
Hoare logic

Lecture 3: Formalising the semantics of Hoare logic

Jean Pichon-Pharabod

University of Cambridge

CST Part II – 2018/19

Recap

In the previous lecture, we specified and verified some example

programs using the syntactic rules of Hoare logic that we

introduced in the first lecture.

In this lecture, we will prove the soundness of the syntactic rules,

and look at some other properties of Hoare logic.

1

Semantics of Hoare logic

Recall: to define a Hoare logic, we need four main components:

• the programming language that we want to reason about:

its syntax and dynamic semantics;

• an assertion language for defining state predicates:

its syntax and an interpretation;

• an interpretation |= of Hoare triples;

• a (sound) syntactic proof system ` for deriving Hoare triples.

2

Dynamic semantics of WHILE

Dynamic semantics of WHILE

The dynamic semantics of WHILE will be given in the form of a

small-step operational semantics (as in Part IB Semantics).

The states of the small-step operational semantics, called

configurations, are pairs of a command C and a stack s.

We will abuse terminology, and also refer to s as the state.

The step relation 〈C , s〉 → 〈C ′, s ′〉 expresses that configuration

〈C , s〉 can take a small step to become configuration 〈C ′, s ′〉.

We will write →∗ for the reflexive, transitive closure of →.

3

Dynamic semantics of WHILE

Stacks are functions from variables to integers:

s ∈ Stack
def
= Var→ Z

These are total functions, and define the current value of every

program variable and auxiliary variable.

This models WHILE with arbitrary precision integer arithmetic.

A more realistic model might use 32-bit integers and require

reasoning about overflow, etc.

4

Dynamic semantics of expressions: first approach

We could have two small-step reduction relations for arithmetic

expressions and boolean expressions, 〈E , s〉 → 〈E ′, s ′〉 and

〈B, s〉 → 〈B ′, s ′〉:

〈X , s〉 → 〈s(X), s〉
N1 + N2 = N

〈N1 + N2, s〉 → 〈N, s〉

〈E1, s〉 → 〈E ′1, s ′〉

〈E1 + E2, s〉 → 〈E ′1 + E2, s
′〉

〈E2, s〉 → 〈E ′2, s ′〉

〈N1 + E2, s〉 → 〈N1 + E ′2, s
′〉

. . .

5

Dynamic semantics of expressions: our approach

However, expressions in WHILE do not change the stack, and do

not get stuck:

∀E , s. ∃N. 〈E , s〉 →∗ 〈N, s〉

(and the equivalent for B).

We take advantage of this, and specify the dynamic semantics of

expressions in a way which makes our setup easier (the results are

the same, but execution can take fewer steps):

We use functions E [[E]](s) and B[[B]](s) to evaluate arithmetic

expressions and boolean expressions in a given stack s, respectively.

6

Semantics of expressions

E [[E]](s) evaluates arithmetic expression E to an integer in stack s:

E [[−]](=) : Exp× Stack→ Z

E [[N]](s)
def
= N

E [[X]](s)
def
= s(X)

E [[E1 + E2]](s)
def
= E [[E1]](s) + E [[E2]](s)

...

This semantics is too simple to handle operations such as division,

which fails to evaluate to an integer on some inputs.

For example, if s(X) = 3 and s(Y) = 0, then

E [[X + 2]](s) = E [[X]](s) + E [[2]](s) = 3 + 2 = 5, and

E [[Y + 4]](s) = E [[Y]](s) + E [[4]](s) = 0 + 4 = 4.
7

Semantics of boolean expressions

B[[B]](s) evaluates boolean expression B to a boolean in stack s:

B[[−]](=) : BExp× Stack→ B

B[[T]](s)
def
= >

B[[F]](s)
def
= ⊥

B[[E1 ≤ E2]](s)
def
=

> if E [[E1]](s) ≤ E [[E2]](s)

⊥ otherwise

...

For example, if s(X) = 3 and s(Y) = 0, then

B[[X + 2 ≥ Y + 4]](s) = E [[X + 2]](s) ≥ E [[Y + 4]](s) = 5 ≥ 4 = >.

