe Vardi: “Branching vs. Linear Time: Final Showdown”

2011 Harry H. Goode Memorial Award Recipient

Conrad Watt Hoare Logic and Model Checking 63 / 127

Linear Temporal Logic (LTL)
I Grammar of LTL formulae φ

φ ::= p (Atomic formula: p ∈ AP)
| ¬φ (Negation)
| φ1 ∨ φ2 (Disjunction)
| Xφ (successor)
| Fφ (sometimes)
| Gφ (always)
| [φ1 U φ2] (Until)

I G: (G)lobally holds; F: At some point in the (F)uture; X: In
the ne(X)t state

I Details differ from Prior’s tense logic – but similar ideas
I Semantics define when φ true in model M

I where M = (S,S0,R,L) – a Kripke structure
I notation: M |= φ means φ true in model M
I model checking algorithms compute this (when decidable)
I previously we only discussed the case φ = AG p

Conrad Watt Hoare Logic and Model Checking 64 / 127

While use temporal operators at all?

Instead of the complexity of new temporal operators, why not
make time explicit and just write:

I ∃t .φ(t) instead of Fφ
I ∀t .φ(t) instead of Gφ
I φ[t + 1/t] instead of Xφ

along with parameterising all Atomic Formulae with time?

Answer: it’s harder to reason about quantifiers and arithmetic
on time than it is to reason about temporal operators (which
abstract from the above concrete notion of time).

Conrad Watt Hoare Logic and Model Checking 65 / 127

M |= φ means “formula φ is true in model M”

I If M = (S,S0,R,L) then

π is an M-path starting from s iff Path R s π

I If M = (S,S0,R,L) then we define M |= φ to mean:

φ is true on all M-paths starting from a member of S0

I We will define [[φ]]M(π) to mean

φ is true on the M-path π

I Thus M |= φ will be formally defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

I It remains to actually define [[φ]]M for all formulae φ

Conrad Watt Hoare Logic and Model Checking 66 / 127

Definition of [[φ]]M(π)

I [[φ]]M(π) is the application of function [[φ]]M to path π
I thus [[φ]]M : (N→ S)→ B

I Let M = (S,S0,R,L)

[[φ]]M is defined by structural induction on φ

[[p]]M(π) = p ∈ L(π 0)
[[¬φ]]M(π) = ¬([[φ]]M(π))
[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)
[[Xφ]]M(π) = [[φ]]M(π↓1)
[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)
[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)
[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

I We look at each of these semantic equations in turn

Conrad Watt Hoare Logic and Model Checking 67 / 127

[[p]]M(π) = p(π 0)

I Assume M = (S,S0,R,L)

I We have: [[p]]M(π) = p ∈ L(π 0)
I p is an atomic property, i.e. p ∈ AP
I π : N→ S so π 0 ∈ S
I π 0 is the first state in path π
I p ∈ L(π 0) is true iff atomic property p holds of state π 0

I [[p]]M(π) means p holds of the first state in path π

I T,F ∈ AP with T ∈ L(s) and F /∈ L(s) for all s ∈ S
I [[T]]M(π) is always true

I [[F]]M(π) is always false

Conrad Watt Hoare Logic and Model Checking 68 / 127

[[¬φ]]M(π) = ¬([[φ]]M(π))
[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)

I [[¬φ]]M(π) = ¬([[φ]]M(π))

I [[¬φ]]M(π) true iff [[φ]]M(π) is not true

I [[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)

I [[φ1 ∨ φ2]]M(π) true iff [[φ1]]M(π) is true or [[φ2]]M(π) is true

Conrad Watt Hoare Logic and Model Checking 69 / 127

[[Xφ]]M(π) = [[φ]]M(π↓1)

I [[Xφ]]M(π) = [[φ]]M(π↓1)

I π↓1 is π with the first state chopped off
π↓1(0) = π(1 + 0) = π(1)
π↓1(1) = π(1 + 1) = π(2)
π↓1(2) = π(1 + 2) = π(3)

...

I [[Xφ]]M(π) true iff [[φ]]M true starting at the second state of π

Conrad Watt Hoare Logic and Model Checking 70 / 127

[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)

I [[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)
I π↓i is π with the first i states chopped off

π↓i(0) = π(i + 0) = π(i)
π↓i(1) = π(i + 1)
π↓i(2) = π(i + 2)

...
I [[φ]]M(π↓i) true iff [[φ]]M true starting i states along π

I [[Fφ]]M(π) true iff [[φ]]M true starting somewhere along π

I “Fφ” is read as “sometimes φ”

Conrad Watt Hoare Logic and Model Checking 71 / 127

[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)
I [[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)

I π↓i is π with the first i states chopped off

I [[φ]]M(π↓i) true iff [[φ]]M true starting i states along π

I [[Gφ]]M(π) true iff [[φ]]M true starting anywhere along π

I “Gφ” is read as “always φ” or “globally φ”

I M |= AGp defined earlier: M |= AGp ⇔ M |= G(p)

I G is definable in terms of F and ¬: Gφ = ¬(F(¬φ))

[[¬(F(¬φ))]]M(π) = ¬([[F(¬φ)]]M(π))
= ¬(∃i . [[¬φ]]M(π↓i))
= ¬(∃i . ¬([[φ]]M(π↓i)))
= ∀i . [[φ]]M(π↓i)
= [[Gφ]]M(π)

