
Exercises for Hoare Logic

Jean Pichon-Pharabod

2018/2019

This exercise sheet is based on previous exercise sheets by Kasper Svend-
sen and by Mike Gordon. Mike Gordon’s exercise sheet also contains addi-
tional exercises: https://www.cl.cam.ac.uk/teaching/1516/HLog+ModC/

MJCG-HL-Exercises.pdf.

Recommended exercises metatheory: 1, 22; practice: 2, 9, 35; speci-
fications: 24, 25, 27; invariants: 12, 36, 37, 41; representation predicates:
47.

All the proof invariant exercises that do not involve separation logic can
be formalised in Why3: http://why3.lri.fr/try/.

Exercise 1. Give a program C such that the following partial correctness
triple holds, or argue why such a C cannot exist:

{X = x ∧ Y = y ∧ x 6= y} C {x = y}

Exercise 2. Show that the alternative assignment axiom

{P} X := E {P [E/X]}

is unsound by providing P and E such that

¬(|= {P} X := E {P [E/X]})

Exercise 3 (Soundness of Floyd’s assignment axiom). Show that the alter-
native assignment axiom

x /∈ FV (P )

{P} X := E {∃x.E[x/X] = X ∧ P [x/X]}

is sound.

1



Exercise 4 (Relative completeness of Floyd’s assignment axiom). Show that
if we replace the assignment axiom by the following alternative assignment
axiom

x /∈ FV (P )

{P} X := E {∃x.E[x/X] = X ∧ P [x/X]}

then the original assignment axiom is derivable.

Exercise 5. Show the soundness of the following rule:

` {P} C {Q} ` {P} C {R}
` {P} C {Q ∧R}

Exercise 6. Show the soundness of the following rule:

` {P} C {R} ` {Q} C {R}
` {P ∨Q} C {R}

Exercise 7. Give a sound and relatively complete rule for a repeat C untilB
command (which is syntactic sugar for C;while not B do C).

Exercise 8. Prove that the following backwards reasoning sequenced assign-
ment rule is derivable from the normal proof rules of Hoare logic:

{P} C {Q[E/X]}
{P} C;X := E {Q}

Exercise 9. Prove or give a counterexample for the following triple:

{X = x ∧ Y = y}
X := X + Y ;Y := X − Y ;X := X − Y
{Y = x ∧X = y}

Exercise 10. Give a proof outline, and in particular a loop invariant, for
the following partial correctness triple:

{X = x ∧ Y = y ∧ Y ≥ 0}
while Y > 0 do (X := X + 1;Y := Y − 1)
{X = x+ y}

2



Exercise 11. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 12. Give a proof outline, and in particular a loop invariant, for
the following partial correctness triple:

{X = x ∧ Y = y ∧ Y ≥ 0}
Z := 0;
A := 1;
while A ≤ Y do (Z := Z +X;A := A+ 1)
{Z = x× y}

Exercise 13. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 14. Recall that

` ∀x. gcd(x, x) = x
` ∀x, y. gcd(x, y) = gcd(y, x)
` ∀x, y. x > y ⇒ gcd(x, y) = gcd(x− y, y)

Give a proof outline, and in particular a loop invariant, for the following
partial correctness triple:

{X = x ∧ Y = y ∧ x > 0 ∧ y > 0}
while X 6= Y do (if X > Y then X := X − Y else Y := Y −X)
{X = Y ∧X = gcd(x, y)}

Exercise 15. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 16. Give a proof outline, and in particular a loop invariant, for
the following partial correctness triple:

{X = x ∧ Y = y}
Z := 0;
while not (X = 0) do (if X mod 2 = 1 then Z := Z + Y else skip);

Y := Y × 2;
X := X div 2


{Z = x× y}

Hint: X = (X div 2 +X div 2 +X mod 2).

3



Exercise 17. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 18 (Fast exponentiation). Give a proof outline, and in particular
a loop invariant, for the following partial correctness triple:

{X = x ∧N = n ∧ n ≥ 0}
Z := 1;
while N > 0 do (if N mod 2 = 1 then Z := Z ×X else skip);

N := N div 2;
X := X ×X


{Z = xn}

Exercise 19. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 20 (Turing’s large routine). Give a proof outline, and in particular
loop invariants, for the following partial correctness triple:

{N = n ∧ n ≥ 0}
R := 0;
U := 1;
while R < N do

S := 1;V := U ;
while S ≤ R do(

U := U + V ;S := S + 1
)

;
R := R + 1;


{U = fact(n)}

Exercise 21. Give variants to obtain a total correctness triple for the same
pre- and postcondition and command.