8

Small-step operational semantics of WHILE

E [[E]](s) = N

〈X := E , s〉 → 〈skip, s[X 7→ N]〉

〈skip;C2, s〉 → 〈C2, s〉

〈C1, s〉 → 〈C ′1, s ′〉

〈C1;C2, s〉 → 〈C ′1;C2, s
′〉

B[[B]](s) = >

〈if B then C1 else C2, s〉 → 〈C1, s〉

B[[B]](s) = ⊥

〈if B then C1 else C2, s〉 → 〈C2, s〉

B[[B]](s) = ⊥

〈while B do C , s〉 → 〈skip, s〉

B[[B]](s) = >

〈while B do C , s〉 → 〈C ; while B do C , s〉 9

Properties of WHILE

Safety and determinacy

A configuration 〈C , s〉 is stuck, written 〈C , s〉 6→, when

∀C ′, s ′.¬(〈C , s〉 → 〈C ′, s ′〉).

The dynamic semantics of WHILE is safe, in that a configuration

is stuck exactly when its command is skip:

(〈C , s〉 6→)⇔ C = skip

This is true for any syntactically well-formed command, without

any further typing! (Because our language is very simple.)

The dynamic semantics of WHILE is deterministic:

〈C , s〉 → 〈C ′, s ′〉 ∧ 〈C , s〉 → 〈C ′′, s ′′〉 ⇒ C ′′ = C ′ ∧ s ′′ = s ′

10

Non-termination

It is possible to have an infinite sequence of steps starting from a

configuration 〈C , s〉: 〈C , s〉 has a non-terminating execution (also

“can diverge”), written 〈C , s〉 →ω, when there exists a sequence of

commands (Cn)n∈N and a sequence of stacks (sn)n∈N such that

C0 = C ∧ s0 = s ∧ ∀n ∈ N. 〈Cn, sn〉 → 〈Cn+1, sn+1〉

Note that

〈C , s〉 →ω ⇔ ∃C ′, s ′. 〈C , s〉 → 〈C ′, s ′〉 ∧ 〈C ′, s ′〉 →ω

Because WHILE is safe and deterministic, a configuration can

take steps to skip if and only if it does not diverge:

(∃s ′. 〈C , s〉 →∗ 〈skip, s ′〉)⇔ ¬(〈C , s〉 →ω)

This can break down with a non-deterministic language.

11

Substitution

We use E1[E2/X] to denote E1 with E2 substituted for every

occurrence of program variable X :

−[= / ≡] : Expr × Expr × Var → Expr

N[E2/X]
def
= N

Y [E2/X]
def
=

{
if Y = X E2

if Y 6= X Y

(Ea + Eb)[E2/X]
def
= (Ea[E2/X]) + (Eb[E2/X])

...

For example, (X + (Y × 2))[3 + Z/Y] = X + ((3 + Z)× 2).

12

Substitution property for expressions

We will use the following expression substitution property later:

E [[E1[E2/X]]](s) = E [[E1]](s[X 7→ E [[E2]](s)])

The expression substitution property follows by induction on E1.

Case E1 ≡ N:

E [[N[E2/X]]](s) = E [[N]](s) = N = E [[N]](s[X 7→ E [[E2]](s)])

13

Proof of substitution property: variable case

E [[E1[E2/X]]](s) = E [[E1]](s[X 7→ E [[E2]](s)])

Case E1 ≡ Y :

E [[Y [E2/X]]](s)

=

{
if Y = X E [[X [E2/X]]](s) = E [[E2]](s) = E [[X]](s[X 7→ E [[E2]](s)])

if Y 6= X E [[Y]](s) = s(Y) = E [[Y]](s[X 7→ E [[E2]](s)])

= E [[Y]](s[X 7→ E [[E2]](s)])

14

Proof of substitution property: addition case

E [[E1[E2/X]]](s) = E [[E1]](s[X 7→ E [[E2]](s)])

Case E1 ≡ Ea + Eb:

E [[(Ea + Eb)[E2/X]]](s)

= E [[(Ea[E2/X]) + (Eb[E2/X])]](s)

= E [[Ea[E2/X]]](s) + E [[Eb[E2/X]]](s)

= E [[Ea]](s[X 7→ E [[E2]](s)]) + E [[Eb]](s[X 7→ E [[E2]](s)])

= E [[Ea + Eb]](s[X 7→ E [[E2]](s)])

15

Semantics of assertions

The language of assertions

Now, we have formally defined the dynamic semantics of the

WHILE language that we wish to reason about.