Conrad Watt Hoare Logic and Model Checking 72 / 127

[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)
I [[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

I [[φ2]]M(π↓i) true iff [[φ2]]M true starting i states along π

I [[φ1]]M(π↓j) true iff [[φ1]]M true starting j states along π

I [[[φ1 U φ2]]]M(π) is true iff

[[φ2]]M is true somewhere along π and up to then [[φ1]]M is true

I “[φ1 U φ2]” is read as “φ1 until φ2”

I F is definable in terms of [− U −]: Fφ = [T U φ]

[[[T U φ]]]M(π)
= ∃i . [[φ]]M(π↓i) ∧ ∀j . j<i ⇒ [[T]]M(π↓j)
= ∃i . [[φ]]M(π↓i) ∧ ∀j . j<i ⇒ true
= ∃i . [[φ]]M(π↓i) ∧ true
= ∃i . [[φ]]M(π↓i)
= [[Fφ]]M(π)

Conrad Watt Hoare Logic and Model Checking 73 / 127

Review of Linear Temporal Logic (LTL)

I Grammar of LTL formulae φ (slide 64)
φ ::= p (Atomic formula: p ∈ AP)

| ¬φ (Negation)
| φ1 ∨ φ2 (Disjunction)
| Xφ (successor)
| Fφ (sometimes)
| Gφ (always)
| [φ1 U φ2] (Until)

I M |= φ means φ holds on all M-paths

I M = (S,S0,R,L)

I [[φ]]M(π) means φ is true on the M-path π

I M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

Conrad Watt Hoare Logic and Model Checking 74 / 127

LTL examples

I “DeviceEnabled holds infinitely often along every path”
G(F DeviceEnabled)

I “Eventually the state becomes permanently Done“
F(G Done)

I “Every Req is followed by an Ack”
G(Req⇒ F Ack)

Number of Req and Ack may differ - no counting

I “If Enabled infinitely often then Running infinitely often”
G(F Enabled)⇒ G(F Running)

I “An upward-going lift at the second floor keeps going up if
a passenger requests the fifth floor”
G(AtFloor2 ∧ DirectionUp ∧ RequestFloor5
⇒ [DirectionUp U AtFloor5])

(acknowledgement: http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf)

Conrad Watt Hoare Logic and Model Checking 75 / 127

http://pswlab.kaist.ac.kr/courses/cs402-2011/temporal-logic2.pdf

A property not expressible in LTL
I Let AP = {P} and consider models M and M ′ below

¬P P ¬P

s0 s1 s0

M M ′

M = ({s0, s1}, {s0}, {(s0, s0), (s0, s1), (s1, s1)},L)
M ′ = ({s0}, {s0}, {(s0, s0)},L)

where: L = λs. if s = s0 then {} else {P}
I Every M ′-path is also an M-path
I So if φ true on every M-path then φ true on every M ′-path
I Hence in LTL for any φ if M |= φ then M ′ |= φ
I Consider φP ⇔ “can always reach a state satisfying P”

I φP holds in M but not in M ′
I but in LTL can’t have M |= φP and not M ′ |= φP

I hence φP not expressible in LTL
(acknowledgement: Logic in Computer Science, Huth & Ryan (2nd Ed.) page 219, ISBN 0 521 54310 X)

Conrad Watt Hoare Logic and Model Checking 76 / 127

LTL expressibility limitations

“can always reach a state satisfying P”

I In LTL M |= φ says φ holds of all paths of M

I LTL formulae φ are evaluated on paths path formulae

I Want also to say that from any state there exists a path to
some state satisfying p

I ∀s. ∃π. Path R s π ∧ ∃i . p ∈ L(π(i))

I but this isn’t expressible in LTL (see slide 76)

By contrast:

I CTL properties are evaluated at a state . . . state formulae

I they can talk about both some or all paths

I starting from the state they are evaluated at

Conrad Watt Hoare Logic and Model Checking 77 / 127

More Interesting Properties (2): CTL

Conrad Watt Hoare Logic and Model Checking 78 / 127

Computation Tree Logic (CTL)
I LTL formulae φ are evaluated on paths path formulae

I CTL formulae ψ are evaluated on states . . state formulae

I Syntax of CTL well-formed formulae:

ψ ::= p (Atomic formula p ∈ AP)
| ¬ψ (Negation)
| ψ1 ∧ ψ2 (Conjunction)
| ψ1 ∨ ψ2 (Disjunction)
| ψ1⇒ ψ2 (Implication)
| AXψ (All successors)
| EXψ (Some successors)
| A[ψ1 U ψ2] (Until – along all paths)
| E[ψ1 U ψ2] (Until – along some path)

I (Some operators can be defined in terms of others)

Conrad Watt Hoare Logic and Model Checking 79 / 127

Semantics of CTL
I Assume M = (S,S0,R,L) and then define:

[[p]]M(s) = p ∈ L(s)

[[¬ψ]]M(s) = ¬([[ψ]]M(s))

[[ψ1 ∧ ψ2]]M(s) = [[ψ1]]M(s) ∧ [[ψ2]]M(s)

[[ψ1 ∨ ψ2]]M(s) = [[ψ1]]M(s) ∨ [[ψ2]]M(s)

[[ψ1⇒ ψ2]]M(s) = [[ψ1]]M(s) ⇒ [[ψ2]]M(s)

