This course is about checking properties of finite models.

Our models are expressed as Kripke structures.

Our properties are expressed using temporal logic.

You have not seen a formal definition of temporal logic yet.

Temporal logics are less powerful than predicate logic, but are decidable and easy to automate.
A Kripke structure is a transition system plus some labelling information.

Formally, a Kripke structure/model is written as $M = (S, S_0, R, L)$

- S is a finite set of states.
- $S_0 \subseteq S$ is a subset of distinguished starting states.
- $R \subseteq S \times S$ is a transition relation over states.
- $L :: S \rightarrow \mathcal{P}(AP)$ is a labelling function.
- The label function L associates each state with a set of propositional atoms (atomic properties).
Lecture 1 Recap - Kripke structures

Famous example - the “vending machine”.

- \(S \triangleq \{ S_A, S_B, S_C, S_D \} \)
- \(S_0 \triangleq \{ S_A \} \)
- \(R \triangleq \{ (S_A, S_B), (S_B, S_C), (S_B, S_D), (S_C, S_A), (S_D, S_A) \} \)
- \(L(S_A) = \{ \} \)
 - \(L(S_B) = \{ \text{coin} \} \)
 - \(L(S_C) = \{ \text{coke} \} \)
 - \(L(S_D) = \{ \text{pepsi} \} \)

As finite state automaton:
Lecture 1 Recap - Modelling

- Given a definition of a system, we need to work out how to represent it as a Kripke structure.
 - Then we can begin checking the truth of temporal logic properties.

<table>
<thead>
<tr>
<th>Thread 1</th>
<th>Thread 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
</tr>
<tr>
<td>1: X:=1;</td>
<td>1: X:=2;</td>
</tr>
<tr>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
</tr>
<tr>
<td>3:</td>
<td>3:</td>
</tr>
</tbody>
</table>

Assumptions (always good practice to state):
- All variables 0-initialized.
- One entire line executed per step.
- Thread scheduling is non-deterministic.
- "IF" lines are only scheduled if condition is true.
Thread 1

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>IF LOCK=0 THEN LOCK:=1;</td>
<td>0:</td>
<td>IF LOCK=0 THEN LOCK:=1;</td>
</tr>
<tr>
<td>1:</td>
<td>X:=1;</td>
<td>1:</td>
<td>X:=2;</td>
</tr>
<tr>
<td>2:</td>
<td>IF LOCK=1 THEN LOCK:=0;</td>
<td>2:</td>
<td>IF LOCK=1 THEN LOCK:=0;</td>
</tr>
<tr>
<td>3:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thread 2

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>IF LOCK=0 THEN LOCK:=1;</td>
<td>0:</td>
<td>IF LOCK=0 THEN LOCK:=1;</td>
</tr>
<tr>
<td>1:</td>
<td>X:=2;</td>
<td>1:</td>
<td>X:=2;</td>
</tr>
<tr>
<td>2:</td>
<td>IF LOCK=1 THEN LOCK:=0;</td>
<td>2:</td>
<td>IF LOCK=1 THEN LOCK:=0;</td>
</tr>
<tr>
<td>3:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Need to pick \((S, S_0, R, L)\) to *model* the program.
- Observe: two program counters, two variables - all integers.

- Individual state \((s \in S) \triangleq (pc_1, pc_2, \text{LOCK}, X)\)

- Represent state set as
 \[S \triangleq \{0, 1, 2, 3\} \times \{0, 1, 2, 3\} \times \{0, 1\} \times \{0, 1, 2\} \]

- \(S_0\) is just the singleton set \(\{(0, 0, 0, 0)\}\)

- Why not just define \(S \triangleq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}\)?
Lecture 1 Example

<table>
<thead>
<tr>
<th>Thread 1</th>
<th>Thread 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
</tr>
<tr>
<td>1: X:=1;</td>
<td>1: X:=2;</td>
</tr>
<tr>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
</tr>
<tr>
<td>3:</td>
<td>3:</td>
</tr>
</tbody>
</table>

- Need to pick \((S, S_0, R, L)\) to model the program.
- \(S \triangleq \{0, 1, 2, 3\} \times \{0, 1, 2, 3\} \times \{0, 1\} \times \{0, 1, 2\}\)
- \(S_0 \triangleq \{(0, 0, 0, 0)\}\)
- To define \(R\), look at how states should evolve over time.
- e.g. in all states of the form \((0, 0, 0, -)\), either thread 1 or 2 will take the \texttt{LOCK} and advance their \texttt{pc}.
Thread 1
0: IF LOCK=0 THEN LOCK:=1;
1: X:=1;
2: IF LOCK=1 THEN LOCK:=0;
3: ▶