The next step is to formalise the assertion language that we will

use to describe and reason about states of WHILE programs.

We take the language of assertions to be (slight variation of)

an instance of single-sorted first-order logic with equality

(as in Part IB Logic and Proof).

16

The assertion language

The formal syntax of the assertion language is given below:

χ ::= X | x variables

t ::= χ | f (t1, ..., tn) n ≥ 0 terms

P,Q ::= ⊥ | > | P ∧ Q | P ∨ Q | P ⇒ Q assertions

| ∀x .P | ∃x .P | t1 = t2 | p(t1, ..., tn) n ≥ 0

¬P def
= P ⇒ ⊥

Quantifiers quantify over terms, and only bind logical variables.

Here f and p range over an unspecified set of function symbols

and predicate symbols, respectively, that includes (symbols for) the

usual mathematical functions and predicates on integers.

In particular, we assume that they contain symbols that allows us

to embed arithmetic expressions E as terms, and boolean

expressions B as assertions. 17

Semantics of terms

[[t]](s) defines the semantics of a term t in a stack s:

[[−]](=) : Term× Stack→ Z

[[χ]](s)
def
= s(χ)

[[f (t1, ..., tn)]](s)
def
= [[f]]([[t1]](s), ..., [[tn]](s))

We assume that the appropriate function [[f]] associated to each

function symbol f is provided along with the implicit signature.

In particular, we have [[E]](s) = E [[E]](s).

18

Semantics of assertions

[[P]] defines the set of stacks that satisfy the assertion P:

[[−]] : Assertion→ P(Stack)

[[⊥]]
def
= {s ∈ Stack | ⊥} = ∅

[[>]]
def
= {s ∈ Stack | >} = Stack

[[P ∨ Q]]
def
= {s ∈ Stack | s ∈ [[P]] ∨ s ∈ [[Q]]} = [[P]] ∪ [[Q]]

[[P ∧ Q]]
def
= {s ∈ Stack | s ∈ [[P]] ∧ s ∈ [[Q]]} = [[P]] ∩ [[Q]]

[[P ⇒ Q]]
def
= {s ∈ Stack | s ∈ [[P]]⇒ s ∈ [[Q]]}

(continued)

19

Semantics of assertions (continued)

[[t1 = t2]]
def
= {s ∈ Stack | [[t1]](s) = [[t2]](s)}

[[p(t1, ..., tn)]]
def
= {s ∈ Stack | [[p]]([[t1]](s), ..., [[tn]](s))}

[[∀x .P]]
def
= {s ∈ Stack | ∀N. s[x 7→ N] ∈ [[P]]}

[[∃x .P]]
def
= {s ∈ Stack | ∃N. s[x 7→ N] ∈ [[P]]}

We assume that the appropriate predicate [[p]] associated to each

predicate symbol p is provided along with the implicit signature.

In particular, we have [[B]] = {s | B[[B]](s) = >}.

We could write s |= P for s ∈ [[P]].

20

Substitutions

We use t[E/X] and P[E/X] to denote t and P with E substituted

for every occurrence of program variable X , respectively.

Since our quantifiers bind logical variables, and all free variables in

E are program variables, there is no issue with variable capture:

(∀x .P)[E/X]
def
= ∀x . (P[E/X])

...

21

Substitution property

The term and assertion semantics satisfy a similar substitution

property to the expression semantics:

• [[t[E/X]]](s) = [[t]](s[X 7→ E [[E]](s)])

• s ∈ [[P[E/X]]]⇔ s[X 7→ E [[E]](s)] ∈ [[P]]

They are easily provable by induction on t and P, respectively: the

former by using the substitution property for expressions, and the

latter by using the former. (Exercise)

The latter property will be useful in the proof of soundness of the

syntactic assignment rule.