[[AXψ]]M(s) = ∀s′. R s s′ ⇒ [[ψ]]M(s′)
[[EXψ]]M(s) = ∃s′. R s s′ ∧ [[ψ]]M(s′)
[[A[ψ1 U ψ2]]]M(s) = ∀π. Path R s π

⇒ ∃i . [[ψ2]]M(π(i))
∧
∀j . j<i ⇒ [[ψ1]]M(π(j))

[[E[ψ1 U ψ2]]]M(s) = ∃π. Path R s π
∧ ∃i . [[ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1]]M(π(j))

Conrad Watt Hoare Logic and Model Checking 80 / 127

The defined operator AF

I Define AFψ = A[T U ψ]

I AFψ true at s iffψ true somewhere on every R-path from s

[[AFψ]]M(s) = [[A[T U ψ]]]M(s)

= ∀π. Path R s π
⇒
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∀π. Path R s π
⇒
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ true

= ∀π. Path R s π ⇒ ∃i . [[ψ]]M(π(i))

Conrad Watt Hoare Logic and Model Checking 81 / 127

The defined operator EF

I Define EFψ = E[T U ψ]

I EFψ true at s iffψ true somewhere on some R-path from s

[[EFψ]]M(s) = [[E[T U ψ]]]M(s)

= ∃π. Path R s π
∧
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∃π. Path R s π
∧
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ true

= ∃π. Path R s π ∧ ∃i . [[ψ]]M(π(i))

I “can reach a state satisfying p” is EF p

Conrad Watt Hoare Logic and Model Checking 82 / 127

The defined operator AG
I Define AGψ = ¬EF(¬ψ)

I AGψ true at s iffψ true everywhere on every R-path from s

[[AGψ]]M(s) = [[¬EF(¬ψ)]]M(s)
= ¬([[EF(¬ψ)]]M(s))
= ¬(∃π. Path R s π ∧ ∃i . [[¬ψ]]M(π(i)))
= ¬(∃π. Path R s π ∧ ∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬(Path R s π ∧ ∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ¬(∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ∀i . ¬¬[[ψ]]M(π(i))
= ∀π. ¬Path R s π ∨ ∀i . [[ψ]]M(π(i))
= ∀π. Path R s π ⇒ ∀i . [[ψ]]M(π(i))

I AGψ means ψ true at all reachable states

I [[AG(p)]]M(s) ≡ ∀s′. R∗ s s′ ⇒ p ∈ L(s′)

I “can always reach a state satisfying p” is AG(EF p)

Conrad Watt Hoare Logic and Model Checking 83 / 127

The defined operator EG

I Define EGψ = ¬AF(¬ψ)

I EGψ true at s iffψ true everywhere on some R-path from s

[[EGψ]]M(s) = [[¬AF(¬ψ)]]M(s)
= ¬([[AF(¬ψ)]]M(s))
= ¬(∀π. Path R s π ⇒ ∃i . [[¬ψ]]M(π(i)))
= ¬(∀π. Path R s π ⇒ ∃i . ¬[[ψ]]M(π(i)))
= ∃π. ¬(Path R s π ⇒ ∃i . ¬[[ψ]]M(π(i)))
= ∃π. Path R s π ∧ ¬(∃i . ¬[[ψ]]M(π(i)))
= ∃π. Path R s π ∧ ∀i . ¬¬[[ψ]]M(π(i))
= ∃π. Path R s π ∧ ∀i . [[ψ]]M(π(i))

Conrad Watt Hoare Logic and Model Checking 84 / 127

The defined operator A[ψ1 W ψ2]

I A[ψ1 W ψ2] is a ‘partial correctness’ version of A[ψ1 U ψ2]

I It is true at s if along all R-paths from s:
I ψ1 always holds on the path, or

I ψ2 holds sometime on the path, and until it does ψ1 holds

I Define
[[A[ψ1 W ψ2]]]M(s)

= [[¬E[(ψ1∧¬ψ2) U (¬ψ1∧¬ψ2)]]]M(s)
= ¬[[E[(ψ1∧¬ψ2) U (¬ψ1∧¬ψ2)]]]M(s)
= ¬(∃π. Path R s π

∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i))
∧
∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

I Exercise: understand the next two slides!

Conrad Watt Hoare Logic and Model Checking 85 / 127

A[ψ1 W ψ2] continued (1)

I Continuing:

¬(∃π. Path R s π
∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. ¬(Path R s π
∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
¬(∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬[[¬ψ1∧¬ψ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

Conrad Watt Hoare Logic and Model Checking 86 / 127

A[ψ1 W ψ2] continued (2)

I Continuing:

= ∀π. Path R s π
⇒
∀i . ¬[[¬ψ1∧¬ψ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ∨ ¬[[¬ψ1∧¬ψ2]]M(π(i))

= ∀π. Path R s π
⇒
∀i . (∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ⇒ [[ψ1∨ψ2]]M(π(i))

I Exercise: explain why this is [[A[ψ1 W ψ2]]]M(s)?
I this exercise illustrates the subtlety of writing CTL!

