

Hoare Logic and Model Checking Model Checking Lecture 1 Supplement

Conrad Watt

Computer Laboratory, University of Cambridge, UK http://www.cl.cam.ac.uk/~caw77

CST Part II - 2018/19

Lecture 1 Recap

- ▶ This course is about checking *properties* of *finite models*.
- Our models are expressed as Kripke structures.
- Our properties are expressed using temporal logic.
 - You have not seen a formal definition of temporal logic yet.
 - ► Temporal logics are less powerful than predicate logic, but are *decidable* and easy to automate.

Lecture 1 Recap - Kripke structures

- A Kripke structure is a transition system plus some labelling information.
- Formally, a Kripke structure/model is written as $M = (S, S_0, R, L)$
- S is a finite set of states.
- ▶ $S_0 \subseteq S$ is a subset of distinguished *starting states*.
- $ightharpoonup R \subseteq S \times S$ is a transition relation over states.
- ▶ $L :: S \to \mathcal{P}(AP)$ is a labelling function.
- ► The label function L associates each state with a set of propositional atoms (atomic properties).

Lecture 1 Recap - Kripke structures

Famous example - the "vending machine".

 \triangleright $S \triangleq \{ S_A, S_B, S_C, S_D \}$ \triangleright $S_0 \triangleq \{ S_A \}$ $ightharpoonup R \triangleq \{ (S_A, S_B), (S_B, S_C), (S_B, S_D), (S_C, S_A), (S_D, S_A) \}$ ► $L(S_A) = \{\}$ $L(S_B) = \{coin\}$ $L(S_C) = \{coke\}$ coke $L(S_D) = \{pepsi\}$ As finite state automaton: Sc coin S START pepsi

4/14

Lecture 1 Recap - Modelling

- Given a definition of a system, we need to work out how to represent it as a Kripke structure.
 - Then we can begin checking the truth of temporal logic properties.

```
Thread 1
0: IF LOCK=0 THEN LOCK:=1;
1: X:=1;
2: IF LOCK=1 THEN LOCK:=0;
3: Thread 2
0: IF LOCK=0 THEN LOCK:=1;
1: X:=2;
2: IF LOCK=1 THEN LOCK:=0;
3:
```

Assumptions (always good practice to state):

- All variables 0-initialized.
- One entire line executed per step.
- ► Thread scheduling is non-deterministic.
- "IF" lines are only scheduled if condition is true.

Thread 1 0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1; 1: X:=1; 1: X:=2; 2: IF LOCK=1 THEN LOCK:=0; 3: 3:

- ▶ Need to pick (S, S_0, R, L) to *model* the program.
- Observe: two program counters, two variables all integers.
- ▶ Individual state $(s \in S) \triangleq (pc_1, pc_2, LOCK, X)$
- ► Represent state set as $S \triangleq \{0, 1, 2, 3\} \times \{0, 1, 2, 3\} \times \{0, 1, 2, 3\} \times \{0, 1, 2, 3\}$
- \triangleright S₀ is just the singleton set $\{(0,0,0,0)\}$
- ▶ Why not just define $S \triangleq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$?

Thread 1 0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1; 1: X:=1; 1: X:=2; 2: IF LOCK=1 THEN LOCK:=0; 3: 3:

- Need to pick (S, S_0, R, L) to *model* the program.
- ► $S \triangleq \{0,1,2,3\} \times \{0,1,2,3\} \times \{0,1\} \times \{0,1,2\}$
- ► $S_0 \triangleq \{ (0,0,0,0) \}$
- ► To define R, look at how states should evolve over time.
- ▶ e.g. in all states of the form (0,0,0,-), either thread 1 or 2 will take the **LOCK** and advance their pc

```
Thread 1
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;
2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:
```

- Need to pick (S, S_0, R, L) to *model* the program.
- ► $S \triangleq \{0,1,2,3\} \times \{0,1,2,3\} \times \{0,1\} \times \{0,1,2\}$
- ► $S_0 \triangleq \{ (0,0,0,0) \}$
- ▶ Define R:

```
Thread 1
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1; 1: X:=1; 1: X:=2; 2: IF LOCK=1 THEN LOCK:=0; 3: 3:
```

- ▶ Need to pick (S, S_0, R, L) to *model* the program.
- ▶ What about L?
- Depends on which properties we want to prove.
- Any potential predicate on program state can be turned into a label.
- e.g. all states satisfying (3,3,-,-) could be labelled finished
- Then can express and check the temporal property "every execution of the program eventually reaches finished".
 - i.e. all lines of code in both threads are executed
 - You will later see how to state this property formally.

```
Thread 1
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1; 1: X:=1; 1: X:=2; 2: IF LOCK=1 THEN LOCK:=0; 3: 3:
```

- Let's imagine we want to prove mutual exclusion.
- That is, both threads will never be "inside" the locked code at once.
- ▶ Can label all states satisfying (1, 1, -, -) with **violation**.
- ► Then mutual exclusion can be expressed as "no execution of the program will reach a state satisfying violation".
- ► Equivalently, "all reachable states satisfy ¬violation".

Drawing Kripke Structures

```
Thread 1
                                Thread 2
    IF LOCK=0 THEN LOCK:=1:
                                     IF LOCK=0 THEN LOCK:=1:
    X := 1;
                                    X := 2;
   IF LOCK=1 THEN LOCK:=0;
                                    IF LOCK=1 THEN LOCK:=0;
3:
                                3:
```

Draw Kripke structures as *finite state automata*.

2,3,0,

Drawing Kripke Structures

- Convention: annotate states with atomic properties.
- Strictly speaking, should draw unreachable states too.
 - But sometimes missed out. Use your judgement.
- You will never be asked to draw something this big. (96 states!)

Lecture 1 Recap - Some Definitions

- A transition system or model is called *left-total* if no state is a "dead-end".
- That is, every state can transition to another state.
- ► $R s_1 s_2 \equiv (s_1, s_2) \in R$
- R* is the transitive closure of R.
- \triangleright A path, often written π , is a sequence of states.
- Path $R s \pi$ is true iff π is a path starting at s such that successive states in π are related by R.
- \blacktriangleright $\pi(i)$ and π i are both syntax for the ith element of path π .
- \blacktriangleright $\pi \downarrow i$ is the suffix of π starting from its *i*th element.

Lecture 1 Recap - Other Slide Content

Other content from lecture 1 (less important):

- Reinterpreting slightly different formal models as Kripke models.
- Modelling systems with input (treat it as an extra component of the state).
- Historical syntax for models/interpretations.