22

Semantics of Hoare triples

Semantics of partial correctness triples

Now that we have formally defined the dynamic semantics of

WHILE and our assertion language, we can define the formal

meaning of our triples.

A partial correctness triple asserts that if the given command

terminates when executed from an initial state that satisfies the

precondition, then the terminal state must satisfy the

postcondition:

|= {P} C {Q} def
= ∀s, s ′. s ∈ [[P]] ∧ 〈C , s〉 →∗ 〈skip, s ′〉 ⇒ s ′ ∈ [[Q]]

Without safety, we would have to worry about getting stuck

without reaching skip.

23

Soundness of Hoare logic

Soundness of Hoare logic

Theorem (Soundness)

If ` {P} C {Q} then |= {P} C {Q}.

Soundness expresses that any triple derivable using the syntactic

proof system holds semantically.

Soundness can be proved by induction on the ` {P} C {Q}
derivation:

• it suffices to show, for each inference rule, that if each

hypothesis holds semantically, then the conclusion holds

semantically.

24

Soundness of the assignment rule

|= {P[E/X]} X := E {P}

Assume s ∈ [[P[E/X]]] and 〈X := E , s〉 →∗ 〈skip, s ′〉.

From the substitution property, it follows that

s[X 7→ E [[E]](s)] ∈ [[P]].

From inversion on the steps, there exists an N such that

E [[E]](s) = N and s ′ = s[X 7→ N], so s ′ = s[X 7→ E [[E]](s)].

Hence, s ′ ∈ [[P]].

25

Soundness of the loop rule

If |= {P ∧ B} C {P} then |= {P} while B do C {P ∧ ¬B}

How can we get past the fact that the loop step rule defines the

steps of a loop in terms of the steps of a loop?

We will prove |= {P} while B do C {P ∧ ¬B} by proving a

modified version of the property.

We write 〈C , s〉 →k 〈C ′, s ′〉 to mean 〈C , s〉 can take k steps,

where k ≥ 0, to reach 〈C ′, s ′〉.

26

Soundness of the loop rule: base case

If (IH) ∀s, s ′. s ∈ [[P ∧ B]] ∧ 〈C , s〉 →∗ 〈skip, s ′〉 ⇒ s ′ ∈ [[P]],

then ∀n > 0. ∀k < n.∀s, s ′. s ∈ [[P]] ∧
〈while B do C , s〉 →k 〈skip, s ′〉 ⇒ s ′ ∈ [[P ∧ ¬B]]

We can prove this by a (nested) induction on n:

Case 1: assume s ∈ [[P]], k < 1, and

〈while B do C , s〉 →k 〈skip, s ′〉.

Then while B do C = skip, so we have a contradiction.

27

Soundness of the loop rule: inductive case

If (IH) ∀s, s ′. s ∈ [[P ∧ B]] ∧ 〈C , s〉 →∗ 〈skip, s ′〉 ⇒ s ′ ∈ [[P]],

then ∀n > 0. ∀k < n.∀s, s ′. s ∈ [[P]] ∧
〈while B do C , s〉 →k 〈skip, s ′〉 ⇒ s ′ ∈ [[P ∧ ¬B]]

Case n + 1: assume s ∈ [[P]], k < n + 1,

〈while B do C , s〉 →k 〈skip, s ′〉, and

(nIH) ∀k < n.∀s, s ′. s ∈ [[P]] ∧ 〈while B do C , s〉 →k 〈skip, s ′〉 ⇒
s ′ ∈ [[P ∧ ¬B]].

If k = 0, it is as before.

If k = 1, B must have evaluated to false: B[[B]](s) = ⊥ and s ′ = s.

Since B[[B]](s) = ⊥, s /∈ [[B]], so s ∈ [[B]]⇒ s ∈ [[⊥]], so

s ∈ [[B ⇒ ⊥]], so s ∈ [[¬B]]. Therefore, s ∈ [[P ∧ ¬B]].