Conrad Watt Hoare Logic and Model Checking 87 / 127

Sanity check: A[ψ W F] = AG ψ
I From last slide:

[[A[ψ1 W ψ2]]]M(s)
= ∀π. Path R s π

⇒ ∀i . (∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))⇒ [[ψ1∨ψ2]]M(π(i))

I Set ψ1 to ψ and ψ2 to F:
[[A[ψ W F]]]M(s)
= ∀π. Path R s π

⇒ ∀i . (∀j . j<i ⇒ [[ψ∧¬F]]M(π(j))) ⇒ [[ψ∨F]]M(π(i))

I Simplify:
[[A[ψ W F]]]M(s)
= ∀π. Path R s π ⇒ ∀i . (∀j . j<i ⇒ [[ψ]]M(π(j)))⇒ [[ψ]]M(π(i))

I By induction on i :
[[A[ψ W F]]]M(s) = ∀π. Path R s π ⇒ ∀i . [[ψ]]M(π(i))

I Exercises
1. Describe the property: A[T W ψ] .
2. Describe the property: ¬E[¬ψ2 U ¬(ψ1∨ψ2)] .
3. Define E[ψ1 W ψ2] = E[ψ1 U ψ2] ∨ EGψ1.

Describe the property: E[ψ1 W ψ2]?
Conrad Watt Hoare Logic and Model Checking 88 / 127

Recall model behaviour computation tree

I Atomic properties are true or false of individual states
I General properties are true or false of whole behaviour
I Behaviour of (S,R) starting from s ∈ S as a tree:

s

initial state states after

one step

states after

two steps

I A path is shown in red
I Properties may look at all paths, or just a single path

I CTL: Computation Tree Logic (all paths from a state)
I LTL: Linear Temporal Logic (a single path)

Conrad Watt Hoare Logic and Model Checking 89 / 127

Summary of CTL operators (primitive + defined)
I CTL formulae:

p (Atomic formula - p ∈ AP)
¬ψ (Negation)
ψ1 ∧ ψ2 (Conjunction)
ψ1 ∨ ψ2 (Disjunction)
ψ1⇒ ψ2 (Implication)
AXψ (All successors)
EXψ (Some successors)
AFψ (Somewhere – along all paths)
EFψ (Somewhere – along some path)
AGψ (Everywhere – along all paths)
EGψ (Everywhere – along some path)
A[ψ1 U ψ2] (Until – along all paths)
E[ψ1 U ψ2] (Until – along some path)
A[ψ1 W ψ2] (Unless – along all paths)
E[ψ1 W ψ2] (Unless – along some path)

Conrad Watt Hoare Logic and Model Checking 90 / 127

Example CTL formulae
I EF(Started ∧ ¬Ready)

It is possible to get to a state where Started holds
but Ready does not hold

I AG(Req⇒ AFAck)

If a request Req occurs, then it will eventually be
acknowledged by Ack

I AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along
every path starting anywhere: i.e. DeviceEnabled
holds infinitely often along every path

I AG(EFRestart)
From any state it is possible to get to a state for
which Restart holds

Can’t be expressed in LTL!
Conrad Watt Hoare Logic and Model Checking 91 / 127

More CTL examples (1)

I AG(Req⇒ A[Req U Ack])

If a request Req occurs, then it continues to hold,
until it is eventually acknowledged

I AG(Req⇒ AX(A[¬Req U Ack]))

Whenever Req is true either it must become false
on the next cycle and remains false until Ack, or
Ack must become true on the next cycle

Exercise: is the AX necessary?

I AG(Req⇒ (¬Ack ⇒ AX(A[Req U Ack])))

Whenever Req is true and Ack is false then Ack
will eventually become true and until it does Req
will remain true

Exercise: is the AX necessary?

Conrad Watt Hoare Logic and Model Checking 92 / 127

More CTL examples (2)

I AG(Enabled ⇒ AG(Start ⇒ A[¬Waiting U Ack]))

If Enabled is ever true then if Start is true in any
subsequent state then Ack will eventually become
true, and until it does Waiting will be false

I AG(¬Req1∧¬Req2⇒A[¬Req1∧¬Req2 U (Start∧¬Req2)])

Whenever Req1 and Req2 are false, they remain
false until Start becomes true with Req2 still false

I AG(Req⇒ AX(Ack ⇒ AF ¬Req))

If Req is true and Ack becomes true one cycle
later, then eventually Req will become false

Conrad Watt Hoare Logic and Model Checking 93 / 127

Some abbreviations
I AXi ψ ≡ AX(AX(· · · (AX ψ) · · ·))︸ ︷︷ ︸

i instances of AX
ψ is true on all paths i units of time later

I ABFi..j ψ ≡ AXi (ψ ∨ AX(ψ ∨ · · · AX(ψ ∨ AX ψ) · · ·))︸ ︷︷ ︸
j − i instances of AX

ψ is true on all paths sometime between i units of
time later and j units of time later

I AG(Req⇒ AX(Ack1 ∧ ABF1..6(Ack2 ∧ A[Wait U Reply])))

One cycle after Req, Ack1 should become true,
and then Ack2 becomes true 1 to 6 cycles later
and then eventually Reply becomes true, but until
it does Wait holds from the time of Ack2

I More abbreviations in ‘Industry Standard’ language PSL

Conrad Watt Hoare Logic and Model Checking 94 / 127

CTL model checking

I For LTL path formulae φ recall that M |= φ is defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

I For CTL state formulae ψ the definition of M |= ψ is:

M |= ψ ⇔ ∀s. s ∈ S0 ⇒ [[ψ]]M(s)

I M common; LTL, CTL formulae and semantics [[]]M differ

I CTL model checking algorithm:
I compute {s | [[ψ]]M(s) = true} bottom up

I check S0 ⊆ {s | [[ψ]]M(s) = true}
I symbolic model checking represents these sets as BDDs