Exercise 22. Prove soundness of the separation logic heap assignment rule
by proving that

|= {E1 7→ t} [E1] := E2 {E1 7→ E2}

Exercise 23. Formalise and prove that if X 7→ t1 ∧ Y 7→ t2, then X and Y
alias, and t1 and t2 are equal.

4



Exercise 24. Give a triple specifying that a command C orders the values
of X and Y , so that the smaller value ends in X, and the greater value in Y .

Exercise 25. Give a triple specifying that a command C computes into Z
the sum of X and Y if R is 0, and their product otherwise.

Exercise 26. Give a triple specifying that a command C sorts a list starting
at X.

Exercise 27. Give a triple specifying that a command C concatenates a list
starting at X with itself.

Exercise 28. Give a triple specifying that a command C appends the value
of V to the start of a list starting at X if R is 0, and to the end of a list at
Y otherwise.

Exercise 29. Give a proof outline, and in particular a loop invariant, for
the following partial correctness triple:

{N = n ∧ n ≥ 0 ∧X = 0 ∧ Y = 0}
while X < N do (X := X + 1;Y := Y +X)
{Y =

∑n
i=1 i}

Exercise 30. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 31 (Euclid’s algorithm). Give a proof outline, and in particular a
loop invariant, for the following partial correctness triple:

{X = x ∧ Y = y}
R := X;
Q := 0;
while Y ≤ R do

(R := R− Y ;Q := Q+ 1)
{x = R + y ×Q ∧R < y}

Exercise 32. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

5



Exercise 33 (Divisibility by 13). Give a proof outline, and in particular a
loop invariant, for the following partial correctness triple:

{X = x ∧X ≥ 0}
while X ≥ 52 do
X := (X div 10) + 4× (X mod 10);

if X = 0 or X = 13 or X = 26 or X = 39 then Y := 1 else Y := 0
{Y = 1⇔ x mod 13 = 0}

Exercise 34. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 35. Give a proof outline for the following separation logic partial
correctness triple:

{list(X,α)}
if X = null then Y := null
else (E := [X];P := [X + 1];Y := alloc(E,P );dispose(X);dispose(X + 1))
{list(Y, α)}
Exercise 36. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{list(X,α)}
Y := null;
while X 6= null do

(Z := [X + 1]; [X + 1] := Y ;Y := X;X := Z)
{list(Y, rev(α))}

where rev is mathematical list reversal, so that

rev([]) = []

rev([h]) = [h]

rev(α ++β) = rev(β) ++rev(α)

Exercise 37. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{list(X,α)}
N := 0;
Y := X;
while Y 6= null do

(N := N + 1;Y := [Y + 1])
{list(X,α) ∧N = length(α)}

6



Exercise 38. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{N = n ∧ emp}
if N ≤ 0 then X := null

else


X := alloc(0,null);
P := X;
I := 1;
while I < N do

(Q := alloc(I,null); [P + 1] := Q;P := Q; I := I + 1)


{list(X, 0 :: . . . :: n− 1 :: []) ∧N = n}

Exercise 39. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{list(X,α)}
Y := alloc(0,null);Y ′ := Y ;
Z := alloc(0,null);Z ′ := Z;
while X 6= null do(

[Y ′ + 1] := X;Y ′ := X;X := [X + 1];
if X 6= null then ([Z ′ + 1] := X;Z ′ := X;X := [X + 1]) else skip

)
[Y ′ + 1] := null;
[Z ′ + 1] := null;
U := [Y + 1];dispose(Y );dispose(Y + 1);Y := U ;
U := [Z + 1];dispose(Z);dispose(Z + 1);Y := U ;
{∃α1, α2. length(α) = length(α1) + length(α2) ∧ (list(Y, α1) ∗ list(Z, α2))}

Exercise 40. Give a proof outline, and in particular a loop invariant, for
the same separation logic partial correctness triple, but with the following
postcondition:
{∃α1, α2. shuffle(α, α1, α2) ∧ (list(Y, α1) ∗ list(Z, α2))},
where

shuffle([], [], [])
def
= >

shuffle(x :: α, β, γ)
def
= (∃β′. β = x :: β′ ∧ shuffle(α, β′, γ)) ∨

(∃γ′. γ = x :: γ′ ∧ shuffle(α, β, γ′))