Thread 2
0: IF LOCK=0 THEN LOCK:=1;
1: X:=2;
2: IF LOCK=1 THEN LOCK:=0;
3: ▶

▶ Need to pick \((S, S_0, R, L)\) to model the program.
▶ \(S \triangleq \{0, 1, 2, 3\} \times \{0, 1, 2, 3\} \times \{0, 1\} \times \{0, 1, 2\}\)
▶ \(S_0 \triangleq \{ (0, 0, 0, 0) \}\)
▶ Define \(R\):
\[
\forall pc_1\ pc_2\ lock\ x.\ R\ (0, pc_2, 0, x)\ (1, pc_2, 1, x)\ \land
R\ (1, pc_2, lock, x)(2, pc_2, lock, 1)\ \land
R\ (2, pc_2, 1, x)\ (3, pc_2, 0, x)\ \land
R\ (pc_1, 0, 0, x)\ (pc_1, 1, 1, x)\ \land
R\ (pc_1, 1, lock, x)(pc_1, 2, lock, 2)\ \land
R\ (pc_1, 2, 1, x)\ (pc_1, 3, 0, x)\]
Lecture 1 Example

<table>
<thead>
<tr>
<th>Thread 1</th>
<th>Thread 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
<td>0: IF LOCK=0 THEN LOCK:=1;</td>
</tr>
<tr>
<td>1: X:=1;</td>
<td>1: X:=2;</td>
</tr>
<tr>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
<td>2: IF LOCK=1 THEN LOCK:=0;</td>
</tr>
<tr>
<td>3:</td>
<td>3:</td>
</tr>
</tbody>
</table>

- Need to pick \((S, S_0, R, L)\) to *model* the program.
- What about \(L\)?
- Depends on which properties we want to prove.
- Any potential predicate on program state can be turned into a label.
- e.g. all states satisfying \((3, 3, - , -)\) could be labelled *finished*
- Then can express and check the temporal property “every execution of the program eventually reaches *finished*”.
 - i.e. all lines of code in both threads are executed
 - You will later see how to state this property formally.
Let’s imagine we want to prove *mutual exclusion*.
That is, both threads will never be “inside” the locked code at once.
Can label all states satisfying \((1, 1, -, -)\) with *violation*.
Then mutual exclusion can be expressed as “no execution of the program will reach a state satisfying *violation*”.
Equivalently, “all reachable states satisfy \(\neg\text{violation}\)”.

<table>
<thead>
<tr>
<th>Thread 1</th>
<th>Thread 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: IF (\text{LOCK}=0) THEN (\text{LOCK}:=1);</td>
<td>0: IF (\text{LOCK}=0) THEN (\text{LOCK}:=1);</td>
</tr>
<tr>
<td>1: (X:=1);</td>
<td>1: (X:=2);</td>
</tr>
<tr>
<td>2: IF (\text{LOCK}=1) THEN (\text{LOCK}:=0);</td>
<td>2: IF (\text{LOCK}=1) THEN (\text{LOCK}:=0);</td>
</tr>
<tr>
<td>3:</td>
<td>3:</td>
</tr>
</tbody>
</table>
Draw Kripke structures as finite state automata.
Reminder: \((s \in S) \triangleq (pc_1, pc_2, \text{LOCK}, X)\)
Drawing Kripke Structures

- Convention: annotate states with atomic properties.
- Strictly speaking, should draw unreachable states too.
 - But sometimes missed out. Use your judgement.
- You will never be asked to draw something this big. (96 states!)
A transition system or model is called *left-total* if no state is a “dead-end”.

That is, every state can transition to another state.

\[R\ s_1\ s_2 \equiv (s_1, s_2) \in R \]

\(R^* \) is the transitive closure of \(R \).

A *path*, often written \(\pi \), is a sequence of states.

Path \(R\ s\ \pi \) is true iff \(\pi \) is a path starting at \(s \) such that successive states in \(\pi \) are related by \(R \).

\(\pi(i) \) and \(\pi\ i \) are both syntax for the \(i \)th element of path \(\pi \).

\(\pi\downarrow i \) is the suffix of \(\pi \) starting from its \(i \)th element.
Other content from lecture 1 (less important):

- Reinterpreting slightly different formal models as Kripke models.
- Modelling systems with input (treat it as an extra component of the state).
- Historical syntax for models/interpretations.