Conrad Watt Hoare Logic and Model Checking 95 / 127

CTL model checking: p, AXψ, EXψ
I For CTL formula ψ let {[ψ]}M = {s | [[ψ]]M(s) = true}

I When unambiguous will write {[ψ]} instead of {[ψ]}M

I {[p]} = {s | p ∈ L(s)}
I scan through set of states S marking states labelled with p
I {[p]} is set of marked states

I To compute {[AXψ]}
I recursively compute {[ψ]}
I marks those states all of whose successors are in {[ψ]}
I {[AXψ]} is the set of marked states

I To compute {[EXψ]}
I recursively compute {[ψ]}
I marks those states with at least one successor in {[ψ]}
I {[EXψ]} is the set of marked states

Conrad Watt Hoare Logic and Model Checking 96 / 127

CTL model checking: {[E[ψ1 U ψ2]]}, {[A[ψ1 U ψ2]]}

I To compute {[E[ψ1 U ψ2]]}
I recursively compute {[ψ1]} and {[ψ2]}
I mark all states in {[ψ2]}
I mark all states in {[ψ1]} with a successor state that is marked
I repeat previous line until no change
I {[E[ψ1 U ψ2]]} is set of marked states

I More formally: {[E[ψ1 U ψ2]]} =
⋃∞

n=0{[E[ψ1 U ψ2]]}n where:
{[E[ψ1 U ψ2]]}0 = {[ψ2]}
{[E[ψ1 U ψ2]]}n+1 = {[E[ψ1 U ψ2]]}n

∪
{s ∈ {[ψ1]} | ∃s′ ∈ {[E[ψ1 U ψ2]]}n. R s s′}

I {[A[ψ1 U ψ2]]} similar, but with a more complicated iteration
I details omitted (see Huth and Ryan)

Conrad Watt Hoare Logic and Model Checking 97 / 127

Example: checking EF p

I EFp = E[T U p]

I holds if ψ holds along some path

I Note {[T]} = S

I Let Sn = {[E[T U p]]}n then:
S0 = {[E[T U p]]}0

= {[p]}
= {s | p ∈ L(s)}

Sn+1 = Sn ∪ {s ∈ {[T]} | ∃s′ ∈ {[E[T U p]]}n. R s s′}
= Sn ∪ {s | ∃s′ ∈ Sn. R s s′}

I mark all the states labelled with p
I mark all with at least one marked successor
I repeat until no change
I {[EF p]} is set of marked states

Conrad Watt Hoare Logic and Model Checking 98 / 127

Example: RCV

I Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

I State represented by a triple of Booleans (dreq,q0,dack)

I A model of RCV is MRCV where:
M = (SRCV,S0RCV,RRCV,LRCV)

and
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

Conrad Watt Hoare Logic and Model Checking 99 / 127

RCV as a transition system

I Possible states for RCV:
{000,001,010,011,100,101,110,111}
where b2b1b0 denotes state
dreq = b2 ∧ q0 = b1 ∧ dack = b0

I Graph of the transition relation:

000 100 110 111

101

011

001

010

Conrad Watt Hoare Logic and Model Checking 100 / 127

Computing {[EF At111]} where At111 ∈ LRCV(s)⇔ s = 111

000 100 110 111

101

011

001

010

I Define:
S0 = {s | At111 ∈ LRCV(s)}

= {s | s = 111}
= {111}

Sn+1 = Sn ∪ {s | ∃s′ ∈ Sn. R(s, s′)}
= Sn ∪ {b2b1b0 |

∃b′2b′1b′0 ∈ Sn. (b′1 = b2) ∧ (b′0 = b2 ∧ (b1 ∨ b0))}

Conrad Watt Hoare Logic and Model Checking 101 / 127

Computing {[EF At111]} (continued)

000 100 110 111

101

011

001

010

0

1

123

3

3

3

I Compute:
S0 = {111}
S1 = {111} ∪ {101,110}

= {111,101,110}
S2 = {111,101,110} ∪ {100}

= {111,101,110,100}
S3 = {111,101,110,100} ∪ {000,001,010,011}

= {111,101,110,100,000,001,010,011}
Sn = S3 (n > 3)

I {[EF At111]} = B3 = SRCV

I MRCV |= EF At111 ⇔ S0RCV ⊆ S

Conrad Watt Hoare Logic and Model Checking 102 / 127

Symbolic model checking

I Represent sets of states with BDDs

I Represent Transition relation with a BDD

I If BDDs of {[ψ]}, {[ψ1]}, {[ψ2]} are known, then:
I BDDs of {[¬ψ]}, {[ψ1 ∧ ψ2]}, {[ψ1 ∨ ψ2]}, {[ψ1 ⇒ ψ2]}

computed using standard BDD algorithms

I BDDs of {[AXψ]}, {[EXψ]}, {[A[ψ1 U ψ2]]}, {[E[ψ1 U ψ2]]]}
computed using straightforward algorithms (see textbooks)

I Model checking CTL generalises reachable-states iteration

Conrad Watt Hoare Logic and Model Checking 103 / 127

History of Model checking

I CTL model checking due to Emerson, Clarke & Sifakis
I Symbolic model checking due to several people:

I Clarke & McMillan (idea usually credited to McMillan’s PhD)
I Coudert, Berthet & Madre
I Pixley