Hence, s ′ = s ∈ [[P ∧ ¬B]]. 28

Soundness of the loop rule: inductive case (continued)

If (IH) ∀s, s ′. s ∈ [[P ∧ B]] ∧ 〈C , s〉 →∗ 〈skip, s ′〉 ⇒ s ′ ∈ [[P]],

then ∀n > 0. ∀k < n.∀s, s ′. s ∈ [[P]] ∧ 〈while B do C , s〉 →k

〈skip, s ′〉 ⇒ s ′ ∈ [[P ∧ ¬B]]

If k > 1, B must have evaluated to true: B[[B]](s) = >, and there

exists s∗, k1, and k2 such that 〈C , s〉 →k1 〈skip, s∗〉,
〈while B do C , s∗〉 →k2 〈skip, s ′〉, and k = k1 + k2 + 2.

Since B[[B]](s) = >, s ∈ [[B]]. Therefore, s ∈ [[P ∧ B]].

From the outer induction hypothesis IH, it follows that s∗ ∈ [[P]],

and so by the inner induction hypothesis nIH, s ′ ∈ [[P ∧ ¬B]].

29

Other properties of Hoare logic

Completeness

Completeness is the converse property of soundness:

If |= {P} C {Q} then ` {P} C {Q}.

Our Hoare logic inherits the incompleteness of arithmetic and is

therefore not complete.

30

Completeness

To see why, assume that |= {P} C {Q} ⇒ ` {P} C {Q}.

We can then show that our assertion logic is complete:

Assume |= P, that is, ∀s. s ∈ [[P]].

Then |= {>} skip {P}.
Using completeness, we can derive ` {>} skip {P}.
Then, by examining that derivation, we have a derivation of

`FOL > ⇒ P, and hence a derivation of `FOL P.

But the assertion logic includes arithmetic, and is therefore not

complete, so we have a contradiction.

31

Relative completeness

The previous argument showed that because the assertion logic is

not complete, then neither is Hoare logic.

However, Hoare logic is relatively complete for our simple

language:

• Relative completeness expresses that any failure to derive

` {P} C {Q} for a statement that holds semantically can be

traced back to a failure to prove `FOL R for some valid

arithmetic statement R.

In practice, completeness is not that important, and there is more

focus on nice, usable rules.

32

Decidability

Finally, Hoare logic is not decidable: there there does not exist a

computable function f such that

f (P,C ,Q) = > ⇔ |= {P} C {Q}

|= {>} C {⊥} holds if and only if C does not terminate.

Moreover, we can encode Turing machines in WHILE.

Hence, since the Halting problem is undecidable, so is Hoare logic.

33

Other perspectives on Hoare triples

Other perspectives on Hoare triples

So far, we have assumed P, C , and Q were given, and focused on

proving ` {P} C {Q}.

Recall, if P and Q are assertions, P is stronger than Q, and Q is

weaker than P, when `FOL P ⇒ Q.

If we are given P and C , can we infer a Q?

Is there a best such Q, sp(P,C)? (‘strongest postcondition’)

Symmetrically, if we are given C and Q, can we infer a P?

Is there a best such P, wlp(C ,Q)? (‘weakest liberal precondition’)

Are there functions wlp and sp such that

(`FOL P ⇒ wlp(C ,Q)) ⇔ ` {P} C {Q} ⇔ (`FOL sp(P,C)⇒ Q)
34

Terminology

We write wlp and talk about weakest liberal precondition because

we only consider partial correctness.

This has no relevance here because, as we will see, there is no

effective general finite (first-order) formula for weakest

preconditions, liberal or not, or strongest postconditions, for

commands containing loops, so we will not consider weakest

preconditions, liberal or not, for loops, so there is no difference

between partial and total correctness.

35

Computing weakest liberal preconditions (except for loops)

Dijkstra gives rules for computing weakest liberal preconditions for

deterministic loop-free code:

wlp(skip,Q) = Q

wlp(X := E ,Q) = Q[E/X]

wlp(C1;C2,Q) = wlp(C1,wlp(C2,Q))

wlp(if B then C1 else C2,Q) = (B ⇒ wlp(C1,Q)) ∧
(¬B ⇒ wlp(C2,Q))

These rules are suggested by the relative completeness of the

Hoare logic proof rules from the first lecture.