7



Exercise 41. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{list(X,α) ∧ sorted(α) ∧ Y = y}
if X = null then X := alloc(Y,null)

else



P := X;E := [P ];
if Y ≤ E then X := alloc(Y,X)

else


Q := P ;
while E < Y and P 6= null do

(Q := P ;P := [P + 1];E := [P ]) ;
R := alloc(Y, P );
[Q+ 1] := R




∃α1, α2.

α = α1 ++ α2 ∧
(∀i. 0 ≤ i < length(α1)⇒ α1[i] < y) ∧
(∀i. 0 ≤ i < length(α2)⇒ y ≤ α2[i]) ∧
list(X,α1 ++ [y] ++ α2)


Exercise 42. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{list(X,α)}
if X = null then Y := null

else

 P := X;E := [P ];Y := alloc(E,null);Q := Y ;P := [X + 1];
while P 6= null do

(E := [P ];Q2 := alloc(E,null); [Q+ 1] := Q2;Q := Q2;P := [P + 1])


{list(X,α) ∗ list(Y, α)}

Exercise 43 (Index search). Give a proof outline, and in particular a loop

8



invariant, for the following separation logic partial correctness triple:

{X = x ∧ x ∈list α ∧ list(Y, α)}
I := 0;Z := Y ;S := 0;

while S = 0 do
E := [Z];
if E = X then
S := 1

else
(Z := [Z + 1]; I := I + 1)


{α[I] = x ∧ list(Y, α)}

where ∈list is list membership:

x ∈list []
def
= ⊥

x ∈list (y :: β)
def
= (x = y) ∨ (x ∈list β)

Exercise 44 (Prefix testing). Give a proof outline, and in particular a loop
invariant, for the following separation logic partial correctness triple:

{list(X,α) ∗ list(Y, β)}
P := X;Q := Y ;S := 1;
while S = 1 and P 6= null and Q 6= null do

E := [P ];F := [Q];
if E = F then

(P := [P + 1];Q := [Q+ 1])
else
S := 0


{list(X,α) ∗ list(Y, β) ∧ (S = 0⇔ ¬(α v β ∨ β v α))}

where v is prefix relation:

[] v β
def
= >

h :: α v β
def
= ∃γ. β = h :: γ ∧ α v γ

Exercise 45 (Substring testing). Give a proof outline, and in particular a

9



loop invariant, for the following separation logic partial correctness triple:

{list(X,α) ∗ list(Y, β)}
S := 1;P := X;Q := Y ;
while (S = 1 and P 6= null) do

if Q = null then S := 0
else

E := [P ];F := [Q];
if E = F then P := [P + 1]
else skip;
Q := [Q+ 1]




{(S = 0⇔ (α @@ β)) ∧ (list(X,α) ∗ list(Y, β))}

where @@ is the (not-necessarily-contiguous) substring relation:

[] @@ β
def
= >

h :: α @@ β
def
= (∃γ. β = h :: γ ∧ α @@ γ) ∨ (∃i, γ. β = i :: γ ∧ h :: α @@ γ)

Exercise 46 (Bubble sort). Give a proof outline, and in particular loop
invariants, for the following separation logic partial correctness triple:

{list(X,α)}
D := 0;
while D = 0 do

S := 1;P := X;
while P 6= null do

Q := [P + 1];
if Q 6= null then

E := [P ];F := [Q];
if E ≤ F then
P := Q

else
(S := 0; [P ] := F ; [Q] := E)


else
skip


;

if S = 1 then D := 1 else skip


{∃β. sorted(β) ∧ permutation(α, β) ∧ list(X, β)}

Exercise 47. Give a representation predicate btree(t, τ) for binary trees,
given a mathematical representation τ ::= Leaf | Node n τ1 τ2, where n is an
integer.

10



Exercise 48. Give a representation predicate clist(t, α) for circular lists.

Exercise 49. Give a representation predicate list ′(t, α) for doubly-linked
lists.

Exercise 50. Give a representation predicate array(t , α) for arrays starting
at location t, the contents of which is represented by the mathematical list
α.

11