I SMV (McMillan) is a popular symbolic model checker:
http://www.cs.cmu.edu/~modelcheck/smv.html (original)
http://www.kenmcmil.com/smv.html (Cadence extension by McMillan)
http://nusmv.fbk.eu/ (new implementation)

I Other temporal logics
I CTL*: combines CTL and LTL
I Engineer friendly industrial languages: PSL, SVA

Conrad Watt Hoare Logic and Model Checking 104 / 127

http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
http://nusmv.fbk.eu/

Expressibility of CTL
I Consider the property

“on every path there is a point after which p is
always true on that path ”

I Consider
((?) non-deterministically chooses T or F)

0: P:=1;
s0 1: WHILE (?) DO SKIP;
s1 2: P:=0;
s2 3: P:=1;

4: WHILE T DO SKIP;
5:

p ~p p

s0 s1 s2

s0

s0

s0

s0

s1

s1

s1

s1

s2

s2

s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2

I Property true, but cannot be expressed in CTL
I would need something like AFψ
I where ψ is something like “property p true from now on”
I but in CTL ψ must start with a path quantifier A or E
I cannot talk about current path, only about all or some paths
I AF(AG p) is false (consider path s0s0s0 · · ·)

Conrad Watt Hoare Logic and Model Checking 105 / 127

LTL can express things CTL can’t

I Recall:
[[Fφ]]M(π) = ∃i . [[φ]]M(π↓i)
[[Gφ]]M(π) = ∀i . [[φ]]M(π↓i)

I FGφ is true if there is a point after which φ is always true
[[FGφ]]M(π) = [[F(G(φ))]]M(π)

= ∃m1. [[G(φ)]]M(π↓m1)
= ∃m1. ∀m2. [[φ]]M((π↓m1)↓m2)
= ∃m1. ∀m2. [[φ]]M(π↓(m1+m2))

I LTL can express things that CTL can’t express

I Note: it’s tricky to prove CTL can’t express FGφ

Conrad Watt Hoare Logic and Model Checking 106 / 127

CTL can express things that LTL can’t express

I AG(EF p) says:
“from every state it is possible to get to a state for
which p holds”

I Can’t say this in LTL (easy proof given earlier - slide 76)

I Consider disjunction:
“on every path there is a point after which p is
always true on that path
or
from every state it is possible to get to a state for
which p holds”

I Can’t say this in either CTL or LTL!

I CTL* combines CTL and LTL and can express this property

Conrad Watt Hoare Logic and Model Checking 107 / 127

CTL*
I Both state formulae (ψ) and path formulae (φ)

I state formulae ψ are true of a state s like CTL
I path formulae φ are true of a path π like LTL

I Defined mutually recursively
ψ ::= p (Atomic formula)

| ¬ψ (Negation)
| ψ1 ∨ ψ2 (Disjunction)
| Aφ (All paths)
| Eφ (Some paths)

φ ::= ψ (Every state formula is a path formula)
| ¬φ (Negation)
| φ1 ∨ φ2 (Disjunction)
| Xφ (Successor)
| Fφ (Sometimes)
| Gφ (Always)
| [φ1 U φ2] (Until)

I CTL is CTL* with X, F, G, [−U−] preceded by A or E
I LTL consists of CTL* formulae of form Aφ,

where the only state formulae in φ are atomic
Conrad Watt Hoare Logic and Model Checking 108 / 127

CTL* semantics

I Combines CTL state semantics with LTL path semantics:

[[p]]M(s) = p ∈ L(s)
[[¬ψ]]M(s) = ¬([[ψ]]M(s))
[[ψ1 ∨ ψ2]]M(s) = [[ψ1]]M(s) ∨ [[ψ2]]M(s)
[[Aφ]]M(s) = ∀π. Path R s π ⇒ φ(π)
[[Eφ]]M(s) = ∃π. Path R s π ∧ [[φ]]M(π)

[[ψ]]M(π) = [[ψ]]M(π(0))
[[¬φ]]M(π) = ¬([[φ]]M(π))
[[φ1 ∨ φ2]]M(π) = [[φ1]]M(π) ∨ [[φ2]]M(π)
[[Xφ]]M(π) = [[φ]]M(π↓1)
[[Fφ]]M(π) = ∃m. [[φ]]M(π↓m)
[[Gφ]]M(π) = ∀m. [[φ]]M(π↓m)
[[[φ1 U φ2]]]M(π) = ∃i . [[φ2]]M(π↓i) ∧ ∀j . j<i ⇒ [[φ1]]M(π↓j)

I Note [[ψ]]M : S→B and [[φ]]M : (N→S)→B

Conrad Watt Hoare Logic and Model Checking 109 / 127

LTL and CTL as CTL*
I As usual: M = (S,S0,R,L)
I If ψ is a CTL* state formula: M |= ψ ⇔ ∀s ∈ S0. [[ψ]]M(s)
I If φ is an LTL path formula then: M |=LTL φ ⇔ M |=CTL* Aφ
I If R is left-total (∀s. ∃s′. R s s′) then (exercise):
∀s s′. R s s′ ⇔ ∃π. Path R s π ∧ (π(1) = s′)