36

Example of weakest liberal precondition computation

wlp(X := X + 1;Y := Y + X , ∃m, n.X = 2×m ∧ Y = 2× n)

= wlp(X := X + 1, wlp(Y := Y + X , ∃m, n.X = 2×m ∧ Y = 2× n))

= wlp(X := X + 1, (∃m, n.X = 2×m ∧ Y = 2× n)[Y + X/Y])

= wlp(X := X + 1, ∃m, n.X = 2×m ∧ Y + X = 2× n)

= (∃m, n.X = 2×m ∧ Y + X = 2× n)[X + 1/X]

= ∃m, n.X + 1 = 2×m ∧ Y + (X + 1) = 2× n

⇔ ∃m, n.X = 2×m + 1 ∧ Y = 2× n

37

Weakest preconditions for loops

While the following property holds for loops

wlp(while B do C ,Q)⇔
wlp(if B then (C ; while B do C) else skip,Q)⇔
(B ⇒ wlp(C ,wlp(while B do C ,Q))) ∧ (¬B ⇒ Q)

it does not define wlp(while B do C ,Q) as a finite formula in

first-order logic.

There is no general finite formula for wlp(while B do C ,Q) in

first-order logic. (Otherwise, it would be easy to find invariants!)

38

Verification condition generation

We can now sketch the design of a verification condition

generation algorithm.

(1) The precondition needs to imply the approximate weakest

liberal precondition induced by the provided loop invariants.

(2) Moreover, the provided loop invariants need to be actual loop

invariants, and, together with the guard not holding, need to imply

the loop postcondition.

These can be computed mutually recursively.

39

Summary

We have defined a dynamic semantics for the WHILE language,

and a formal semantics for a Hoare logic for WHILE.

We have shown that the syntactic proof system from the first

lecture is sound with respect to this semantics, but not complete.

Supplementary reading on soundness and completeness:

• Glynn Winskel. The Formal Semantics of Programming

Languages: An Introduction. Chapters 6–7.

• Software Foundations, Benjamin C. Pierce et al.

In the next lecture, we will look at extending Hoare logic to reason

about pointers.

40

Not examinable: Verification condition generation

We can define annotated programs:

C ::= skip

| C1; C2
| X := E

| if B then C1 else C2
| while B do {I} C

and an erasure function:

|skip| def= skip

|C1; C2|
def
= |C1|; |C2|

|X := E | def= X := E

|if B then C1 else C2|
def
= if B then |C1| else |C2|

|while B do {I} C| def= while B do |C|
41

Not examinable: Computing verification conditions 1/2

We can then define our verification condition generation function

VC (P, C,Q)
def
= {P ⇒ awlp(C,Q)} ∪ VCaux(C,Q)

using (1) an approximation of weakest liberal precondition that

approximates loops using the provided invariants

awlp(skip,Q)
def
= Q

awlp(X := E ,Q)
def
= Q[E/X]

awlp(C1; C2,Q)
def
= awlp(C1, awlp(C2,Q))

awlp(if B then C1 else C2,Q)
def
= (B ⇒ awlp(C1,Q)) ∧

(¬B ⇒ awlp(C2,Q))

awlp(while B do {I} C,Q)
def
= I

42

Not examinable: Computing verification conditions 2/2

(2) an auxiliary function that collects side-conditions of loops:

VCaux(skip,Q)
def
= ∅

VCaux(X := E ,Q)
def
= ∅

VCaux(if B then C1 else C2,Q)
def
= VCaux(C1,Q) ∪ VCaux(C2,Q)

VCaux(C1; C2,Q)
def
= VCaux(C1, awlp(C2,Q)) ∪

VCaux(C2,Q)

VCaux(while B do {I} C,Q)
def
= {I ∧ ¬B ⇒ Q, I ∧ B ⇒ awlp(C, I)} ∪

VCaux(C, I)

43

	Dynamic semantics of WHILE
	Properties of WHILE
	Semantics of assertions
	Semantics of Hoare triples
	Soundness of Hoare logic
	Other properties of Hoare logic
	Other perspectives on Hoare triples

