
Hoare Logic and Model Checking
Model Checking Lecture 1 Supplement

Conrad Watt

Computer Laboratory, University of Cambridge, UK
http://www.cl.cam.ac.uk/~caw77

CST Part II – 2018/19

Conrad Watt Hoare Logic and Model Checking 1 / 14

http://www.cl.cam.ac.uk/~ caw77


Lecture 1 Recap

I This course is about checking properties of finite models.

I Our models are expressed as Kripke structures.

I Our properties are expressed using temporal logic.
I You have not seen a formal definition of temporal logic yet.
I Temporal logics are less powerful than predicate logic, but

are decidable and easy to automate.

Conrad Watt Hoare Logic and Model Checking 2 / 14



Lecture 1 Recap - Kripke structures

I A Kripke structure is a transition system plus some
labelling information.

I Formally, a Kripke structure/model is written as
M = (S,S0,R,L)

I S is a finite set of states.
I S0 ⊆ S is a subset of distinguished starting states.
I R ⊆ S × S is a transition relation over states.
I L :: S → P(AP) is a labelling function.

I The label function L associates each state with a set of
propositional atoms (atomic properties).

Conrad Watt Hoare Logic and Model Checking 3 / 14



Lecture 1 Recap - Kripke structures
Famous example - the “vending machine”.

I S , { SA,SB,SC,SD }
I S0 , { SA }
I R , { (SA,SB), (SB,SC), (SB,SD), (SC,SA), (SD,SA) }
I L(SA) = {}

L(SB) = {coin}
L(SC) = {coke}
L(SD) = {pepsi}

As finite state automaton:

Conrad Watt Hoare Logic and Model Checking 4 / 14



Lecture 1 Recap - Modelling

I Given a definition of a system, we need to work out how to
represent it as a Kripke structure.
I Then we can begin checking the truth of temporal logic

properties.

Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

Assumptions (always good practice to state):
I All variables 0-initialized.
I One entire line executed per step.
I Thread scheduling is non-deterministic.
I “IF” lines are only scheduled if condition is true.

Conrad Watt Hoare Logic and Model Checking 5 / 14



Lecture 1 Example

Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

I Need to pick (S,S0,R,L) to model the program.
I Observe: two program counters, two variables - all

integers.
I Individual state (s ∈ S) , (pc1,pc2,LOCK,X)

I Represent state set as
S , {0,1,2,3} × {0,1,2,3} × {0,1} × {0,1,2}

I S0 is just the singleton set { (0,0,0,0) }
I Why not just define S , Z× Z× Z× Z?

Conrad Watt Hoare Logic and Model Checking 6 / 14



Lecture 1 Example

Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

I Need to pick (S,S0,R,L) to model the program.
I S , {0,1,2,3} × {0,1,2,3} × {0,1} × {0,1,2}
I S0 , { (0,0,0,0) }
I To define R, look at how states should evolve over time.
I e.g. in all states of the form (0,0,0,−), either thread 1 or 2

will take the LOCK and advance their pc

Conrad Watt Hoare Logic and Model Checking 7 / 14



Lecture 1 Example
Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

I Need to pick (S,S0,R,L) to model the program.
I S , {0,1,2,3} × {0,1,2,3} × {0,1} × {0,1,2}
I S0 , { (0,0,0,0) }
I Define R:
∀pc1 pc2 lock x .R (0,pc2,0, x) (1,pc2,1, x) ∧

R (1,pc2, lock , x) (2,pc2, lock ,1) ∧
R (2,pc2,1, x) (3,pc2,0, x) ∧
R (pc1,0,0, x) (pc1,1,1, x) ∧
R (pc1,1, lock , x) (pc1,2, lock ,2) ∧
R (pc1,2,1, x) (pc1,3,0, x)

Conrad Watt Hoare Logic and Model Checking 8 / 14



Lecture 1 Example
Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

I Need to pick (S,S0,R,L) to model the program.
I What about L?
I Depends on which properties we want to prove.
I Any potential predicate on program state can be turned

into a label.
I e.g. all states satisfying (3,3,−,−) could be labelled

finished
I Then can express and check the temporal property “every

execution of the program eventually reaches finished”.
I i.e. all lines of code in both threads are executed
I You will later see how to state this property formally.

Conrad Watt Hoare Logic and Model Checking 9 / 14



Lecture 1 Example

Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

I Let’s imagine we want to prove mutual exclusion.
I That is, both threads will never be “inside” the locked code

at once.
I Can label all states satisfying (1,1,−,−) with violation.
I Then mutual exclusion can be expressed as “no execution

of the program will reach a state satisfying violation”.
I Equivalently, “all reachable states satisfy ¬violation”.

Conrad Watt Hoare Logic and Model Checking 10 / 14



Drawing Kripke Structures
Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

Draw Kripke structures as finite state automata.
Reminder: (s ∈ S) , (pc1,pc2,LOCK,X)

Conrad Watt Hoare Logic and Model Checking 11 / 14



Drawing Kripke Structures
I Convention: annotate states with atomic properties.
I Strictly speaking, should draw unreachable states too.

I But sometimes missed out. Use your judgement.
I You will never be asked to draw something this big.

(96 states!)

Conrad Watt Hoare Logic and Model Checking 12 / 14



Lecture 1 Recap - Some Definitions

I A transition system or model is called left-total if no state is
a “dead-end”.

I That is, every state can transition to another state.

I R s1 s2 ≡ (s1, s2) ∈ R
I R∗ is the transitive closure of R.

I A path, often written π, is a sequence of states.
I Path R s π is true iff π is a path starting at s such that

successive states in π are related by R.
I π(i) and π i are both syntax for the i th element of path π.
I π↓i is the suffix of π starting from its i th element.

Conrad Watt Hoare Logic and Model Checking 13 / 14



Lecture 1 Recap - Other Slide Content

Other content from lecture 1 (less important):
I Reinterpreting slightly different formal models as Kripke

models.
I Modelling systems with input (treat it as an extra

component of the state).
I Historical syntax for models/interpretations.

Conrad Watt Hoare Logic and Model Checking 14 / 14