I The meanings of CTL formulae are the same in CTL*
[[A(Xψ)]]M(s)
= ∀π. Path R s π ⇒ [[Xψ]]M(π)
= ∀π. Path R s π ⇒ [[ψ]]M(π↓1) (ψ as path formula)
= ∀π. Path R s π ⇒ [[ψ]]M((π↓1)(0)) (ψ as state formula)
= ∀π. Path R s π ⇒ [[ψ]]M(π(1))

[[AXψ]]M(s)
= ∀s′. R s s′ ⇒ [[ψ]]M(s′)
= ∀s′. (∃π. Path R s π ∧ (π(1) = s′)) ⇒ [[ψ]]M(s′)
= ∀s′. ∀π. Path R s π ∧ (π(1) = s′) ⇒ [[ψ]]M(s′)
= ∀π. Path R s π ⇒ [[ψ]]M(π(1))

Exercise: do similar proofs for other CTL formulae
Conrad Watt Hoare Logic and Model Checking 110 / 127

Fairness

I May want to assume system or environment is ‘fair’

I Example 1: fair arbiter
the arbiter doesn’t ignore one of its requests forever

I not every request need be granted
I want to exclude infinite number of requests and no grant

I Example 2: reliable channel
no message continuously transmitted but never received

I not every message need be received
I want to exclude an infinite number of sends and no receive

Conrad Watt Hoare Logic and Model Checking 111 / 127

Handling fairness in CTL and LTL
I Consider:

p holds infinitely often along a path then so does q

I In LTL is expressible as G(F p) ⇒ G(F q)

I Can’t say this in CTL
I why not – what’s wrong with AG(AF p) ⇒ AG(AF q)?
I in CTL* expressible as A

(
G(F p) ⇒ G(F q)

)
I fair CTL model checking implemented in checking algorithm
I fair LTL just a fairness assumption like G(F p) ⇒ · · ·

I Fairness is a tricky and subtle subject
I many kinds of fairness:

‘weak fairness’, ‘strong fairness’ etc

I exist whole books on fairness

Conrad Watt Hoare Logic and Model Checking 112 / 127

Richer Logics than LTL and CTL

I Propositional modal µ-calculus
I Industrial Languages, e.g. PSL
I Modal Logics, where modes can be other than time in

temporal logic. Examples:
I Logics including possibility and necessity
I Logics of belief: “P believes that Q believes F ”
I Logics of authentication, e.g. BAN logic

More information can be found under “Modal Logic",
“Doxastic logic” and “Burrows-Abadi-Needham logic” on
Wikipedia.

[not examinable]
Conrad Watt Hoare Logic and Model Checking 113 / 127

Propositional modal µ-calculus
I You may learn this in Topics in Concurrency

I µ-calculus is an even more powerful property language
I has fixed-point operators
I both maximal and minimal fixed points
I model checking consists of calculating fixed points
I many logics (e.g. CTL*) can be translated into µ-calculus

I Strictly stronger than CTL*
I expressibility strictly increases as allowed nesting increases
I need fixed point operators nested 2 deep for CTL*

I The µ-calculus is very non-intuitive to use!
I intermediate code rather than a practical property language
I nice meta-theory and algorithms, but terrible usability!

[not examinable]
Conrad Watt Hoare Logic and Model Checking 114 / 127

PSL/Sugar

I Used for real-life hardware verification

I Combines together LTL and CTL

I SEREs: Sequential Extended Regular Expressions

I LTL – Foundation Language formulae

I CTL – Optional Branching Extension

I Relatively simple set of primitives + definitional extension

I Boolean, temporal, verification, modelling layers

I Semantics for static and dynamic verification
(needs strong/weak distinction)

I You may learn more about this in System-on-Chip Design

[not examinable]
Conrad Watt Hoare Logic and Model Checking 115 / 127

Bisimulation equivalence: general idea

I M, M ′ bisimilar if they have ‘corresponding executions’
I to each step of M there is a corresponding step of M ′
I to each step of M ′ there is a corresponding step of M

I Bisimilar models satisfy same CTL* properties

I Bisimilar: same truth/falsity of model properties

I Simulation gives property-truth preserving abstraction
(see later)

Conrad Watt Hoare Logic and Model Checking 116 / 127

Bisimulation relations

I Let R : S→S→B and R′ : S′→S′→B be transition relations

I B is a bisimulation relation between R and R′ if:
I B : S→S′→B
I ∀s s′. B s s′ ⇒ ∀s1 ∈ S. R s s1 ⇒ ∃s′1. R′ s′ s′1 ∧ B s1 s′1

(to each step of R there is a corresponding step of R′)

I ∀s s′. B s s′ ⇒ ∀s′1 ∈ S. R′ s′ s′1 ⇒ ∃s1. R s s1 ∧ B s1 s′1
(to each step of R′ there is a corresponding step of R)

Conrad Watt Hoare Logic and Model Checking 117 / 127

Bisimulation equivalence: definition and theorem

I Let M = (S,S0,R,L) and M ′ = (S′,S′0,R
′,L′)

I M ≡ M ′ if:
I there is a bisimulation B between R and R′

I ∀s0 ∈ S0. ∃s′0 ∈ S′0. B s0 s′0
I ∀s′0 ∈ S′0. ∃s0 ∈ S0. B s0 s′0
I ∀s s′. B s s′ ⇒ L(s) = L′(s′)

I Theorem: if M ≡ M ′ then for any CTL* state formula ψ:
M |= ψ ⇔ M ′ |= ψ

I See Q14 in the Exercises

Conrad Watt Hoare Logic and Model Checking 118 / 127

Abstraction and Abstraction Refinement

Conrad Watt Hoare Logic and Model Checking 119 / 127

Abstraction
I Abstraction creates a simplification of a model

I separate states/atomic properties may get merged
I an abstract path can represent several concrete paths

I M � M means M is an abstraction of M
I to each step of M there is a corresponding step of M
I atomic properties of M correspond to atomic properties of M

I Special case (close to bisimulation) is when M is a subset
of M such that:

I M = (S0,S,R,L) and M = (S0,S,R,L)

S ⊆ S
S0 = S0

∀s s′ ∈ S. R s s′ ⇔ R s s′

∀s ∈ S. L s = L s
I S contain all reachable states of M
∀s ∈ S. ∀s′ ∈ S. R s s′ ⇒ s′ ∈ S

I All paths of M from initial states are M-paths
I hence for all CTL formulae ψ: M |= ψ ⇒ M |= ψ

Conrad Watt Hoare Logic and Model Checking 120 / 127

Recall JM1
Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

I Two program counters, state: (pc1, pc2, lock , x)

SJM1 = [0..3]× [0..3]× Z× Z
RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (1, pc2, lock , x) (2, pc2, lock , 1)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x)

RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (pc1, 1, lock , x) (pc1, 2, lock , 2)
RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

I Assume NotAt11 ∈ LJM1(pc1, pc2, lock , x)⇔ ¬((pc1 = 1) ∧ (pc2 = 1))

I Model MJM1 = (SJM1, {(0, 0, 0, 0)},RJM1, LJM1)

I SJM1 not finite, but actually lock ∈ {0, 1}, x ∈ {0, 1, 2}

I Clear by inspection that MJM1 � MJM1 where:
MJM1 = (SJM1, {(0, 0, 0, 0)},RJM1, LJM1)

I SJM1 = [0..3]× [0..3]× [0..1]× [0..2]
I RJM1 is RJM1 restricted to arguments from SJM1

I NotAt11 ∈ LJM1(pc1, pc2, lock , x)⇔ ¬((pc1 = 1) ∧ (pc2 = 1))
I LJM1 is LJM1 restricted to arguments from SJM1

Conrad Watt Hoare Logic and Model Checking 121 / 127

Simulation relations

I Let R : S→S→B and R : S→S→B be transition relations

I H is a simulation relation between R and R if:

I H is a relation between S and S – i.e. H : S→S→B
I to each step of R there is a corresponding step of R – i.e.:
∀s s. H s s ⇒ ∀s′ ∈ S. R s s′ ⇒ ∃s′ ∈ S. R s s′ ∧ H s′ s′

I Also need to consider abstraction of atomic properties
I HAP : AP→AP→B
I details glossed over here

Conrad Watt Hoare Logic and Model Checking 122 / 127

Simulation preorder: definition and theorem
I Given two models M = (S,S0,R,L) and M = (S,S0,R,L)

we say M abstracts M, written M � M, if:
I there is a simulation H between R and R
I ∀s0 ∈ S0. ∃s0 ∈ S0. H s0 s0

I ∀s s. H s s ⇒ HAP L(s) L(s)

I We define ACTL to be the subset of CTL without
E-properties and with negation only applied to atomic
properties.

I e.g. AG AFp – from anywhere can always reach a p-state
I useful for abstraction:

I Theorem: if M � M then for any ACTL state formula ψ:
M |= ψ ⇒ M |= ψ

I BUT: if M |= ψ fails then cannot conclude M |= ψ false
I Like abstract interpretation in Optimising Compilers

Conrad Watt Hoare Logic and Model Checking 123 / 127

Example (Grumberg)

M M

r

y

g

 yg

r

RED

YELLOW

GREEN

STOP

GO

H

H

H

H a simulation

H RED STOP ∧
H YELLOW GO ∧
H GREEN GO

HAP : {r , y , g}→{r , yg}→B

HAP r r ∧
HAP y yg ∧
HAP g yg

I M |= AG AF ¬r hence M |= AG AF ¬r
I but ¬(M |= AG AF r) doesn’t entail ¬(M |= AG AF r)

I [[AG AF r]]M(STOP) is false
(consider M-path π′ where π′ = STOP.GO.GO.GO. · · ·)

I [[AG AF r]]M(RED) is true
(abstract path π′ doesn’t correspond to a real path in M)

Conrad Watt Hoare Logic and Model Checking 124 / 127

CEGAR
I Counter Example Guided Abstraction Refinement

I Lots of details to fill out (several different solutions)
I how to generate abstraction
I how to check counterexamples
I how to refine abstractions

I Microsoft SLAM driver verifier is a CEGAR system

[not examinable]
Conrad Watt Hoare Logic and Model Checking 125 / 127

Temporal Logic and Model Checking – Summary

I Various property languages: LTL, CTL, PSL (Prior, Pnueli)

I Kripke models abstract from hardware or software designs

I Model checking checks M |= ψ (Clarke et al.)

I Symbolic model checking uses BDDs (McMillan)

I Avoid state explosion via simulation and abstraction

I CEGAR refines abstractions by analysing counterexamples

I Triumph of application of computer science theory
I two Turing awards, McMillan gets 2010 CAV award
I widespread applications in industry

Conrad Watt Hoare Logic and Model Checking 126 / 127

THE END

Conrad Watt Hoare Logic and Model Checking 127 / 127

